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ABSTRACT The cache side channel leakage is a very serious security issue in the information security field.
In order to solve this problem, a large number of security mechanisms have been applied to protect the cache.
However, there are very limited methods we can choose to evaluate the cache side channel vulnerability,
therefore, it is hard to know whether our system configuration or applied security mechanisms make caches
more resistant to the cache side channel attacks. In this paper, we proposed a colored Petri net based method
to model and score the cache side channel vulnerability. When given a side channel attack and related security
mechanisms, our method utilized colored Petri net to model the requirements and the attack steps of cache
attacks. Then we calculated the probability of success for each attack step according to the requirements and
the computer environment, and the Common Vulnerability Scoring System (CVSS) was used to help us score
the attack steps. Based on these probabilities and CVSS scores, we finally obtained a total risk score, which
represented the threat level of the cache attacks in a specified computer environment with certain security
mechanisms. This paper focused on the typical cache attacks and security mechanisms, and our experiments
showed that we can conveniently evaluate and compare the threat level of cache attacks in the computer

environment with different security mechanisms.

INDEX TERMS Cache side channel attack, security evaluation, CVSS, colored Petri net, qualification.

I. INTRODUCTION

Encryption is usually used to prevent confidential data leak-
age, and the ciphers generated by the complex encryption
algorithm are difficult to crack through traditional cryptanal-
ysis techniques [1]. Unlike cryptanalysis, side channel attacks
are able to break the cipher by collecting and analyzing the
signal released during data encryption [2]-[4]. In modern
computers, in order to shorten the program’s memory access
latency, CPU caches will store a copy of recently used mem-
ory data so that the program can get the data more quickly.
A cache hit means the requested memory data can be found in
the cache, otherwise the requested data have to be read from
memory, which is called cache miss. Due to the memory’s low
speed, the cache miss usually need much more extra clock-
cycles than cache hit. Based on the difference of access time
between cache hit and cache miss, cache based side channel
attacks can recover the secret key by monitoring the cache
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access during the execution of an encryption program. Side
channel attacks on caches are difficult to defend because the
cache hit and cache miss they exploit are hardware features
of CPU caches. In addition, it is important to mention that the
past year has seen the rapid development of hardware vulner-
abilities such as Meltdown [5] and Spectre [6], which extend
traditional cache side channel attacks and make them more
powerful. Combined with hardware vulnerabilities, the new
cache side channel attacks are able to leak the victim’s
data directly. Fortunately, cache side channel attacks usually
have some limitations, they rely on a variety of prerequisites
such as clflush instruction or shared memory [7], that means
computer or cloud system with different system configura-
tions or security mechanisms have different ability to resist
side channel attacks. Then there are two questions: (1) Are
there certain system configurations or security mechanisms
can make the attacker difficult to perform successful attacks?
(2) Can we know the threat level of different cache side
channel attacks on a computer system with a specified con-
figuration or security mechanism?
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Different from software, as a computer hardware compo-
nent, the CPU cache cannot be patched easily. Besides, caches
play an important role in improving computer performance,
removing caches from a computer will significantly degrade
the performance. Therefore, if we can answer the question
(1), we will be able to choose the most effective security
mechanisms so that we can reduce the risk of side channel
leakage with low cost. For example, rather than disabling all
of the CPU caches, cloud providers can greatly improve the
ability against cache side channel attacks by just modifying
some system configurations such as disabling the simulta-
neous multithreading technique (SMT) on CPU or shared
memory between cloud consumers [8]. And if we can answer
the question (2), we can know which cache side channel
attack is the most threatening to the current system with the
specified configurations or security mechanisms so that we
are able to prioritize high-risk cache side channel attacks.

There are some works try to answer these questions.
Some approaches such as Side-Channel Vulnerability Factor
(SVF) [9] and Cache Side-channel Vulnerability (CSV) [3]
have been done to quantify the cache side vulnerability by
running victim programs on a simulator and measure the
difficulty of data leakage based on the collected data from the
simulator. The main idea is to collect the victim’s information
during the victim’s program execution and the attacker’s
observed side channel information in simulators, then we
can calculate their Pearson correlation coefficient. The higher
the coefficient, the higher possibility that the attacker can
successfully recover the victim’s secret key by analyzing
the side channel information. The simulators based cache
side channel vulnerability quantification methods mentioned
above are easy to operate, however, it takes too much time to
collect and write attack programs, in addition, performing the
experiment and collecting necessary data are also slow [10].
To solve this problem, other works use the abstract cache
model to analyze the side channel vulnerability, abstract
models contain and only contain the essential features of
attacker, victim, and security countermeasures. So on the one
hand, they can also be used to represent the different attacks
and defenses, and on the other hand, compared with the
simulation, collecting necessary information through model
analysis is more quickly. Zhang and Lee [11] propose a
cache model for secure cache architecture, and use model
checker Murphi to verify whether all of the information flow
in the cache model obeys the Bell-LaPadula (BLP) policy by
exhausting all of the explicit states. Further, deep learning is
introduced by Zhang et al. [10] to analyze the relationship
between the attacker’s observed traces and victim’s execution
traces, these traces are collected from cache attack model.
Then based on the training result, we can try to predict
the victim’s secret information from the side channel traces
observed by attackers. He and Lee [12] use the probabilistic
information flow graph to systematically model and evaluate
the cache with different security mechanisms under differ-
ent cache side channel attacks. Whereas their models have
many advantages, however, they do not consider the system
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environment cache side channel attacks rely on and the threat
level difference between different attacks.

In this paper, we focus on typical cache side channel attacks
such as Flush + Reload, Evict + Time, and Prime + Probe.
The combinations of these traditional attacks and hardware
vulnerabilities such as Meltdown and Spectre will also be
considered in our method. We propose a new quantitative
approach to score the degree of threat of cache attacks in the
computer environment with different security mechanisms.
Our method mainly contains three phases: (1) We conclude
the attack patterns of cache side channel attacks and their
dependencies firstly. Then the model of cache side channel
attacks will be built with colored Petri net. (2) We analyze
the attack steps in different cache side channel attacks, then
quantify the probability of success for each attack step based
on their dependence and operations. The security weight of
every attack step is also calculated according to the Com-
mon Vulnerability Scoring System (CVSS). (3) Based on the
probability and weight, we finally calculate the total risk
score of the cache attacks. With this quantitative method,
we can answer the first question that what security mecha-
nisms are more resistant to the cache side channel attacks and
the second question that what is the threat level of different
cache side channel attacks in the computer environment with
specified system configurations or security mechanisms.

In summary, the contributions this paper makes as follows:

1. We propose a new model based quantitative method
to evaluate the threat of different cache side channel
attacks in the computer environment with different secu-
rity mechanisms. To make our evaluation approach more
reasonable, in addition to the attack method, we also
considered both the conditions on which the attack steps
depend and the difference in attack capability between
different attacks.

2. To qualify the threat level of different cache attacks,
we propose a new three-step cache attacks model. In this
paper, we divided the cache attacks into three steps, then
CVSS was adopted to score the attack power of each
attack step as the weight, we also analyzed the attack
methods and their requirements to obtain the probability
of success of every attack step. The attack steps and both
the probability and weight will finally be modeled as a
three-step colored Petri net model.

Il. BACKGROUND

A. CACHE SIDE CHANNEL ATTACKS

Cache side channel attacks usually leak important data in the
cache by measuring and analyzing the time of the victim’s
memory access. Access based cache side channel attacks
record the time of victim’s every memory access, then the
attacker can distinguish the cache hit or cache miss from
other memory access, these cache hit or cache miss we are
interested in will reveal critical information such as access
pattern and where the data is stored in the cache. In con-
trast, in timing based cache side channel attacks, the attacker
usually performs some operations on the cache, and then
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respectively record victim’s total memory access time before
and after the operations, the time difference before and after
can also give away a lot of important information.

Most of the cache side channel attacks can be divided into
three attack steps [13], in this paper, we will focus on four
typical traditional cache side channel attacks and two new
cache attacks. New cache attacks will be described in the
section II-B, and the traditional attacks will be introduced in
detail as below.

1) FLUSH+RELOAD

Flush+Reload is a high resolution access based cache side
channel attack, this attack needs shared memory between the
attacker and the victim, and it is able to attack last level
cache [14], [15]. Flush+Reload can be divided into three
attack steps:

1. The attacker carefully chooses the memory addresses
and flushes these addresses with clflush instruction, then
the cache lines mapped from the flushed addresses will
be invalid.

2. Then the attacker waits for the victim to read or write
memory at the flushed address.

3. The attacker tries to access the memory addresses cho-
sen in step 1 and record the time of every access, if the
access speed is fast, that means the current accessed
memory address has been accessed by the victim in
step 2, and the accessed data is cached.

