
SCAGuard: Detection and Classification of Cache

Side-Channel Attacks via Attack Behavior Modeling and

Similarity Comparison
Limin Wang1, Lei Bu1(�), and Fu Song2

1State Key Laboratory of Novel Software Techniques, Nanjing University, Nanjing, Jiangsu 210023, China
2School of Information Science and Technology, ShanghaiTech University, Shanghai 201210, China

Email: wanglimin@smail.nju.edu.cn, bulei@nju.edu.cn, songfu@shanghaitech.edu.cn

Abstract—Cache side-channel attacks (CSCAs), capable of deducing
secrets by analyzing timing differences in the shared cache behavior
of modern processors, pose a serious security threat. While there are
approaches for detecting CSCAs and mitigating information leaks, they
either fail to detect and classify new variants or have to impractically
update deployed systems (e.g., CPU). In this work, we propose a novel
approach, named SCAGUARD, to detect and classify CSCAs via attack
behavior modeling and similarity comparison. Specifically, we introduce
the notion of cache state transition enhanced basic block sequences (CST-
BBSes) to model attack behaviors which is able to capture both attack-
relevant syntactic code information and semantic cache information.
We propose an approach to automatically construct CST-BBS models
from binary programs. To detect and classify attacks, we adapt a
dynamic time warping algorithm to compare the similarity of CST-BBSes
between attack and target programs. We implement our approach in a
tool SCAGUARD and evaluate it using real-world attacks and diverse
benign programs. The results confirm the effectiveness of our approach,
compared over existing detection approaches. In particular, SCAGUARD
significantly outperforms the other detection approaches on new variants.

I. INTRODUCTION

Cache side-channel attacks (CSCAs), e.g., Flush+Reload [1] and

Prime+Probe [2], are able to effectively exploit the timing difference

caused by access patterns (e.g., cache hit and cache miss) of shared

CPU caches to infer secrets within the same physical device. To

thwart CSCAs, various mitigation approaches (e.g., constant-time

techniques and novel cache architectures [3]) have been proposed to

break the dependence between secret and timing difference of cache

access, thus eliminating cache side-channel vulnerabilities. Though

promising, these approaches have to update deployed software and/or

hardware systems, hence are difficult to quickly apply to existing sys-

tems. Instead of eliminating vulnerabilities, detection approaches are

proposed to block CSCAs without updating deployed software and

hardware systems. To detect and classify attacks, existing approaches

either use machine learning (e.g., [4], [5]) or heuristic rules (e.g. [6]).

The former requires a large set of training samples of running data

from the attacker for training, which are difficult to collect due to

the lack of high-quality cache attack samples, moreover, often fails

to identify new variants that are not included in the training data.

The latter relies on manually designed patterns of existing CSCAs,

hence are not flexible and can be easily bypassed by new variants.

To overcome the drawbacks of existing CSCA detection ap-

proaches, in this work, we propose a novel attack-oriented detection

approach, named SCAGUARD. SCAGUARD automatically builds

attack behavior models from the Proof-of-Concepts (PoCs) of ex-

isting attacks. For each target program, SCAGUARD compares the

similarity degree between the behavior models of the target and

This work is partially supported by the Leading-edge Technology Program
of Jiangsu Natural Science Foundation (No. BK20202001), the Fundamen-
tal Research Funds for the Central Universities (No.2022300291), and the
National Natural Science Foundation of China (Nos. 62232008, 62172200,
62032010 and 62072309).

TABLE I: HPC EVENTS USED IN THIS WORK

Scope Event

L1
Cache

L1 Data Cache Load Miss, L1 Data Cache Load Hit,
L1 Data Cache Store Hit, L1 Instruction Cache Load Miss

LLC LLC Load Miss, LLC Load Hit, LLC Store Miss, LLC Store Hit

Others Branch Miss, Branch Load Miss, Cache Miss, Timestamp

attack programs. If the similarity degree is high, the target program

is regarded as a variant of the attack program.

Specifically, the control flow graph (CFG) is a good candidate

for modeling attack behaviors. However, solely modeling the attack

behavior of an attack program as a CFG is neither accurate due to

a large number of attack-irrelevant basic blocks nor robust due to

pure syntactic code information and various ways to implement an

attack. Therefore, we propose to locate attack-relevant basic blocks

and eliminate attack-irrelevant basic blocks in the CFG by leveraging

runtime execution information. To capture semantic cache informa-

tion, we propose to enhance the reduced control flow graph with

cache state transition, resulting in the attack behavior model, called

cache state transition-enhanced basic block sequence (CST-BBS).

The CST-BBS model is able to capture both attack-relevant syntactic

code information and semantic cache information. To check if a target

program is a variant of an existing attack, SCAGUARD automatically

constructs CST-BBS models from their binary implementations and

compares the similarity degree between the CST-BBS models by

adapting a Dynamic Time Warping algorithm [7].

