
Analyzing The Security of The Cache Side Channel Defences With Attack Graphs

Limin Wang1,2 Ziyuan Zhu1,2,(�) Zhanpeng Wang1,2 Dan Meng1

1Institute of Information Engineering, Chinese Academy of Sciences, Beijing 100093, China
2School of Cyber Security, University of Chinese Academy of Sciences, Beijing 100049, China

e-mail:{wanglimin, zhuziyuan, wangzhanpeng, mengdan}@iie.ac.cn

Abstract— Note that very limited work is proposed to analyze

the security of defenses against the cache side channel attacks

on micro-architecture. In this paper, we propose a model based

method to generate a visual attack graph and analyze the security

of micro-architecture security designs in the early stages of

processor design. The experiments indicate that our method can

identify the special attack paths that some common security

designs fail to defend against and show them in an attack graph.

I. INTRODUCTION

Cache based side channel attacks like flush+reload,

evict+reload, prime+probe, and evict+time are able to leak

the secret data due to the difference of access time between

cache hits and misses. Fortunately, various of traditional

software and hardware methods can mitigate side channel

vulnerabilities well [1]. However, since it was reported in

2018, the hardware vulnerabilities like Meltdown and Spectre

have been attracting a lot of interest [2], [3]. These hardware

vulnerabilities can diversify attack methods in some steps of

the cache attacks. For example, in the flush+reload cache

attack. Previously, the attacker has to wait for the victim to

load secret data into the cache, but now, the victim’s secret

data can be loaded in the cache by Spectre or Meltdown which

exploits speculative execution vulnerabilities. With these vul-

nerabilities that exploit on the micro-architecture features,

cache side channel attacks are more powerful. As a result,

two new problems arise: (1) Whether the traditional cache-

only protections or the micro-architecture countermeasures

can also provide high-quality defense against the new cache

side channel attacks that exploit the hardware vulnerabilities?

(2) If these security designs are not secure enough, how did

they fail?

Unlike software, hardware problems are notoriously difficult

to solve after they are published. If we can answer the

questions above, we will help engineers know the remaining

vulnerabilities in the processor with countermeasures when

they are designing, so that they can fix it in the early stages

of processor design, which can greatly improve the security

of the hardware with low cost.

In order to answer the two questions above, some work

has been done to help evaluate cache side channel security.

Some methods have been proposed to analyze the security

of the secure cache architecture through computer simulation

experiments [4], [5], and other approaches use abstract model

analysis to help evaluate the secure cache architecture [6],

[7], [8]. However, they can not analyze the security of the

security designs on other micro-architecture components that

can systematically defend against the new cache side channel

attacks. To solve the requirements for analyzing the secu-

rity of micro-architecture countermeasures, Alloy analyzer

and “micro-architecturally happens-before”(µhb) graphs are

introduced in [9]. However, the µhb graphs used in such an

approach eventually lead to poor readability, which makes it

difficult for engineers to locate the defects in security designs.

In this paper, to answer the question (1), we use instruction

abstract method to model the micro-architecture and its secu-

rity designs, which can be described by NuSMV language

as a Kripke structure, and we use computation tree logic

(CTL) to express the security specification that the model

should never reach the insecure states caused by the attacker’s

successful attack. With the model and the CTL formula, the

modified model checker NuSMV will try to search the whole

state space of the model to find the possible attack paths that

violate the security specifications [10]. If no attack path can

be found, the security designs on micro-architecture can be

considered to be able to protect the data from the specified

cache side channel attack. As for question (2), if the modified

NuSMV can find attack paths, the attack graph generated can

visualize the attack paths and show the different vulnerabilities

exploited by different attack paths, so that it can help users

to find out the special attack cases that are not considered in

security designs.

To validate the method proposed in this paper, we will verify

and analyze some secure cache architectures such as Static

Partitioning Cache(SP Cache) and secure speculation designs

like InvisiSpec [11], [12], [6], and we successfully prove that

SP Cache can resist several side channel attacks, however,

flush (evict)+reload with Spectre attack can still bypass it.

In this paper, the key contributions include:

1. The paper proposed a new model based cache side chan-

nel defense security analysis method which can analyze

the security of the micro-architecture security designs.