2) EVICT+RELOAD
Clflush instruction exists in X86 so that the attacker can flush
the cache easily. However, not all of the instruction set archi-
tectures (ISA) have the similar instruction, if the target of
the attacker does not have clflush instruction, Evict+Reload
can be used to replace Flush+Reload [16]. Evict+Reload
is almost the same as Flush+Reload, and it also needs
shared memory, the difference is Evict4-Reload exploits
cache replacement policies rather than clflush instruction to
evict target cache lines. Evict+Reload has following steps:
1. Every memory address will be mapped to a cache set,
when the cache set has no empty cache lines, the old
cache lines will be replaced by new mapped cache lines
according to the cache replacement policies. In this step,
the attacker will try to frequently access the memory
addresses that mapped to the same cache set as the
victim’s so that the victim’s cache lines are evicted from
the cache.
2. The attacker has to wait until the victim reads or writes
memory at the evicted address again.
3. Same as the third step of Flush+Reload, the attacker will
re-access the chosen memory addresses and record the
access time.

3) PRIME+PROBE
Prime+Probe is also an access based cache side channel
attack [17], [18], the attack steps are shown as follows:
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1. In the Prime stage, the attacker firstly writes the speci-
fied data to the carefully chosen memory addresses, and
the data will populate some cache sets.

2. Then the attacker waits for the victim to perform the
encryption operation, if the victim’s data is stored in the
cache lines where the attacker’s primed data is previ-
ously stored and then the primed data will be evicted.

3. Finally, the attacker reads data from the chosen memory
addresses again, if the access time is long, that means the
primed cache lines mapped from the accessed memory
address have been replaced by victim’s cache lines in
the second step.

4) EVICT+TIME
Evict+Time is a timing based cache side channel attack [12],
[17]. Different from the access based cache attacks, timing
based attacks will measure the total time of the victim’s
operations. Evict+Time also has 3 steps:
1. The attacker waits for the victim to perform all of the
operations, and record the total execution time.
2. Then the attacker will evict some victim’s cache lines.
3. Finally, the attacker waits for the victim to perform
the operations again, if the victim uses the cache
lines evicted in step 2, the total execution time will
be increased, and the attacker will observe this phe-
nomenon.

B. CACHE SIDE CHANNEL ATTACK WITH HARDWARE
VULNERABILITIES

Some hardware vulnerabilities such as Meltdown and Spectre
are able to extend the cache side channel attacks and increase
the attacker’s capabilities. As II-A shown, in the second step
of cache attacks, the attacker usually needs to wait for the
victim to perform some important operations. However, with
Meltdown and Spectre, the attacker does not have to wait for
the victim anymore.

1) CACHE ATTACKS WITH SPECTRE

Spectre is a hardware vulnerability that exploits branch pre-
dictor vulnerabilities [6]. Spectre attack will train the branch
predictor, and carefully make a wrong branch prediction that
can be exploited by the attacker, then the processor will
speculatively execute the attack program. During the spec-
ulative execution stage, the attacker can access the victim’s
data illegally and make them cached. With Spectre attack,
if the second step of cache attacks needs the victim to access
the memory, they can use Spectre attack instead.

2) CACHE ATTACKS WITH MELTDOWN

Meltdown is a hardware vulnerability that exploits out-of-
order execution. In Meltdown attack, the attacker try to load
the kernel data to a register, if the processor executes the
instructions in order, the load operation will be denied due to
the access permission violations. However, the out-of-order
execution feature will make the illegal load operation be
executed ahead of other normal instructions in front of it.

169827



IEEE Access

L. Wang et al.: Colored Petri Net-Based Cache Side Channel Vulnerability Evaluation

When the result of the load operation is committed, it is found
that the load operation has violated the permissions, then the
CPU raises an exception, so the kernel data will not be loaded
into the target register. But unfortunately, the kernel data has
been cached during out-of-order execution, and the cached
data is not cleared when the exception is raised. Therefore,
same as the Spectre, the second attack step in some of the
cache attacks can be replaced by Meltdown attack.

C. CACHE SIDE CHANNEL SECURITY MECHANISMS

To defend these cache side channel attacks, different security
mechanisms are proposed according to the characteristics of
the attacks. For example, more and more cloud providers
enhanced isolation between different customers, which will
reduce shared memory. And some operating systems do not
offer high-resolution timer, which will make the cache tim-
ing exploitation extremely challenging. Besides, some secure
cache architectures such as Static Partition cache (SP cache)
are also proposed by researchers.

Shared memory is usually used to reduce replicated content
in memory, when two different processes access the same
shared memory such as shared libraries, there will be some
security problems which can be exploited to leak data. Flush
+ Reload and Evict + Reload are the typical attacks that
exploit the shared memory. Fortunately, there is not always
exploitable shared memory between the attacker and the vic-
tim, and some security isolation mechanisms like Intel SGX
have been proposed to improve security [7], [19], [20].

Clflush instruction is an X86 instruction that can invalidate
the cache lines of specified memory addresses in the whole
cache hierarchy. In cache attacks, the clflush instruction can
be used to flush some cache lines, some ISA does not provide
similar instruction, which makes them more resilient to the
Flush 4 Reload.

Evict strategy exploits continuous memory access to
evict the victim’s cache lines, which are often used in
Evict+Reload, Evict+Time, and Prime+Probe. To address
this security issue, some researchers proposed some new
secure cache architecture such as SP cache and Set Associa-
tive (SA) Cache with the random replacement policy [12].
SP cache will statically isolate the attacker and victim and do
not allow the attacker to interfere with the victim in the cache.
Random replacement policy will make a specified address is
able to randomly map to any cache lines in the cache set,
which will make the attacker more difficult to evict target
cache lines. Besides, the operating system and hypervisor can
use Intel Cache Allocation Technology (CAT) to lock cache
ways so that these cache ways cannot be evicted [11], [21],
however, the attacker will still have a cache hit if the mapped
cache lines are in the locked ways.

All of the cache side channel attacks need the high res-
olution timer to measure the time of cache accesses, thus
some operating systems or browsers provide a coarse timer
only to enhance security. But Schwarz et al. propose that the
attacker can utilize other timing primitives to build a new
high resolution timer [22], and Vasilikos et al. show that
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coarse timer may leak more information by analyzing the
information flow model of the attacks [23].

D. COLORED PETRI NET

Colored petri net is a powerful tool to help us model and
analyze the complex system. We choose it as the modeling
technique in our paper for several reasons:

1. There are a variety of cache side channel attacks, how-
ever, three attack steps are enough to express them [13].
Colored Petri Net supports hierarchical feature so that
we can build a three-step model as the top-level module
which can be reused by the cache attacks, and the detail
attack steps of different attacks can be modeled in the
different submodules.

2. We need to model the dependence relations that when
all of the requirements of an attack operation are satis-
fied, the operation can be triggered, and only when the
current attack step is successful, can the next attack step
be executed. Colored Petri Net provides token feature,
which can help model the dependence relations in cache
attacks.

3. We need to qualify the cache side channel vulnerability
by assigning weights to different attack steps. Colored
Petri net allows weight allocation and offers simulation
and calculation functions.

In a colored Petri net, the Place are depicted as ellipses, and
the Transition are depicted as rectangles. There is an input
directed edge from a Place to a Transition and then an output
edge connects the Transition and another Place. The Place
represent the states of the model, and Place usually contains
several tokens, these tokens have three properties: the number
of tokens, data value, and data type, note that in a Place, all of
the tokens have the same data type. The Transition represent
the behaviors of the model, if the tokens in the input Places
of the current Transition are available, and the guard function
of the Transition is true, the Transition will be enabled, note
that the guard function of the Transition is default to true.

Fig. 1 and Fig. 2 show a hierarchy colored Petri net exam-
ple, Fig. 1 is a top-level module, and 72 in the Fig. 1 is a
submodule, which is show in Fig. 2.

In Fig. 1, P1 is a Place with a token, (1,"OK") is the data
of the token, and data type is INTxDATA, and P2 also has a
token. 7'/ will be enabled because the token of P/ and P2 are
available, then T/ will consume the token in P/ and P2. Note
that the output edge of the 7'/ has an expression, the token of
P1 and P2 will be handled by the expression and then generate
a new token for P3. And in Fig. 2, P3 is the input port and
P4 is the output port, they are the interface between top-level
module and submodule.

E. COMMON VULNERABILITY SCORING SYSTEM

Forum for Incident Response and Security Teams (FIRST)
proposes the Common Vulnerability Scoring System(CVSS),
which is a framework to score the severity of the vulnerabil-
ity [24], [25]. CVSS contains three dimensions: Base Score,
Temporal Score, and Environment Score. Base Score consists
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1 (true )

BOOL

(b) if b=true
thend

else "fail"

INT x DATA DATA DATA

FIGURE 1. A sample: The top-level module of a hierarchical colored
Petri net.

In [true] Out

d d
DATA DATA DATA

FIGURE 2. A sample: The submodule 72 in Fig. 1.

of several metrics which are related to the inherent charac-
teristics of the vulnerability, therefore Base Score is constant
regardless of time and environmental changes. Based on the
Base Score, Temporal Score and Environment Score will more
accurately reflect the severity of vulnerabilities over time and
the environment.

Due to the diversity metrics and accuracy of vulnerability
severity evaluation, CVSS is widely used in information secu-
rity. For example, National Vulnerability Database (NVD)
uses CVSS to score the severity of vulnerabilities listed in
Common Vulnerabilities and Exposures (CVE).