To evaluate our approach SCAGUARD, we implement it in a

tool and conduct experiments using 2800 benchmarks consisting

of 400 attack programs for each type of CSCAs (Flush+Reload

Family, Prime+Probe Family, as well as their Spectre-like variants

and obfuscated variants) and 400 diverse benign programs. The

experimental results show that our approach can accurately build

attack behavior models and identify attack variants. For instance, the

detection precision of SCAGUARD is 96.64% which is better than the

state-of-the-art approaches. More importantly, on new attack variants

(Spectre-like variants, other attack family’s variants, or obfuscated

variants) that have not been used in attack behavior modeling, SCA-

GUARD is still able to achieve more than 90% detection precision,

3.25%–95.2% higher than that of the state-of-the-art approaches.

In summary, the main contributions of this work are:

• We introduce an attack behavior model called CST-BBS and

propose an approach to automatically build CST-BBS models

of binary programs, for capturing both attack-relevant syntactic

code information and semantic cache information.

• We present a Dynamic Time Warping based algorithm for

measuring the similarity of CST-BBS models which allows us

to detect and classify attack variants.

• We implement our approach in a tool and conduct a thorough

evaluation on a large set of programs including Flush+Reload

Family, Prime+Probe Family, and their spectre-like variants. The

results confirm the efficacy of our approach.

979-8-3503-2348-1/23/$31.00 ©2023 IEEE

20
23

 6
0t

h
A

C
M

/IE
EE

 D
es

ig
n

A
ut

om
at

io
n

C
on

fe
re

nc
e

(D
A

C
) |

 9
79

-8
-3

50
3-

23
48

-1
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

A
C

56
92

9.
20

23
.1

02
47

89
0

Authorized licensed use limited to: Nanjing University. Downloaded on December 12,2023 at 04:57:42 UTC from IEEE Xplore. Restrictions apply.

1 32

2 33

0

31

3 12

4

30

10

5

7

8

6

9

11

18

17

16

15

14

13

19

20

21

22

23

39

37

34

29

28

35

40

38

48

50

49

52

60

53

61

54

62

67 76

71

68

69

70

72

73

75

74

77

Program Executing Flow

24

26

27

3625

43

4441

42

45

46

47 59

51 58

57

56

63

64

65

6655

(a) The sketch code of
the Flush+Reload attack

(b) The CFG of a proof-of-concept Flush+Reload attack,
where the attack-relevant BBs are marked in green color.

Require: The attacker-chosen
shared memory addresses addr;
1: /* the Flush step*/
2: clflush(addr)
3: /* the Reload step*/
4: time1 = RDTSCP();
5: Read addr;
6: time2 = RDTSCP();
7: access time=time2 - time1;

Fig. 1: The sketch code and the CFG of the Flush+Reload attack

II. BACKGROUND

In this section, we first introduce basic concepts and then recall

typical cache side-channel attacks.

A. Preliminaries

Control flow graph. A basic block (BB) is a straight-line sequence of

instructions with no branches in except to the entry and no branches

out except at the exit, where each instruction is associated with its

instruction address.

Definition 1: Given a program P , the control flow graph (CFG)

G of P is a tuple (V,E), where V is a set of nodes, each of which

represents a BB, and E ⊆ V × V is a set of directed edges, each of

which represents the control flow from one BB to another one.

Hardware performance counters (HPCs). As mentioned above,

solely modeling the attack behaviors via CFG is not accurate. Thus,

we leverage HPCs, available in modern processors (e.g., Intel, AMD,

and ARM), for monitoring and measuring CPU-related events (e.g.

instruction retired, cache hit/miss, etc.) during process execution [8].

In this work, we will use HPCs listed in Table I to collect the cache

hit/miss events in Level-1 Cache (L1), Last Level Cache (LLC), the

branch-related information, and the timestamp.

Cache state transition enhanced basic block sequence (CST-BBS).
To capture semantic cache information, we introduce CST-BBS.

Definition 2: The occupancy rate in the cache is the ratio of non-

empty cache lines to the total number of cache lines.

Definition 3: A cache state S at a program point in an execution

is a tuple (AO, IO), where AO denotes the occupancy rate of the

cache lines by the attack program and IO denotes the occupancy rate

of the cache lines excluding those occupied by the attack program.

Clearly, AO + IO ≤ 1 for any cache state (AO, IO).
Definition 4: A cache state transition (CST) of a BB b is a tuple

(S, b, S′), denoted by S
b−→ S′, such that the execution of the BB b

under the cache state S yields the cache state S′.
Definition 5: Given a sequence b1, b2, · · · bn of basic blocks (BBS),

a CST-BBS of the BBS b1, b2, · · · bn is a sequence of cache state

transitions S1
b1−→ S′

1, S2
b2−→ S′

2, · · · , Sn
bn−→ S′

n.