2. We use the sequence of crucial states rather than the

pattern of the attack methods to express the security

specification, so that we can enumerate the known and

unknown attack paths that are able to reach these crucial

states.

3. To conveniently analyze the deficiencies in countermea-

sures, our method extends the attack graphs and proposes

a novel use of the attack graph technologies to visualize

the cache side-channel attack paths.

II. METHODOLOGY

The early-stage security analysis method proposed in this

paper can be divided into two steps: Attack Data Generation

and Attack Graph Generation. Both steps are described in

detail after an overview.

978-1-7281-4123-7/20/$31.00 c©2020 IEEE

A. Overview

Fig.1 presents an overview of the side channel defense secu-

rity analysis method. In this tool flow, the micro-architecture

model described by NuSMV language and the security spec-

ification described by CTL are the inputs of the modified

NuSMV. Then the modified NuSMV will verify whether the

model satisfies the specification, if the model satisfies, the

modified NuSMV will output the result OK, otherwise, the

modified NuSMV will generate multiple counterexamples to

prove the security designs are not secure enough. Then an

attack graph will be generated based on these counterexam-

ples. In order to make the final attack graph the tool flow

outputs reduced and readable, the graph reduction module is

necessary.

B. Attack Data Generation

1) Micro-architecture Model: In this paper, we will use the

instruction abstract method to model micro-architecture. The

method executes an abstract instruction per step in program

order, and the executing instruction will lead to state transi-

tions of the micro-architecture [13], [14], [15].

The micro-architecture model is a Kripke structure that

can express the state transitions, and it will be described by

NuSMV language.

Definition 1 Kripke structure M is a 4-tuple, let M = (S, I, R,

L), and AP be a set of atomic propositions.

• S is a set of states. Every micro-architecture state in S

usually contains the states of the several properties. For

example, the properties of the different micro-architecture

components and the properties of an attacker program and

a victim program.

• I is a set of initial states.

• R is a transition relation, R ⊆ S × S. It includes the state

transitions triggered by the abstract instructions or the

constraints between micro-architecture components.

• L is an interpretation function that maps from each state

to the set of atomic propositions that are true in that state,

L : S −→ 2AP.

The necessary properties and the state transitions in model

M will be illuminated detailedly in the following.

Micro-architecture Components. The micro-architecture

components and their properties we need should be chosen

at first. For instance, to verify whether a secure cache archi-

tecture design is secure under the cache side channel attacks,

cache is a necessary component and some of its properties

like whether the victim’s secret data is in the cache, denoted as

ExistSC (abbreviated as sc) and whether the attacker’s general

data is in the cache, denoted as ExistGN (abbreviated as gn)

should be added into each state in S.

The more components and properties are modeled, the more

precise the model verification is. However, if too many prop-

erties are added into the model, the state space will explode

during the model checking. Sensibly selecting components and

properties to be modeled plays an important role in allowing

the engineers to make a tradeoff between the precision and

the complexity.

Microarchitecture model

with security designs

Security specification

Modified

NuSMV

Attack graph

generator

Reduced

attack graphs

Graph reduction

module

Attack Data Generation

Attack Graph Generation

Failed

OK
Pass

Fig. 1. Overview of cache side channel defense security analysis method.
The large rectangle above represents the first step to generate attack data, and
the large rectangle below indicates the second step to generate attack graphs.
The little gray rectangles inside are tools, the arrows before and after tools
mean inputs and outputs.

Abstract Instructions. The abstract instruction set will also

help to decrease the complexity of the model. load, store,

jump, branch are frequently-used abstract instructions, and

some special but important instructions like clflush can also

be included in the abstract instruction set as needed. clflush is

an x86 instruction to invalidate the cache line that contains the

specified linear address in all levels of the cache, it is often

used in cache side channel attacks.

The state of the model M changes by executing the abstract

instructions, denote the abstract instructions set as A, and

denote the conditions that have to been satisfied to execute

the instructions as F, and the semantics of execution of an

abstract instruction is as follows.

s
a (a∈A) , fa⊆s(fa∈F ,s∈S ,s′∈S)
−−−−−−−−−−−−−−−−−−−→ s′ (1)

Formula (1) shows that only when the instruction a runs

and current state s satisfies what a needed, can state s change

to s’. All of the state transitions like Formula (1) should be

added into the set R.