In this paper, we focus on the Base Score. As Table 1
shown, Base Score has two metrics and one scope,
Exploitability Metrics has four characteristics, and they repre-
sent the ease of exploiting the vulnerabilities, Impact Metrics
has three characteristics, they reflect the impact of a success-
ful attack. Scope means whether the vulnerabilities can make
attackers affect the resources that exceed attackers’ authority.

Every attack step will be scored according to the CVSS
specification [25]. We can analyze the Attributes of the attack
step and the vulnerability the attack step exploits, then choose
the Value in Table 1, and finally, we could get the security
weight by using CVSS calculator [26].

Note: Why can we use CVSS represent the threat level of the
attack steps?

It is an important question, we answer this question by
answering another two smaller sub questions.

Sub question 1: The first sub question is that CVSS score
represents the severity of the vulnerabilities, can it be used to
represent the threat level of cache attacks?

Answer: CVSS score is able to represent the severity of
vulnerabilities, which means the possible damage caused by
the vulnerabilities when they are exploited [27], and the threat
level of the attack also indicates the potential harm the attacks
cause when they exploit the vulnerabilities. And the metrics
of CVSS is also suitable for the attack steps, take Exploitabil-
ity Metrics as an example, when a vulnerability is hard to
exploit, the CVSS score of the vulnerability will be low, and
for the same reason, if the exploitability of the vulnerability is
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TABLE 1. Metrics and score in base score.

Metrics Attributes Value
Attack Vector | Network (N) Adjacent (A)
(AV) Local (L)  Physical (P)
Exploitability Attack
Metrics Complexity |Low (L) High (H)
(AC)
Privileges  |None (N) ~ Low (L)
User Interaction None (N)  Required (R)
(un
Unchanged (U)
Scope Scope (S)
Changed (C)
Confidentiality |None (N) Low (L)
Impact | Integrity Impact | None (N) ~ Low (L)
Metrics (I) ngh (H)
Availability | None (N)  Low (L)

low, the attack will also be difficult to perform, and the threat
level of the attack will also be lower. Therefore, the CVSS
score of a vulnerability can also reflect the threat level of
attacks that exploit this vulnerability.

In this paper, we will use CVSS metrics to help us score
the attack steps of cache side channel attacks, and the detail
will be shown in the section III-B.

Sub question 2: The second sub question is that some attack
steps of cache attacks cannot leak any information or break
the computer system, why the CVSS can also score them in
this paper?

Answer: Some attack steps such as flushing the cache with
clflush instruction will not cause the direct loss unless it
is combined with other attack steps. The attack step seems
harmless, but actually flushing the cache is very important for
Flush+Reload attack, without this attack step, Flush+Reload
will not succeed. In this paper, we think and analyze the attack
steps more deeply, and we observed that there are important
but not particularly serious security issues in the attack steps.
Take Flush+Reload as an example again, in the first attack
step, the attacker performs c/flush instruction to flush victim’s
cache lines, which make cache miss occurs when the victim
re-accesses the cache lines. The attack consumes the cache
lines, therefore, the first step of Flush-+Reload will actually
have an impact on the availability of the victim’s cache lines,
and Availability is an attribute of CVSS metrics, thus we
can also use CVSS to score the attack step. In the same
way, we can score all of the attack steps, which will also be
introduced in detail in the section III-B.
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lil. METHOD

The colored Petri net based cache side channel security evalu-
ation method will be introduced in detail in this section. Fig. 3
shows a top-level module of hierarchical colored Petri net,
which represents a cache side channel attack model. Artack
Step 1, Attack Step 2, and Attack Step 3 are the submodule
which includes the attacker’s attack operations. In the cache
side channel attacks, if the Reql, Req2, Req3, and Req4
of the attack step 1 are satisfied, the attacker will firstly
perform the attack step 1. Then the attacker will try to perform
the second attack step, similarly, only when the attack step 1
is successful and the Reg)5 is satisfied, can the attack step 2
continues. After the attack step 2, the attacker will go to the
next phase, and finally, if all of the Req of the step 3 are
satisfied, the attacker will perform the final attack step. When
the attack finishes, the attacker is able to observe the victim’s
confidential information leaked from the cache, which means
this attack is successful.

Our method mainly includes the calculation of the prob-
ability and weight. The Probability part consists of the
probability of successful attack operations performed by the
attacker (PAO), the probability of attacker’s successful attack
steps (PAS), and the probability of success of the entire
attack path (PAP). The Weight part contains the threat level
of every attack step (WAS), if the attack step is successful,
WAS will be the CVSS score of the attack step. Based on the
probability and the weight on the cache side channel attack
model, we will calculate and obtain a total score RiskScore,
which represent the threat level of a cache attack in a certain
computer environment.

A. THE PROBABILITY OF A SUCCESSFUL CACHE ATTACK
In the section II-A and II-B, we introduce that both the tradi-
tional cache attacks and the new cache side channel attacks
with hardware vulnerabilities can be divided into three steps.
Note that only when the first attack step is successful, can
the second attack step be successful, and the successful sec-
ond attack step is also necessary for the third attack step.
Take Flush + Reload for example, the first step is flushing
the cache, and the second step is waiting for the victim to
access the memory, only when the first step that flushing the
cache is successful, and the specified cache lines are flushed,
can the second step that waiting for the victim’s accessing the
memory be useful. If the first attack step fails, the state of the
cache is not what the attacker expected, then the subsequent
attack steps will also be unsuccessful. Therefore, the cache
attack succeeds if and only if all of the three attack steps
are successful. We assume that Artack Step i represents the
event that ith attack step is successful, and then PAP can be
calculated by (1).

PAP = P(Attack Step 3 AAttack Step 2 AAttack Step 1) (1)

As mentioned above, the first attack step is necessary for
the second attack step, and the second attack step is necessary
for the third attack step. Therefore, denote PAS of the first
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Attack Step 2

Attack Step 3

S

FIGURE 3. Hierarchical colored petri net of the cache side channel
attacks.

FIGURE 4. Attack module.

step as P(Attack Step 1) (abbreviated as P(ASI)), and when
the first attack is successful, the PAS of the second attack step
can be denoted as P(Attack Step 2 | Attack Step 1) (or P(AS2)
for short). And when the first and second attack steps are
successful, the PAS of the third attack step can be denoted as
P(Attack Step 3 | Attack Step 1 A Attack Step 2) (abbreviated
as P(AS3)), and according to the conditional probability rules,
PAP can be calculated in (2).

PAP = P(Attack Step 3 A Attack Step 2 A Attack Step 1)
= P(Attack Step 3 | Attack Step 1 N Attack Step 2)
* P(Attack Step 1 A Attack Step 2)
= P(Attack Step 3 | Attack Step 1 N Attack Step 2)
* P(Attack Step 2 | Attack Step 1)
* P(Attack Step 1)
= P(AS3) % P(AS2) % P(AS1) )
The PAS of each attack steps are equal to the probability of
success of the Attack Step i submodule, we will take Atrack
Step 1 for example to explain how to calculate the PAS of an
attack step. Fig. 4 shows a sample submodule of Attack Step 1.
Note that the requirements in the Fig. 3 such as Reql, Req?2,
Req3, and Req4 will be the input of Attack Step 1 submodule,

and if the attack operations needs some of these requirements,
the related requirements Req will be connected to the attack
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operation. For example, as Fig. 4 shown, the Operationl
needs the requirements Req! and Req2, and then Req! and
Req?2 will be connected to Operationl.

Under the premise that satisfying the requirements, every
operation in the attack step has a probability of successful
execution. For example, when the Regl and Req2 are sat-
isfied, the probability of Operationl can be easily calcu-
lated according to the computer environment and security
mechanisms, the conditional probability can be denoted as
P(Operationl|Reql A Req2), and if one of the requirements
of the Operationl is not satisfied, the Operationl will fail,
and the probability P(Operationl|Reql A Req2) will be 0.0.
Then we can calculate the P(Operationl) as following (3)
according to the Law of Total Probability.

P(Operationl)
= P(Operationl| Reql A Req2)x P( Reql A Req2)
+ P(Operationl|—(Reql A Req2))x P(—(Reql A Req2))

= P(Operationl| Reql N Req2) x P( Reql A Req2
+ P(Operationl|—=Reql A Req2)x P(—Reql N Req2)
+ P(Operationl| Reql A —Req2)x P( Reql N —Req2)
+ P(Operationl|—=Reql A —Req2) x P(—Reql N —Req2)

= P(Operationl| Reql N Req2)x P(Reql) x P(Req2)
+0+0+0

= P(Operationl| Reql N Req2)x P(Reql) x P(Req2)
3)

There is another situation, if Operation2 has to satisfy the
Req3 or Reg4, the PAO of Operation2 will be as following (4),
note that when both of the Req are not satisfied, the Opera-
tion2 will also fail, and then the probability will decrease to
be 0.0.