In addition to the state transitions directly triggered by the

abstract instructions, there are some state transitions triggered

by the property changes in another micro-architecture com-

ponent, and these constraints between different components

should also be modeled. Take the cache coherence protocol

for example, assume there are 2 cores, and their caches have

the same data. When the data in one core is modified, the

data in another core will become invalid. The state transitions

triggered by MESI protocol should be added into R.

Attacker and Victim. The attacker and victim programs are

a sequence of abstract instructions. Every abstract instruction

in the programs will affect the current state of the micro-

architecture. Once the state becomes a dangerous state, it

means the attack succeeds.

For example, the current abstract instruction the attacker

and the victim is executing can be denoted as AttackerOP

(aop) and VictimOP (vop). They are properties of an attacker

and a victim, and both of them should be added into every

micro-architecture state in S. At the moment, if AttackerOP is

store, the secret data is in the cache, and the attacker aims to

occupy the cache sets where the victim’s secret data is stored,

so that the secret data will be evicted out of the cache. Then

the property ExistSC will change from true to false.

The secure problem here is the external interference be-

tween the attacker and the victim [7]. Specifically in this

example, what the attacker does can affect the victim’s data in

cache. Some security designs like SP Cache are used to solve

this problem. SP Cache isolates the victim and the attacker to

ensure that they do not share partitions, after applying the SP

Cache to our processor, the state transitions triggered by store

mentioned above will not be in R.

2) Security Specification: In this paper, the aim of the

security designs is to ensure the safety property that the

system should never reach the dangerous states, and the safety

property can be described as a security specification in CTL,

which is shown in (2). The CTL formula symbols can be found

in Table I.

¬EF(dangerous) (2)

For cache side channel attacks, even though exploits are

increasing rapidly, but the relevant insecurity states do not.

Therefore, we can conveniently develop security specifications

for them. In different exploits, the attacker uses different

vulnerabilities to make the system reach the same insecure

state. These states that have to be satisfied during the attack are

called crucial states in our paper. A cache side channel attack

can be divided into several attack steps, and when the current

crucial state meets what the attack step needs, the attack step

can be triggered. If this attack step is successful, then it will

make the system become another crucial state the attackers

expected. If the current state meets what the next attack step

needs, the subsequent attacks will continue. As long as one

of these crucial states is not satisfied, the attack fails. For

example, in the flush+reload attack, if the computer system

has the instruction clflush, the first attack step that flushing the

cache can be triggered, if successful, the specified cache data

will be flushed, and then the next attack step can be performed.

In the first step of the evict+reload attack, the attackers can

also reach the same crucial state by evicting the cache.

The dangerous in formula (2) can be described as a se-

quence of crucial states in CTL, and then is used in the

modified NuSMV. In this way, the modified NuSMV can find

the known and even unknown attack paths that can reach the

crucial states in dangerous as much as possible.

3) Model Checking In The Modified NuSMV: In CTL

model checking, given a Kripke structure M, a computation

path of M is a sequence of state transitions start from one of

the initial states I, and the state transition rules can be found

in R. With transition relation R and initial states I, M can

represent all of the possible paths from the initial states. To

verify whether the model satisfies the specification (2), the

modified NuSMV will try to check all of the computation

paths, and find a path that satisfies the dangerous. If the

modified NuSMV finds it, this path will be shown as a

counterexample. According to the counterexample, we can

know every step that how the model change from initial

normal states to reachable crucial states and what the attacker

and the victim do in each step. Denote that the modified

NuSMV in our paper can find multiple counterexamples, and

we can set an upper bound to limit the search length of a

counterexample as required. Every counterexample found is an

TABLE I
SYMBOLS OF CTL OPERATORS

Operationsa Symbols Description

Path
Quantifier

A for All of the path

E there Exists at least one path

Temporal
Symbols

Xφ φ holds at neXt time

Gφ φ holds Globally,

Fφ φ holds at Future

φUϕ φ holds Until ϕ holds

aIn CTL, every CTL operation is always a combination of the path quantifier
and the temporal symbol. For example, EFφ denotes there exists at least one
path that φ holds at future.

attack path, and all of the attack paths can be used to generate

an attack graph, which is readable and very convenient to help

users analyze the vulnerabilities that are here to stay.

C. Attack Graph Generation

1) Attack Graphs: The formal model checking method

is rigorous, so that there are many redundant paths in the

counterexamples the modified NuSMV generates. To help

users analyze the attack paths easily, attack graphs are utilized

to simplify and visualize these attack paths.

Algorithm 1 shows how to turn multiple counterexamples

into an attack graph. An attack graph consists of several

attack paths, and an attack path includes nodes and edges.

The nodes represent the states of micro-architecture, the edges

between nodes are the abstract instructions the attacker and

the victim are executing. This algorithm will traverse all of

the counterexamples, and determine whether the state in the

counterexample is a crucial state by comparing with the crucial

states in security specification, and then record the results in

the AGNode. Finally, the counterexamples will be translated

to the attack paths, and then are rendered to an attack graph.

2) Attack Graph Reduction : Fig.2 shows the three situa-

tions that influence the readability of attack graphs. In Fig.2,

(a), most states in the two attack paths are the same, this

situation will be solved by merging the same states when

generating the attack graph, the merged attack paths are

presented in Fig.2, (b). When there are a number of attack

paths in an attack graph, it is beneficial to merge the same

states so that the security problems become easier to find for

engineers. Fig.2, (c) represents two repeated attack paths and

Fig.2, (d) shows two logically equivalent attack paths, if the

attack path s1 → s2 → s3 → s4 means a successful attack,

the path s1′ → s2′ → s1 → s2 → s3 → s4 can also represent

a successful attack, so the longer one is redundant. Fig.2, (c)

and Fig.2, (d) will be reduced in the graph reduction module.

III. CASE STUDY: CACHE SIDE CHANNEL DEFENSE

SECURITY ANALYSIS

In this section, we use a simple case to show how to

analyze the security of the security designs under the cache

side channel attacks flush+reload with Spectre attack and

evict+reload with Spectre attack.

Algorithm 1 Generate An Attack Graph

Input:

Counterexamples ce: every counterexample ce[i] is a list

of states.

crucial states and their names: i states and i names.

Output:

an attack graph AG: AG is a list of AP*.

1: typedef struct AGNode {
2: DataType state, aop, vop;

3: BOOL is crucial state;

4: STRING name of state

5: } AGNode, AP*;

6:

7: for each counterexample ce[i] do

8: AP* ap; /* ap is an attack path */

9: for each state ce[i][j] do

10: AGNode node;

11: node.aop = ce[i][j].aop;

12: node.vop = ce[i][j].vop;

13: remove aop and vop from ce[i][j];

14: node.state = ce[i][j];

15: if node.state ∈ i states then

16: node.is crucial state = TRUE;

17: node.name of state = find the name of node.state

in i names;

18: end if

19: add node into ap;

20: end for

21: add an attack path ap into AG;

22: end for

23: AG = reduceAttackGraph(AG);

24: return AG;

Micro-architecture Model. Note that to make the case easy

to understand, this micro-architecture model will be as simple

as possible. For example, multi-cores and pipelines are not

necessary for flush (evict)+reload with Spectre, so they are

not added into the model, but they can also be modeled if

needed [15], [16].

Assume the micro-architecture model in this case is M,

M is a Kripke Structures. Table II shows all of the Micro-

architecture properties included in S. ExistSC, ExistGN, At-

tackerOP and VictimOP have been explained in Section II.

PredictionResult represents whether the result of the branch

predictor is correct, TSuccessful and TFailed mean both of

the outcomes of the branch predictor are Taken, the predicted

results are correct and wrong respectively. On the contrary,

NTSuccessful and NTFailed represent the outcomes are Not

Taken. Mode shows the operation that the processor is per-

forming, for example, after the branch predictor fails to predict

the result of a branch, the processor will have to squash

the pre-executed instructions, then Mode will be labeled as

“squash”. RWAddr means the address an attacker or a victim

accesses. Wtime is a little special, it is a flag that records the

times of an attacker continuously performs write operations,

when Wtime is larger than n (n=3 in this paper), that means

the attacker has evicted the victim’s data out of the cache.