P(Operation2)
= P(Operation2| Req3V Req4)xP( Req3 Vv Req4)
+ P(Operation2|—(Req3 Vv Req4)) x P(—(Req3 V Reg4))

= P(Operation2| Req3 N Req4)xP( Req3 A Reg4)
+ P(Operation2|—Req3 A Req4) x P(—Req3 N Reg4)
+ P(Operation2| Req3 N —Reg4) x P( Req3 N —Reg4)
+ P(Operation2|—Req3 A —Req4) x P(—Req3 N —Req4)

= P(Operation2| Req3 N Req4)x P( Req3 N Reg4)
+ P(Operation2|—Req3 N Req4) x P(—Req3 N Reg4)
+ P(Operation2| Req3 A —Req4) X P( Reqg3 A —Reqg4)
+0

= P(Operation2| Req3 N Reg4) x P(Req3) x P(Reg4)
+ P(Operation2|—Req3 N Reg4) x P(—Req3) x P(Reg4)
+ P(Operation2| Req3 A —Reg4) x P(Req3) x P(—Reqg4)
4)
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After calculating the probability of the Operation, we can
calculate the probability of the whole submodule Atrtack
Step 1. The attack step is a sequence of the Operation,
and these Operations are independent events, for example,
in Reload step of Flush+Reload, there are two operations
re-access and measure time, whether re-access operation
occurs or not does not affect the probability of the successful
occurrence of the measure time operation. Observed that to
make the attack step successful, all of the Operations in the
sequence should be successful, and these Operations have to
follow a certain order. Assume the clever attacker will not
mistake the order of the Operations, so the probability of the
attack step as shown in (5):

P(ASD) = 1—[ P(Operation;) 5)

i=1

B. WEIGHT OF A SUCCESSFUL ATTACK STEP

The attack steps play an important role in contributing to a
successful cache attack. In this paper, we utilize CVSS to
evaluate the threat level of the attack steps, and the CVSS
score of each step will be denoted as the W(ASi) .

In this part, we will introduce how to calculate the weight
of every attack step based on the CVSS scoring system.
According to the Metric in Table 1, we need analyze the
Attributes of each attack step and choose a value that fit the
attack step, the final result will be shown in the Table 2.

As shown in Table 2, all except Spectre step need run
on the local machine, that is because the attacker have to
share the cache with the victim so that they can successfully
perform an attack to leak victim’s data from the shared cache,
thus the attribute Attack Vector=Local (AV:L). Spectre is
special, which can be performed remotely [28], thus Attack
Vector=Network (AV:N).

Spectre attack and Meltdown attack are a little complex,
Spectre attack needs to train the branch predictors before
exploiting the speculative execution, and Meltdown also
needs to carefully design the code to create an exploitable out-
of-order execution. Therefore, the Attack Complexity of both
of Spectre and Meltdown are High (AC:H), and the Artack
Complexity of other attack steps are Low (AC:L).

An attacker with user-level permissions can perform the
cache side channel attacks, that is because cache side channel
attacks do not utilize privilege level instructions. Therefore,
all of the attack steps in the table require only user-level
permissions (PR:L).

In Flush+Reload, Evict+Reload, and Prime-+Probe,
the second step has to wait for the victim to access the mem-
ory, therefore the Wait step needs user interaction (UL:R).
In the first step and the third step of Evict+Time, the attacker
needs to measure the total time of victim’s operations, thus the
User Interaction of both the first and third step are Required
(ULR). Spectre and Meltdown improve the attack power of
traditional cache attacks, and they do not require the victim
to take action in the second step of Evict+Reload with Spectre
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TABLE 2. The CVSS score of attack steps.

Attacks Attack Step (;Yriila) (B a(SIeV SSCSOIe)
Flush CVSS:3.0/AV:L/AC:L/PR:L/UL:N/S:U/C:N/I:N/A:H 5.5 (Medium)

Flush + Reload Wait CVSS:3.0/AV:L/AC:L/PR:L/UL:R/S:U/C:L/I:N/A:N 2.8 (Low)

Reload CVSS:3.0/AV:L/AC:L/PR:L/UL:N/S:U/C:L/I:N/A:N 3.3 (Low)

Evict CVSS:3.0/AV:L/AC:L/PR:L/UL:N/S:U/C:N/I:N/A:L 3.3 (Low)

Evict + Reload Wait CVSS:3.0/AV:L/AC:L/PR:L/UL:R/S:U/C:L/I:N/A:N 2.8 (Low)

Reload CVSS:3.0/AV:L/AC:L/PR:L/UL:N/S:U/C:L/I:N/A:N 3.3 (Low)

Prime CVSS:3.0/AV:L/AC:L/PR:L/UL:N/S:U/C:N/I:N/A:L 3.3 (Low)

Prime + Probe Wait CVSS:3.0/AV:L/AC:L/PR:L/UL:R/S:U/C:L/I:N/A:N 2.8 (Low)

Probe CVSS:3.0/AV:L/AC:L/PR:L/UL:N/S:U/C:L/I:N/A:N 3.3 (Low)

Time CVSS:3.0/AV:L/AC:L/PR:L/UL:R/S:U/C:L/I:N/A:N 2.8 (Low)

Evict + Time Evict CVSS:3.0/AV:L/AC:L/PR:L/UL:N/S:U/C:N/I:N/A:L 3.3 (Low)

Time CVSS:3.0/AV:L/AC:L/PR:L/UL:R/S:U/C:L/I:N/A:N 2.8 (Low)

Evict + Reload Evict CVSS:3.0/AV:L/AC:L/PR:L/UL:N/S:U/C:N/I:N/A:L 3.3 (Low)
with Spectre Spectre CVSS:3.0/AV:N/AC:H/PR:L/UL:N/S:C/C:H/I:N/A:N 6.3 (Medium)
Reload CVSS:3.0/AV:L/AC:L/PR:L/ULN/S:U/C:H/I:N/A:N 5.5 (Medium)

Evict + Reload Evict CVSS:3.0/AV:L/AC:L/PR:L/UL:N/S:U/C:N/I:N/A:L 3.3 (Low)
with Meltdown Meltdown CVSS:3.0/AV:L/AC:H/PR:L/UL:N/S:C/C:H/I:N/A:N 5.6 (Medium)
Reload CVSS:3.0/AV:L/AC:H/PR:L/UIL:N/S:C/C:H/I:N/A:N 5.5 (Medium)

and Evict+Reload with Meltdown, so the User Interaction of
Spectre step and Meltdown step is None (UL:N).

Not only User Interaction, Spectre and Meltdown are also
able to improve the attack power of traditional cache attacks
by accessing the victim’s data illegally during the speculative
execution and out-of-order execution, which means Spectre
and Meltdown can affect the data that exceeds their access
rights. Therefore, their Scope should be Changed (S:C), and
the Scope of other attack steps is Unchanged (S:U).

In Flush+Reload, the Flush step uses clflush instruction to
flush target cache line, which will make the victim’s cache
lines be unavailable to victim, therefore, the Available of the
Flush step is High (A:H). Evict step needs the attacker to
continuous access the memory so that they can evict the target
cache lines, this method is not as effective as clflush, therefore
the Available of the Evict step in the table is Low (A:L). Note
that Prime also uses Evict strategy, and the Available of the
Prime step is Low too. In Flush+Reload, Evict+Reload, and
Prime+Probe, when the attacker Wait and the victim access
the important data so that the data is cached again, there
actually is some loss of confidentiality (C:L). In Evict+Time,
when the attacker measure the total time in the first step
and the third step, the Confidentiality Impact is also Low.
However, in Spectre and Meltdown, they can illegally access
and cache the data, therefore, their Confidentiality Impact
is High (C:H). In the third attack step of Flush+Reload,
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Evict+Reload, Prime+Probe, and Evict+Time, the attacker
can not obtain the victim’s secret key directly, and the attacker
has to calculate the secret key based on the observed side
channel information. Therefore, the third step of these attacks
can only make the victim suffers minor loss of confidentiality
(C:L). Different from these traditional cache side channel
attacks, in the third step of Evict+Reload with Spectre and
Evict+Reload with Meltdown, the attacker can obtain the
secret data cached in the second step, therefore, the Confi-
dentiality Impact is High (C:H).

C. QUALIFICATION

According to the Part ITII-A and Part I1I-B, we have calculated
the weight and the probability of each successful attack step.
Based on these calculated results, we can get the score of
the cache side channel risk, which is denoted as RiskScore,
the RiskScore reflects the threat level of a cache side channel
attack in the computer environment with specified security
mechanisms.

Some attack steps are powerful, and their WAS are also
high, but they may need more requirements. However,
the probability of a given computer environment satisfying
all of these requirements is low, which makes it have a low
PAS value. In order to make the risk score of every attack
step reflect PAS and WAS at the same time, we denote the
risk score of Artack Step i as F;, which can be calculated
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in (6). PAS = P(ASi) means the probability of success of
Attack Step i, WAS = W(ASi) means the damage caused by
the successful attack step i, which is a CVSS score, and when
the attack step fails, WAS = 0.
F; = P(ASi) x W(ASD) + (1 — P(ASi)) x 0
= P(ASi) x W(ASi) +0

= P(ASi) x W(ASi) (6)

Then, according to (6), the risk score of the three attack
steps can be calculated respectively according to following
formulas (shown in (7), (8), and (9)).

F1 = P(Attack Step 1) x W(AS1)

F, = P(Attack Step 2 | Attack Step 1) x W(AS2)

F3 = P(Attack Step 3| Attack Step 1 N Attack Step 2)

x W(AS3)

(N
®)

©)
Finally, the total RiskScore will be the sum of the attack
steps’ RiskScore, which can be shown in (10).