Then we will use NuSMV language to describe the tran-

s1

s2

s3

s4

(a) (b) (c)

a2

s1

s2

s3

s4

s1

s2

s3

s4

s1

s2

s3

s4

s1

s2

s3

s4

s1

s2

s3

s4

s1'

s2'

a1

a3

a2'

a1

a3

a2

a1

a3

a2

a1

a3

a2

a1

a3

a2

a1

a3

s1

s2

s3

s4

a2

a1

a3

a2'

(d)

Fig. 2. (a) Attack paths with similar structure. (b) Attack paths that merging
the similar structure (c) Attack paths with the same structure. (d) Attack paths
with useless structures.

sition relation R. According to the formula (1), R can be

obtained in Fig.3, which shows even when executing the same

abstract instructions, if the current states are different, the

transitions will be different.

Security Specification. As Fig.4 shows, the flush+reload

attack can be divided into three steps. At first, the attacker

has to clean a cached memory location, the memory address

is carefully selected. Then the attacker wait for the victim to

load the secret data to the cache position that was just flushed.

Finally, the attacker will try to access the memory location

again, the fast access speed means the victim has loaded the

data, and the data was cached in that flushed position. The

evict+reload attack is similar to the flush+reload, however,

instead of using clflush, the attacker evicts the victim’s data

by continuously accessing the memory until the secret data in

the cache is replaced and no longer cached.

The Spectre attack can train and mislead the branch predic-

tor to make a wrong speculative prediction. When speculative

execution, the executing instructions of an attacker can access

the out-of-bounds address, then the data information accessed

will be cached. However, when the branch predictor finds the

incorrect prediction and squashes the speculated instructions,

the cached secret data will not be cleaned.

With Spectre attack, at the second step of flush

(evict)+reload, the attacker does not have to wait for the

victim, and they can exploit Spectre to access out-of-bounds

memory address where the victim’s data is stored, then the

secret data information will be also cached.

According to Section II, to check and analyze the vulner-

ability of the security designs in micro-architecture, we need

to define security specifications based on the crucial states

in Fig.4. The crucial state S2 means that after flushing or

evicting, the secret data is not in the cache (sc=false), and

S3 represents that after Spectre attack (md=squash), the secret

data information was cached in that flushed or evicted position

again(sc=true). To block the attack paths in Fig.4, S2 or S3

should not be satisfied, which is the aim of the security designs

on micro-architecture.

TABLE II
SELECTED MICRO-ARCHITECTURE COMPONENTS AND PROPERTIES

Pi
a Components Properties (abbr.) Value

P1 Cache
ExistSC (sc) boolean

ExistGN (gn) boolean

P2
Branch
Predictor

Prediction-
Result (pr)

TSuccessful, TFailed

NTSuccessful, NTFailed

P3 Processor Mode (md)
normal, squash

prediction, evict

P4 Attacker
AttackerOP (aop) clflush, load, store, branch

RWAddr (addr) addr sc, addr gn

P5 Victim
VictimOP (vop) clflush, load, store, branch

RWAddr (addr) addr sc, addr gn

P6 Flag Wtime (tm) unsigned integer

aP=(p | p ∈
6⋃

i=1
Pi), Pi is a set of Properties in Row i. Every micro-architecture

state in S should contains the properties in P.

Safety properties 1 What the attacker does can never affect

the victim’s data in the cache.

Safety properties 2 Cache should also be cleaned when

squashing.

According to the S2 and S3, we can summarize the Safety

properties 1 and Safety properties 2. If the micro-architecture

model satisfies Safety properties 1 and Safety properties 2,

the security designs will be considered to be secure enough

under the flush (evict)+reload attacks with Spectre. These

safety properties can be manually described as a security

specification in CTL, which is shown in formula (3).