3
RiskScore = Z F;

i=1

(10)

IV. CASE STUDY AND EXPERIMENTS

A. CASE STUDY: EVICTH+RELOAD WITH SPECTRE
Evict+Reload with Spectre attack is a new cache side chan-
nel attack that contains the characteristics of traditional side
channel attack and hardware vulnerability. Therefore, we take
Evict+Reload with Spectre as an example in this section to
explain how to calculate the total RiskScore in detail, and
then we also give an analysis of other five cache side channel
attacks. We assume the default computer environment in this
paper is an Intel processor with 4-way set-associative cache.

Algorithm 1 shows the Evict4+Reload with Spectre attack
which is modified from the source code of the Spectre
attack [6]. From line 9 to line 12, the attacker usually allocates
a huge array (larger than cache size), and then continuously
writes data to the array from the beginning of the array to
the end of the array, then previous cache lines will be evicted
from the cache.

In line 16, tries means the attacker tries the Algorithm 1 for
the (tries)th time. The codes from line 17 to line 19 means that
the attacker trains the branch predictor by normally accessing
the arrayl five times (when i%6 # 0), and then executes
the attack operations once (when i%6 = 0). During the
sixth loop, line 18 will be executed, in line 18, secret_addr
is the address of victim’s data. As we all known, arrayl[i] =
*(arrayl+i), and which means the (i4-7)th element of arrayl.
Therefore, secret_address can be described as an address that
its base address is arrayl and offset address is tmp_index =
secret_addr —arryl. And then, the data at the secret _addr =
x(secret_addr) = =x(arrayl + secret_addr — arrayl) =
arrayl[secret_addr — arrayl] = arrayl[tmp_index].
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Algorithm 1 Evict+Reload With Spectre

Input:

STRING * secret_addr;
/*the address of target data.*/

Output:

R

10:
11:

CHAR secret_data;
/*the leaked target data .*/

: /* Init Attack */

: INT64 time1=0, time2=0;

: /*64 bit integer variables */

: INT8 array1[16]={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16};

: /*8 bit integer variable */
: INT8 array2[256];
: /*8 bit integer variable */

: /* Attack Step 1: Evict */
Allocate a large size array;
Fill the array with new data;

- Victim’s cache lines will be evicted from the cache;

13:

14:
15:
16:

18:
19:

/* Attack Step 2: Spectre Attack */
fori=291to00do
tmp_index= tries % arrayl_size;
if i % 6==0 then
tmp_index = secret_addr — arrayl ;
end if

20:

21:
22:
23:
24:

if tmp_index < arrayl_size then
tmp_data &= array2[array I [tmp_index]]
end if
end for

25:

26
27

28:
29:
30:
31:

32:
33:
34:

. /* Attack Step 3: Reload */
: for i= 0 to 255 do
timel = RDTSCP;
Read array?2[i];
time2 = RDSTCP;
if time2 — timel < CACHE_HIT_THRESHOLD
AND i != arrayl[tries % arrayl_size] then
return CHAR()
end if
end for
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1°(1.0, "branch predictor" )

1°(1,"Evict+Reload with Spectre",1.0, 1.0, 0.0 ) REAL x DEP

Attack Step 1

INT x Attack x DPx Px R

’ Step3
3
INT x Attack x DPxPx R dp3,dep3)
(dp2.dep2)
REAL x DEP REAL x DEP

1°(0.5, "shared memory" ) /

1°(1.0, "high resolution timer" )

FIGURE 5. The attack steps of Evict+Reload with Spectre attack.

From line 21 to line 23, the results of the branch predictor
in the first five loops are Taken and the real branch results are
also Taken. After training the branch predictor, at the sixth
loop, the result of the branch predictor will still be Taken,
which means line 22 will be executed in the speculative
execution phase. In line 22, arrayl[tmp_index] is the data at
the secret_addr, then the data will be used as the index of
the array2, when access the array2[*secret_addr], the data
at the secret_addr will be cached. However, actually, in the
sixth loop, the rmp_index has been changed to the victim’s
offset address secret_addr — arryl in line 18, thus the branch
operation in line 21 will not actually be Taken, and line 22
will also not be executed. When the CPU finds the result of
the branch predictor is not correct, the result of speculative
execution will not be committed. From the perspective of the
programmer, line 22 in the sixth loop is never executed, but
from the perspective of the micro-architecture, line 22 has
been executed, but finally, the result of execution is discarded.
However, the data at secret_addr has been cached during the
speculative execution is still in the cache.

From line 28 to 30, the attacker will record the
time before and after re-accessing. When accessing
array2[i], if the access time time2 - timel is less
than CACHE_HIT THRESHOLD, which means cache hit
occurs, and array2[i] has been accessed in the attack
step 2. Therefore, the index i in line 29 is equal to the
arrayl[tmp_index] in line 22. Note that in Attack Step 2,
arrayl[tmp_index]=arrayl[tries%arrayl_size] in the first
five loops is the elements in arrayl, and in the sixth
loop, arrayl [tmp_index]=arrayl[secret_addr-arrayl] is the
data at the secret_addr, and it is not in arrayl. Therefore,
in line 31, if the index i of the array2 is not in arrayl, it is
the cached secret data. line 32 will convert the secret data
represented by ASCII code to a character and finally return
the character.

Now we have leaked the first character of the secret data,
and in this way, we can leak the whole secret data finally.
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1°(1,"Evict+Reload with Spectre", 1.0,1.0,0.0)

Access the
memory address

In (id,attack,dp,p.r)

Map to
cache set

INT x Attack x DPx Px R

INT x Attack x DPx Px R

FIGURE 6. Attack step 1 submodule of Evict+Reload with spectre attack.

REAL x DEP
Iy

e
1°(1.0, "branch predictor" ) dpl,depl)

Spectre Training
Begin Branch Predictor

(id,attack,dp*dp1,p*dp1,r)

(id,attack,dp,p,r)

INT x Attack x DPx Px R

Squashin, —
q 8 Victim's Data

FIGURE 7. Attack step 2 submodule of Evict+Reload with spectre attack.

INT x Attack x DPx Px R

REAL x DEP

@ In
4

1°(0.5, "shared memory" )

(dp2,dep2)

(id,attack,dp*dp2,p*dp2,r)

hit/miss

Re-access

INT x Attack x DPx Px R
Out

Step3 o
finished /"

INT x Attack x DPx Px R

(id,attack,1.0,p*dp3,r+dp*dp3*5.5)

Measure time

1°(1.0, "high resolution timer" ) REAL x DEP

FIGURE 8. Attack step 3 submodule of Evict+Reload with spectre attack.

However, cache side channel attacks usually need some
requirements, one of the requirements is that the attack steps
before the current attack step must be successful, and another
is the system environment and security mechanisms. Fig. 5 is
the top-level module for Evict 4+ Reload with Spectre attack.
Fig. 6, Fig. 7, and Fig. 8 are the attack step submodules of
Evict+Reload with Spectre. In Fig. 5, Attacker has a token
(1, “Evict+Reload with Spectre”,1.0, 1.0, 0.0), and the type
of the token is INT x Attack x DP x P x R. 1 in the token is of
type INT, which means the sequence number of the token, and
Evict+Reload with Spectre represent one of the Attack, DP
means the PAS of every attack step, P and R are respectively
representing the PAP and RiskScore of this attack. This token
will be assigned to the varieties id, attack, dp, p, and r as
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initial values, and then the transition Attack Step 1 performs,
the variables can be processed during the edge from the Attack
Step 1 to Step 1 finished, and the new value of the variables
will be as a new token of Step1 finished. Notice that Req! also
has a token (1.0, “branch predictor”), the value of the token
will be assigned to the variable dpl and dep1, dpl represents
the probability that Reql is satisfied (denoted as P(Reql)).
Because the tokens in Step! finished and Reql are available,
Attack Step?2 also performs. Then the subsequent transitions
perform in the similar way until the tokens reach Result.

As shown in Fig. 6, there are four operations in Evict step,
the probability of the first two operations are 1.0. That is
because for a specified virtual address, it will be mapped
to a specific cache set. And because the accessed memory
addresses are carefully selected, thus the selected address and
target victim’s address will be mapped to the same cache set
so that the attacker can evict the victim’s cache lines. In the
widely used set-associative cache, a cache set has multiple
cache lines, therefore we are not sure which cache line will
the address map to in the third operation Map fo cache line.
If the mapped cache line is exactly a victim’s cache line, and
then the fourth operation Cache replacement will apply the
cache replacement policy to replace the victim’s cache line
with the new mapped cache line. And if the mapped cache line
is not the victim’s cache line, then the attacker needs to try the
third and fourth operations repeatedly until the victim’s cache
line is evicted successfully. Due to the LRU policy, when
the number of trials is larger than the number of lines in a
cache set, the victim’s cache line will be bound to be evicted,
therefore the probability of the latter two operations is also
1.0. So in the final edge which is between Cache replacement
and Stepl finished, because this edge is the last one in an
attack step, dp will be reset to 1.0, so that we can conveniently
calculate the PAS of the next attack step. The probability p is
not modified, and the risk score F/ has been calculated and
added to the result r.

In Fig. 7, there are four important operations in Spectre
step. The second important operation Training Branch Pre-
dictor and third important operation Access Victim’s Data are
the code from line 15 to line 24 in Algorithm 1, and they can
execute successfully only when the CPU supports the branch
predictor. Note that the Intel processor used in this paper sup-
port the branch predictor, therefore we define the probability
that the requirement Req1 is satisfied as 1.0, when the require-
ment is satisfied, Training Branch Predictor can be achieved
through the code from line 16 to line 19 in the Algorithm 1,
therefore P(Training Branch Predictor | Reql) = 1.0, and the
PAO of second important operation can be calculated accord-
ing to (3), which means P(Training Branch Predictor) = 1.0.
During the speculative execution, the attack operation Access
Victim’s Data can access the data illegally, and the PAO of
this operation is also 1.0. The fourth important operation
Squashing does not need any requirements, when the out-
come of the branch predictor is not correct, the CPU is able
to squash the speculative execution instructions successfully,
so P(Squashing) = 1.0. Then F, = dp * 6.3 will be added
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TABLE 3. The PAP and RiskScore of the Evict+Reload with spectre attack.

Security | P(AS1) | P(AS2) | P(AS3) PAP
Mechanisms| /F1 /F2 /F3 / RiskScore
No
. 0.5 0.5
Secunt.y 1.0/3.3 | 1.0/6.3 /275 /12.35
Mechanisms
0.5 0.5
No clflush
o clflus 1.0/3.3 | 1.0/6.3 /275 /12.35
No shared 0.0 0.0
memory 1.0/3.3 | 1.0/6.3 /0.0 /9.6
0.0 0.0
SP cache | 0.0/0.0 | 0.0/0.0 /0.0 /0.0
0.0 0.0
CAT 0.0/0.0 | 0.0/0.0 /0.0 /0.0
SA cache 0.68 L 0.5 0.34
(Random) /2.244 ’ ’ /2.75 /11.294
No high
' 0.25 0.25
resglutlon 1.0/3.3 | 1.0/6.3 /1375 | /10975
timer

to the result  in the last edge between Step 2 Finished and
Squashing.

In the same way, as Fig. 8 shown, the operation re-access
needs the shared memory, and there may not be available
shared memory between the attacker and the victim, therefore
we define the probability of Req2 as 0.5, then P(Re-access) =
P(Re-access|Req2) x P(Req2) = 1 % 0.5 = 0.5. Because the
modern Intel processor and operating system provides high
resolution timer, therefore the PAO of the operation Mea-
sure time can be calculated in formula P(Measure time) =
P(Measure time|Req3) * P(Req3) = 1.0 % 1.0 = 1.0. Finally,
F3 =dp xdp3 5.5 will be added to r in the last edge, then
we obtain the RiskScore r and PAP p, the entire attack process
can be simulated and calculated in the CPN tools [29], which
is a powerful colored Petri net tool. The result is shown in the
first row of Table 3.

Table 3 shows the PAP and RiskScore of Evict+Reload
with Spectre attack before and after applying the security
mechanisms. Because Evict + Reload with Spectre does not
need the clflush, thus when the ISA does not have clflush
instruction, the PAP and RiskScore are still the same with the
attack in the system without any security mechanisms. Shared
memory is necessary for Evict 4+ Reload related attacks, when
the cloud provider equips the system with security isolation
mechanisms, the attacker will be hard to find the available
shared memory, therefore, in the third step of the attack,
the probability that Req2 in Fig. 8 is satisfied will be 0.0,
and then P(AS3) = 0, F3 = 0. The whole attack is not
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successful due to the failure of the third attack step, PAP =
P(AS1)xP(AS2)*P(AS3) = 0. Although the attack fails, it is
still a dangerous attack, that is because, the attacker usually
exploits different vulnerabilities to achieve the same attack
step, the success of the first two steps may be exploited by
other attacks, so it is reasonable that the unsuccessful attack
still has a non-zero RiskScore.

With SP cache, the reason why the victim’s cache lines
are not allowed to be evicted is that the attacker’s memory
address will not be mapped to the victim’s partitions (cache
sets) so that the victim’s cache lines will not be replaced
by attacker’s cache lines. That means in Fig. 6, the PAO of
the operation Map to cache set will reduce to 0.0. Because
the first attack step fails, and the requirements of subsequent
attack steps will not be satisfied, therefore the probability of
all of the attack steps will be reduced to 0.

CAT based methods are able to set the specified victim’s
cache ways as read-only, and the attacker can still hit at
the protected way, however, the victim’s cache lines in the
protected ways will not be evicted by the attacker. Different
from SP cache, CAT based security mechanisms will make
the probability of Cache replacement in attack step 1 (shown
in Fig. 6) to be 0.0. Then the probability of the subsequent
attack steps will also be 0.0.

In modern SA cache, least recently used (LRU) is the
commonly used cache replacement policy. When memory
addresses are mapped to the cache lines, if there are no empty
cache lines in mapped cache set, the cache will choose the
least recently used cache line in the cache set, and then replace
this cache line with the new mapped cache line. With the
LRU policy, the attacker is able to evict a target cache line
by accessing the memory address up to four times. In random
replacement policy, when all of the cache lines in the cache
set is full, the cache will randomly choose one cache line in
the cache set to replace, which may reduce memory access
performance, but it makes the cache more resilient to the
cache side channel attacks, that is because the probability
of evicting a target cache line within four accesses in SA
cache with the random replacement policy will decrease to
YL x I x0.68.

Measuring the cache access time is a necessary opera-
tion in all of the cache attacks because the attacker has to
differ cache hit and cache miss by analyzing the recorded
time. The attack usually uses the system API rdstcp, it is
nearly the most convenient and the highest precision method.
Because the attack can use other methods to measure time,
thus offering the coarser timer only is not a perfect security
countermeasure, but it can increase the difficulty of the attack.
In the attack step 3, we assume that when there is no high
resolution timer, the attacker has another 50% probability
to successfully construct a new timer, and we modify the
probability of the Reg3 from 1.0 to 0.5.

B. OTHER EXPERIMENTS
In this part, we will show how to calculate the RiskScore of
other cache side channel attacks. For convenience, in this part,
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FIGURE 9. Colored petri net model of Flush+Reload attack.

the top-level module and submodules of cache attacks will be
shown in one figure.

1) FLUSH+RELOAD
Fig. 9 shows the Petri net model of Flush+Reload
attack, and Table 4 shows the RiskScore of the attack
under different security mechanisms. Clflush is an instruc-
tion to invalidate the specified cache lines, if the
ISA has clflush, the flush operation can be success-
ful, therefore P(Flush with clflush|Reql) = 1.0, and
P(Flush with clflush) = P(Flush with clflush|Reql)
P(Reql) = 1.0. Req2 is special, the attacker will keep
performing the attack step 1 until the victim executes
the expected access operation, thus P(Req2) = 1.0, and
P(Wait)y = P(Wait|Req2) * P(Req2) = 1.0 x 1.0 = 1.0.
The Re-access operation in third attack step also needs shared
memory, and Measure time needs high resolution timer, only
when these two operations succeeds, can the third attack
steps be successful. Similar to the third step of Evict+Reload
with Spectre, P(AS3) = P(Measure time) x P(Re-access) =
P(Measure time|Req3) * P(Req3) % P(Re-access|Req2) *
P(Reg2) = 0.5. Therefore, when there is no security mecha-
nisms, the RiskScore of Flush+Reload is equal to 9.95.
Disabling the clflush instruction can help defend against
Flush+Reload attack. Due to the lack of necessary clflush
instruction, the first attack step will fail, then all of the sub-
sequent attack steps will also fail, and their probability will
be 0.0.
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TABLE 4. The PAP and RiskScore of the Flush+Reload attack.

1°(1,"Evict+Reload",1.0,1.0,0.0 )

- (id,attack,dp,p,r)

Attack Step 1

Stepl
finished

(id,attack,1.0,p*dp1,r+dp*dp1*2.8) N

Re-access

(id,attack,dp*dp2,p*dp2.r)

_ (id.attack.1.0,p*dp3,r+3.3*dp*dp3) Measurce

time

(dp3,dep3)

When there is no shared memory between the attacker and
the victim, the first and second attack step is the same as the
attack steps when the computer environment has no any secu-
rity mechanisms. But in the third step, Re-access operation
will fail, then P(AS3) = P(Measure time) * P(Re-access) =
0.0 and PAP will also be 0.0.

The aim of SP cache and CAT based security mechanisms
is to protect the victim’s cache lines from been evicted, how-
ever, Flush-+Reload do not need to evict the victim’s cache
lines, the attack use clflush instructions to make the victim’s
cache lines invalid. So both the SP cache and CAT technology
cannot defend against Flush+Reload attack.

Similarly, SA Cache with the random replacement policy
is able to effectively reduce the probability of successful
evicting the victim’s cache lines. However, Flush+Reload
does not utilize Evict strategy. So SA Cache with the
random replacement policy also cannot defend against
Flush+Reload.