¬EF(E[sc = f alse U((md = squash)EX(sc = true))]) (3)

The dangerous state in formula (3) means that there is a

path, and in this path, one of the states (sc = false) represents

that the first step of flush + reload is successful, and the data of

the victim in the cache is flushed by an attacker. Then the state

holds until NuSMV finds another state (md=squash), this state

represents that at the second step, Spectre attack is successful,

the secret data of the victim has been cached, and the processor

is squashing after the wrong prediction caused by the attacker.

And then NuSMV finds that in the next state (sc=true), the

secret data cached during the Spectre attack is still in the cache

after squashing. Formula (3) means that if there exists no path

that can match dangerous, the micro-architecture with secure

designs will be considered secure enough under flush+reload

with Spectre.

Experiments. With the model and specification above, the

attack graph will be generated. Fig.5, (a) is the attack graph

of micro-architecture without any security designs, the circles

represent the states of micro-architecture, and the arrows

between two circles represent the abstract instructions, the red

rectangles represent the crucial states. It is clear that there

are many attack paths, which means the micro-architectures

load

store

branch

branch

clflush

Fig. 3. The transition relation built based on the formula 1 for abstract
instruction load, store, branch, and clflush. The branch has 2 transitions, the
first one is triggered by abstract instruction, the second one is triggered by
the outcomes predicted by branch predictor.

without any security designs are not secure under the flush

(evict)+reload with Spectre attack.

Then we use SP Cache to try to block the attack paths. With

this countermeasure, evicting others’ data out of the cache by

continuously store will be not allowed. The new attack graph

generated is shown in Fig.5, (b).

Fig.5, (b) and Table III shows the model with SP Cache still

have 81 counterexamples. By contrast with Fig.5, (a), we find

the SP cache can successfully defend against the evict+reload

attack, however, the micro-architecture is still insecure under

the flush+reload attack.

In addition, the two leftmost attack paths are remarkable

unknown variants. When the attack starts, if the victim’s

secret data have not been stored in the cache partition of

the victim yet, the first attack step will be not necessary (the

final accuracy will be lower). And in the second step, due

to the Spectre attack, the attacker can access the victim’s

address illegally, then the data accessed can be mapped to

the attacker’s address, which is cached to attacker’s cache

partition. And in the third step, the attacker can probe the

secret data as usual in his cache partition. The cases shows that

the recently discovered Spectre attack will help the traditional

flush (evict)+reload attacks bypass the protection of the SP

cache. In general, The SP Cache works, but it can only make

the S2 caused by evict unsatisfied.

S� S� S� S�

flush

e����

re�	
�S�e��re

| |s�e�� |s�e�� |s�e��

Fig. 4. The attack steps in flush+reload attack and evict+reload attack.

�����

F����

E

��������
�������

��������
�������

�������

!"#$%&'

E

�������� �������

�������

��������

�����

F����

E()��

*+, *-,

Fig. 5. (a) is the attack graph of micro-architecture without any security
designs, and (b) is the attack graph of micro-architecture with SP Cache

In order to compensate for this deficiency, the alternative

countermeasure is the combination of SP cache and InvisiS-

pec, InvisiSpec load data into a new Speculative Buffer instead

of cache until the speculative load is finally safe. The aim of

the InvisiSpec is to help make the S3 unsatisfied. According

to Fig.4, if the Spectre attack can not reach the crucial state

S3, the attack paths of flush (evict)+reload attacks will be

blocked successfully. And Table III shows that there is really

no counterexample. The result indicates that the combined

security design can defeat the flush (evict)+reload with Spectre

attack.

We can build new security specifications based on different

attacks, then analyze and improve the security of the security

designs until they met our security needs.

IV. SUMMARY AND CONCLUSIONS

This paper proposed a new method that using model check-

ing method to verify whether the security designs of micro-

architecture are secure enough under the side channel attacks

and using attack graphs to analyze where the security designs

can not protect. The method has the advantages as follows: (1)

It is able to use instruction abstract method to conveniently

model the micro-architecture as a Kripke structure. (2) It can

find some unknown attack paths by building and verifying the

security specification based on a sequence of crucial states.

(3) It can remove and combine the redundant attack paths, and

visualize the attack paths with the attack graph technologies.

However, there are still some limitations, for instance, we

still can not solve the state space explosion problem, which is

a challenge in model checking. In addition, our method can

only check whether the security designs satisfy the security

specifications, which means the attacks do not violate the

safety properties described by security specifications will not

be identified.

In the future, we plan to quantify the attack graph, which

will help users to identify and defend against the high-risk

attack paths with less effort and cost. In addition, we will

TABLE III
SECURITY VERIFICATION RESULT OF MICRO-ARCHITECTURE WITH

DIFFERENT SECURITY DESIGNS

Secure
Designs

Bounded
Counterexamples
(Number)

Reduced Attack Paths
(Number)

Runtime
(s)

None 9 247 22 4.421

SP Cache 9 81 20 3.404

SP Cache
InvisiSpec 9 0 0 0.849

explore modeling automation to decrease the workload of

users.

REFERENCES

[1] F. Zhang, Z. Y. Liang, B. L. Yang, X. J. Zhao, S. Z. Guo, K. Ren, “Survey
of design and security evaluation of authenticated encryption algorithms
in the CAESAR competition,” Frontiers of Information Technology &

Electronic Engineering, vol. 19, pp. 1475–1499, 2018.

[2] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh, et
al, “Meltdown: reading kernel memory from user space,” 27th USENIX

Security Symposium (USENIX Security 18), pp. 973–990, 2018.

[3] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp,
et al, “Spectre attacks: exploiting speculative execution,” 2019 IEEE

Symposium on Security and Privacy (SP), IEEE, 2019.

[4] T. Zhang, F. Liu, S. Chen, R. B. Lee, “Side channel vulnerability metrics:
the promise and the pitfalls,” Proceedings of the 2nd International
Workshop on Hardware and Architectural Support for Security and

Privacy, ACM, 2013.

[5] J. Demme, R. Martin, A. Waksman, S. Sethumadhavan, “Side-channel
vulnerability factor: a metric for measuring information leakage,” 39th

Annual International Symposium on Computer Architecture (ISCA), pp.
106-117, IEEE, 2012.

[6] Z. He, R. B. Lee, “How secure is your cache against side-channel
attacks?,” Proceedings of the 50th Annual IEEE/ACM International

Symposium on Microarchitecture, ACM, 2017.

[7] T. Zhang, R. B Lee, “Secure cache modeling for measuring side-channel
leakage,” Technical Report, Princeton University, 2014.

[8] T. Zhang, Y. Zhang, R. B. Lee, “Analyzing cache side channels using deep
neural networks,” Proceedings of the 34th Annual Computer Security

Applications Conference, pp. 174-186, ACM, 2018.

[9] C. Trippel, D. Lustig, M. Martonosi, “CheckMate: automated synthesis
of hardware exploits and security litmus tests,” 51st Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), pp. 947-960,
IEEE, 2018.

[10] A. Cimatti, E. Clarke, E. Giunchiglia, F. Giunchiglia, M. Pistore,
M. Roveri, et al, “Nusmv 2: an opensource tool for symbolic model
checking,” International Conference on Computer Aided Verification, pp.
359-364, Springer, 2002.

[11] Z. Wang, R. B. Lee, “New cache designs for thwarting software cache-
based side channel attacks,” ACM SIGARCH Computer Architecture

News, pp. 494-505, 2007.

[12] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. Fletcher, J. Torrellas, “In-
visiSpec: making speculative execution invisible in the cache hierarchy,”
51st Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), pp. 428-441, IEEE, 2018.

[13] S. K. Lahiri, R. E. Bryant, “Deductive verification of advanced out-
of-order microprocessors,” International Conference on Computer Aided

Verification, pp. 341–354, Springer, 2003.

[14] R. E. Bryant, “Term-level verification of a pipelined CISC micropro-
cessor,” 2005.

[15] R. Jhala, K. L. McMillan, “Microarchitecture verification by compo-
sitional model checking,” International Conference on Computer Aided
Verification, pp. 396-410, Springer, 2001.

[16] Y. Gao, X. Li, “Formal verification of out-of-order processor,” Interna-
tional Conference on Computer Modeling and Simulation, pp. 129-135,
IEEE, 2009.