High resolution timer is an important tool for cache attacks.
Without the precise timer, the system cannot completely resist
the attack, but it can make the attack more challenging. When
there is only a coarse timer, and the probability of building a
new high resolution timer is 0.5, then P(Measure time) =
P(Measure time | high resolution timer) x P(high resolution
timer) = 1.0 % 0.5 = 0.5.

2) EVICT+RELOAD
In Evict+Reload (shown in Fig. 10), the first step is the
same as Evict+Reload with Spectre, Evict does not need
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FIGURE 10. Colored petri net model of Evict+Reload attack.

special requirements. Therefore, when given a computer sys-
tem without security mechanisms, P(AS1) = 1.0. At the sec-
ond step, the attacker is waiting for the victim to access the
shared memory, and the third attack step is re-accessing the
evicted memory, which are similar to the second step and the
third attack step of Flush+Reload, then we can easily know
that P(AS2) = 1.0 and P(AS3) = 0.5.

Unlike Flush+ Reload, Evict+Reload attack do not use
clflush instruction, therefore disabling the clflush instruc-
tion do not affect the Evict + Reload attack. However,
Evict+Reload also needs shared memory, which is the same
as Flush+Reload attack. Therefore, when there is no shared
memory, P(AS3) = 0.0.

SP cache and CAT based protection technologies can pre-
vent the external interference from the attacker [11], which
can make the victim’s cache unevictable. Therefore, in the
first attack step of the Evict+Reload attack, the probability
of success will be 0.0, then all of the PAS in this attack will
become 0.0.

Similar to the Evict+Reload with Spectre attack, when the
security mechanism is SA cache with the random replace-
ment policy, the PAS of the first attack step will be 0.68 and
when equipped with a coarse timer, the PAS of the third attack
step will decrease to 0.25. The results mentioned above will
be recorded in the Table 5.
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TABLE 5. The PAP and RiskScore of the Evict+Reload attack.

1°(1,"Prime+Probe",1.0,1.0,0.0 )

- (id,attack,dp,p,r)

Attack Step 1

memory address cache set

(id,attack,1.0,p,r+dp*3.3)

e
replacement cache line

Stepl
finished

(id,attack,1.0,p*dp1,r+dp*dp1*2.8) N

Re-access

_ (id.attack.1.0,p*dp2,r+3.3*dp*dp2) Measurce

time

(dp2,dep2)

3) PRIME+PROBE
As Fig. 11 shown, the colored Petri net model of
Prime+Probe attack is nearly the same as Evict+Reload,
which means they have similar attack operations in attack
steps. However, there actually be some difference between
Evict+Reload and Prime+Probe.

In the first attack step, both of them need to evict
some cache lines, so the PAS of the first attack step of
Prime +Probe is also 1.0. But actually the aim of the Evict
step in Evict+Reload is to evict the victim’s cache lines
out of the cache, while the purpose of the Prime step is to
make the attacker’s cache lines occupied some cache lines
so that the attacker can monitor the use of these cached
lines.

In the second attack step, the attacker in Evict+Reload
and Prime+Reload has to wait for the victim to access the
specified memory address. Therefore, the PAS of the second
attack step is also 1.0.

In the third attack step, these two attacks will re-access
the selected address in the first attack step. However,
Evict+Reload needs re-access the shared memory, but the
Prime+Probe does not need. Therefore, the PAS of the third
step in Prime+-Probe is different from the Evict+Reload, and
the PAS of the third step in Prime+Probe is 1.0. According
to (10), RiscScore = F1 + F, + F3 = 1.0%3.34+1.0%x 2.8 +
1.0x3.3=94.

Prime—+Probe do not need clflush instruction and shared
memory, therefore the security mechanisms No clflush and
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FIGURE 11. Colored petri net model of Prime+Probe attack.

No shared memory do not affect the attack power of
Prime+Probe attack. And the RiskScore under the computer
environment without clflush and shared memory is the same
as the RiskScore under the computer environment without any
security mechanisms.

SP cache and CAT based techniques can be used to
effectively defend against external interference, as a result,
the Prime step will not be successful. Then the PAS of sub-
sequent attack steps will also be 0.0.

When using SA cache with the random replacement policy,
the first attack step is special, the attacker has to evict all
of the cache lines in a cache set. If the replacement policy
of the SA cache is LRU, when the number of accessing the
memory is larger than four, the specified cache set will be
evicted successfully. However, if the SA cache equipped with
the random replacement policy, to evict the cache set with
four accesses, each access has to be mapped to different cache
lines of a cache set, and the PAO of the operation Cache
replacement will be 0.0039, which is calculated from the
equation PAO = 0.25 % 0.25 % 0.25 *« 0.25 = 0.00390625 =~
0.0039. And then F1 = 0.01287, which is shown in F1 =
P(AS1) « W(AS1) = 0.0039 % 3.3 = 0.01287.

With a coarser timer, PAO of the operation Measure time
reduces to 0.5, and the PAS of the third attack step also
reduces to 0.5. All of the results of PAP and RiskScore will
be shown in Table 6.
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TABLE 6. The PAP and RiskScore of the Prime+Probe attack.

1°(1.0 , "high resolution timer" ) REAL x DEP

G

4) EVICT+TIME

Fig. 12 are the colored Petri net model of Evict+Time
attack, Table 7 is the RiskScore of the attack. In the
first attack step, the operation Measuring the total
time needs high resolution timer, the Intel proces-
sor and the operating system can provide the satisfac-
tory timer. Therefore, P(Measuring the total time) =
P(Measuring the total time|Reql) x P(Reql) = 1.0 x 1.0 =
1.0. And the PAS of the first attack step is 1.0, which is shown
in P(AS1) = P(Wait) x P(Measuring the total time) = 1.0.

In the second step, the attacker evicts the victim’s cache
lines, under the computer environment without security
mechanisms, the PAS of this step is the same as the PAS of
the first step of Evict+Reload attack. The PAS of the attack
step is 1.0.

The third step is the same as the first step, the attacker
needs to wait and measure the victim’s total time again so
that the attacker can observe that whether the victim uses the
cache lines evicted in the second step. Therefore, P(AS3) =
P(AS1) = 1.0. The RiskScore under the computer envi-
ronment without any security mechanisms will be shown
in Table 7.

clflush instruction and shared memory are not neces-
sary for Evict+Time attack, therefore, the RiskScore of
Evict+Time will not change if the computer environment
does not have clflush instruction and shared memory. On the
contrary, SP cache and CAT could effectively defend against
Evict related attack steps, therefore if SP cache and CAT tech-
nology are applied to the computer environment, the second
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FIGURE 12. Colored petri net model of Evict+Time attack.

attack step will fail, and the PAS of the second attack step will
be 0.0.

SA cache with the random replacement policy will ran-
domly choose a cache line and replace them when the cache
set is full, which makes the attacker difficult to evict target
cache lines. With this security mechanism, the PAS of the sec-
ond attack step decrease to 0.68. Besides, Using a coarser
timer makes the attacker hard to measure time, and which will
make the PAS of the first attack step and the third attack step
reduce to 0.5.

5) EVICT+RELOAD WITH MELTDOWN
Meltdown is another serious hardware vulnerability which
exploits Out-of-Order feature of the modern proces-
sor. Fig. 13 shows the colored Petri net model of the
Evict+Reload with Meltdown attack, and Table 8 shows the
RiskScore of the Evict+Reload with Meltdown attack in the
computer environment with different security mechanisms.
The first attack step Evict will carefully choose the target
shared memory address, and then evict their mapped cache
lines to prepare for the second step Meltdown, Meltdown
will illegally access kernel’s secret data and make the data
stored in the cache, and the third step Reload will leak the
cached data. The first attack step and the third attack step
of Evict4+Reload with Meltdown are nearly the same as the
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TABLE 7. The PAP and RiskScore of the Evict+Time attack.

Security P(AS1) | P(AS2) | P(AS3) PAP
Mechanisms| /F1 /F2 /F3 / RiskScore
No
Security 1.0/2.8 | 1.0/3.3 1.0 1.0
. /2.8 /8.9
Mechanisms|
1.0 1.0
No clflush | 1.0/2.8 | 1.0/3.3 /2.8 /8.9
No shared 1.0 1.0
memory 1.0/2.8 | 1.0/3.3 /28 /8.9
0.0 0.0
SP cache 1.0/2.8 | 0.0/0.0 /0.0 /28
0.0 0.0
CAT 1.0/2.8 | 0.0/0.0 /0.0 /28
SA cache 0.68 0.68
(Random) 10728 / 2.244 107238 /7.844
No high
- 0.5 0.25
resglutlon 05/1.4 1.0/3.3 /14 /6.1
timer

first attack step and the third attack step of Evict+Reload with
Spectre. Therefore the PAS of the first step is 1.0, and the PAS
of the third attack step is 0.5.

In the second step, there are four operations, the first opera-
tion Meltdown represents the beginning of the Meltdown step,
and P(Meltdown) = 1.0. The second operation Re-ordering
will determine if the following instructions can be executed
in advance, if the processor supports the Out-of-Order feature
(P(Req2) = 1.0), the attacker is able to carefully design the
code to ensure that there is an exploitable out-of-order exe-
cution (P(Re-ordering|Req2) = 1.0), then P(Re-ordering) =
P(Re-ordering|Req2)x P(Req2) = 1.0. After the Re-ordering
operation, the processor starts executing out of order. During
the Out-of-Order execution, the attacker in user mode can
access the kernel data illegally and store them into the cache,
the operation Access Victim’s Data may take a few tries, but
eventually, it will succeed, therefore the PAO of the operation
Access Victim’s Data is 1.0. Then the permission checking
mechanism works, the data has been read will be discarded
(Squashing), at the same time, the CPU will raise an excep-
tion, P(Squashing) = 1.0. As a result, the PAS of the second
attack step is 1.0, and RiskScore = F1 4+ F2 + F3 = 11.65.

Evict+Reload with Meltdown attack does not need
clflush instruction, therefore No clflush does not affect
the PAP of this attack. But shared memory is necessary
for Evict+Reload with Meltdown attack, without shared
memory, the dp2 (P(Req2)) in the third step will be 0.0,
and the Re-access operation will also be 0.0, which is
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FIGURE 13. Colored petri net model of Evict+Reload with meltdown
attack

shown in the equation P(Re-access) = P(Re-access|Req2) %
P(Req2) =1.0%0.0 =0.0.

Same as other Evict related attack, SP cache and CAT
based technologies will make the first attack step fail, then
the PAS of this step will decrease to 0.0. And SA cache
with the random replacement policy will make the PAS of
Evict+-Reload with Meltdown reduce to 0.68.

Due to the multiple methods to build a new timer that meets
the accuracy requirements, No high resolution timer will not
completely defend against the cache side channel attacks, but
it can increase the difficulty of the attack. If there is no high
resolution timer, P(Req3) will be 0.5. Then the PAS of the
third attack step will be P(Re-access) x P(Measure time) =
0.5xP(Measure time|Req3)xP(Reqg3) = 0.5%1.0%«0.5 = 0.25.

V. RESULT

We have calculated the PAP and RiskScore of six typi-
cal cache attacks. To carefully compare the probability and
the score, we list them into the Table 9. We mainly focus

VOLUME 7, 2019



L. Wang et al.: Colored Petri Net-Based Cache Side Channel Vulnerability Evaluation

IEEE Access

TABLE 8. The PAP and RiskScore of the Evict+Reload with meltdown
attack.

Security P(AS1) | P(AS2) | P(AS3) PAP
Mechanisms| /Fl1 /F2 /F3 / RiskScore
No
. 0.5 0.5
Secunt.y 1.0/33 | 1.0/5.6 /275 /11.65
Mechanisms
0.5 0.5
No clflush
o clflus 1.0/3.3 | 1.0/5.6 /275 /11.65
No shared 0.0 0.0
memory 1.0/3.3 | 1.0/5.6 /0.0 /8.9
0.0 0.0
SP cache | 0.0/0.0 | 0.0/0.0 /0.0 /0.0
0.0 0.0
CAT 0.0/0.0 | 0.0/0.0 /0.0 /0.0
SA cache 0.68 10/56 0.5 0.34
(Random) 12.244 ’ ’ /275 /10.594
No high
- 0.25 0.25
resglutlon 1.0/3.3 1.0/5.6 /1375 | /10275
timer

on the RiskScore, which represents the threat level of the
cache attacks in the environment with different mechanisms.
Besides, PAP is used in the table to indicate whether the secu-
rity mechanisms are able to effectively reduce the probability
of successful attack. In this part, we will analyze the table and
answer the two questions left in the section 1.

A. THE ANSWER TO THE FIRST QUESTIONS

For the first question that whether there are certain security
mechanisms can make the attacker difficult to perform a
successful attack?

As Table 9 shown, unfortunately, it is difficult to defend
all of the cache attacks by equipping with only one security
mechanism, but some combined security mechanisms can
defend against all of the cache attacks mentioned in our
paper. For example, if we disable the clflush instruction,
Flush+Reload will be defended, and when combined with SP
cache or CAT based security mechanisms, other cache attacks
will also fail. SP cache and CAT based technologies are
the common isolation mechanisms to defend against cache
attacks, they are effective and they can successfully defend
against most of the typical cache attacks. SP cache is a new
cache architecture, and it is difficult to apply to existing com-
puter systems. In contrast, the CAT technology is supported
by the Intel processor, and it is lower cost. Therefore, CAT
based security mechanisms are worth a try to defend against
the side channel attacks.
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There are also other security mechanisms can mitigate
these cache side channel vulnerabilities. For example, pro-
viding SA cache with the random replacement policy or the
coarse timer only cannot completely defend against the cache
side channel attacks, but they can also make the PAP of the
cache attacks decrease. SA cache with the random replace-
ment policy is an effective randomization based method,
but the random replacement policy will also degrade com-
puter performance, therefore, ARM only applies the random
replacement mechanism to LLC [16], [30]. And beyond that,
there are also cache set randomization technologies to defend
against the cache side channel attacks, these approaches will
make the memory address randomly mapped to the cache
set, so that the Evict strategy becomes unpractical [31], [32].
These security mitigation techniques are not perfect, but they
are sufficient to defend against the real-world cache attacks.

B. THE ANSWER TO THE SECOND QUESTIONS

As for the second question, can we know the degree of threat
of the different cache side channel attacks on a system with a
specified configuration or security mechanism?

Table 9 shows that when there is no any mechanism,
in traditional cache side channel attacks, we need to
pay more attention to the Flush+Reload attack and the
Prime+Probe attack, that is because their RiskScores are
higher. Flush+Reload is a high resolution attack, there-
fore the CVSS score of this attack is high, but it needs
clflush and shared memory, which make the PAP of
Flush+Reload lower. On the contrary, Prime+Probe needs
fewer requirements, and it also has sufficient precision,
therefore, these two attacks have similar RiskScore. And
it is worth mentioning that when combined with hardware
vulnerabilities, the RiskScore of the new Evict+Reload
attacks (EvictH+Reload with Spectre or Evict+Reload
with Meltdown) becomes higher than Flush+Reload and
Prime—+Probe.

In the Table 9, we can also easily find which cache
attack needs priority attention under the specified security
mechanisms. For example, if the computer environment has
equipped with SP cache or CAT technologies, most of the
cache attacks will be defended. That is because clflush
instruction is not available in most situations, and Evict strat-
egy is widely used in cache attacks to replace the clflush. The
Evict strategy exploits external inference to evict the victim’s
cache lines, and SP cache and CAT isolate the victim from
the attacker and make the victim’s cache lines unevictable,
which make Evict difficult to perform. However, due to the
performance considerations, they are used only when the
victim is executing important operations. Therefore, when
equipped with SP cache or CAT technologies, we need only
consider how to protect the data from Flush+Reload.

C. LESSONS

In summary, the Table 9 also gives us two important lessons:
1. Cache side channel attacks need some necessary require-
ments such as shared memory or shared cache lines,
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TABLE 9. The PAP and RiskScore of the cache side channel attacks.

Defenses Original Security mechanisms
No Security No No SA cache No high

Attacks Mechanisms clflush shared memory SP cache CAT (random) resolution timer
Flush + Reload 0.5/9.95 0.0/0.0 0.0/8.3 0.5/9.95 | 0.5/9.95| 0.5/9.95 0.25/9.125
Evict + Reload 0.5/7.75 0.5/7.75 0.0/6.1 0.0/0.0 0.0/0.0 | 0.34/6.694 0.25/6.925
Prime + Probe 1.0/9.4 1.0/9.4 1.0/9.4 0.0/0.0 0.0/0.0 | 0.0039/6.113 0.5/7.75
Evict + Time 1.0/8.9 1.0/8.9 1.0/8.9 0.0/2.8 0.0/2.8 | 0.68/7.844 0.25/6.1
Evict + Reload

. 0.5/12.35 0.5/12.35 0.0/9.6 0.0/0.0 0.0/0.0 | 0.34/11.294 0.25/10.975

with Spectre

Evict + Reload 0.5/11.65 0.5/11.65 0.0/8.9 0.0/0.0 | 0.0/0.0 | 0.34/10.594| 0.25/10.275
with Meltdown

there are some security mechanisms that can make these
requirements hard to satisfy. However, we should be
careful that whether there are other new methods to
make the computer environment satisfy these require-
ments again.

2. Hardware vulnerabilities are getting more and more
attention, and if combined with some hardware vulnera-
bility, the traditional cache side channel attacks will have
stronger attack power, which may help cache attacks
become more threatening real-world attacks. We should
take measures to prepare for this in advance.

VI. CONCLUSION
In this paper, we proposed a new colored Petri net method to
evaluate the threat level of side channel attacks under certain
computer configurations or security mechanisms. There are
several advantages to this approach:

1. We consider the requirements and the security weight of

the property ease of exploiting plays a more important role
in cache side channel attacks than other common types of
attacks. However, CVSS is a common scoring system, and
some of the metrics are too coarse to reflect the ease of
exploiting cache side vulnerabilities. Therefore, improving
the CVSS scoring system for cache attacks is also a meaning-
ful work to cope with the increasing risk of cache side channel
attacks.
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