B. Cache Side-Channel Attack (CSCA)

Two well-known CSCA families [1], [2] and their variants com-

bined with the new microarchitecture attacks [9], [10] are as follows:

Flush+Reload Family. The Flush+Reload family mainly contains

Flush+Reload and its variants Evict+Reload, Flush+Flush, all of

which rely on a shared memory (usually a shared library).

The sketch code of the Flush+Reload attack [1] is shown in Fig.

1 (a) and its corresponding CFG is shown in Fig. 1 (b), the attack-

relevant BBs are marked in green color. The detailed code and CFG

refer to [11]. It consists of the following two key steps. (i) Flush step:

the attack first flushes the chosen memory blocks (Fig.1(a) line 2,

BB 10 in Fig.1(b)) via the X86 clflush instruction. Then if the victim

accesses the same memory blocks next time, these blocks will be

fetched back to the caches. (ii) Reload step: the attack re-loads the

chosen memory blocks (Fig.1(a) line 5, BBs 15–17 in Fig.1(b)) and

computes the access time of the reloading operation (Fig. 1(a) lines 4,

Attack-relevant Basic
Block Identification

Similarity
Score

Step 1: Attack Behaviour Modeling

Instruction Normalization

Cache State Transition

C
ST

-B
B

S

CST-BBSes

CST-BBS 2

Proof-of-Concepts
of Attacks

Target Program

Attack-relevant
Graph Construction

Flatting &
Embedding

Proof-of-Concepts
of Attacks

Target Program
Step1 Step2 Step3

1. push %rbp
2. mov %rsp,%rbp
3. sub $0x128,%rsp
4. movl $0x0,-0x4(%rbp)

1. push reg
2. mov reg,reg
3. sub imm,reg
4. movl imm,mem

2

Step 2: Similarity-based Detection
 and Classification

Dynamic Time Warping
Based Similarity Comparison

CFG
Runtime execution

Information

Fig. 2: The workflow of the proposed CSCAs detection approach SCAGUARD

6 and 7, BBs 14, 18 and 19 in Fig. 1(b)), where the function RDTSCP
obtains the current time stamp. If the access is faster than a pre-set

threshold, it is presumed that a cache hit occurs, which indicates that

the current accessed memory addresses have been accessed by the

victim. In this way, the attack can obtain cache access patterns of the

victim based on which the adversary may deduce the victim’s secret.

Unlike Flush+Reload, Evict+Reload [12] evicts the corresponding

cache set of the chosen shared memory addresses by loading the

attack’s data instead of clflush-like instructions, and Flush+Flush [13]

exploits the time difference of clflush instruction execution that

caused by data being cached or not, rather than the time difference

in cache hits/misses, to obtain the victim’s cache access pattern.

Prime+Probe Family. Prime+Probe [2] is the most widely-used at-

tack in Prime+Probe Family which does not need the shared memory

between the attacker and the victim. It consists of the following two

key steps: (i) Prime step: the attack fills the corresponding cache set

of the chosen memory addresses using its own data. (ii) Probe step:

the attack re-accesses the same memory addresses and measures the

access time. If the access is slow, it is presumed that a cache miss

occurs, indicating that the cache lines have been evicted by the victim.

Variants of CSCAs. Classic CSCAs would become ineffective if the

cache access pattern of the victim is independent of the secret without

transient execution. However, by exploiting branch prediction and

out-of-order execution respectively, Meltdown [9] and Spectre [10]

can illegally access out-of-bound memory addresses, and when some

unauthorized secret data is cached, the attacker are still able to infer

them through existing CSCAs.

III. METHODOLOGY

In this section, we present the details of our approach SCAGUARD.

Fig.2 illustrates its overview that consists of two key steps: 1) Attack

behavior modeling, 2) Similarity based detection and classification.

A. Attack Behavior Modeling

We first present a runtime data driven method to identify attack-

relevant BBs from the CFG of a given program. We then construct

an attack-relevant graph from the CFG and enhance it with cache

state transitions, yielding an attack behavior model.

1) Attack-relevant BB Identification: Consider the Flush+Reload

shown in Fig. 1 (b). We can observe that many BBs are attack-

irrelevant (i.e., the BBs not highlighted in the green color), and only

a few of them are attack-relevant. Therefore, solely using CFG to

represent an attack behavior would not be precise enough to detect

and classify attacks due to a large number of attack-irrelevant BBs.

To solve this problem, given a PoC, we first build its CFG by

utilizing off-the-shelf tools (e.g., Angr [14] in our implementation)

Authorized licensed use limited to: Nanjing University. Downloaded on December 12,2023 at 04:57:42 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Attack-relevant graph construction
Input: A control flow graph , a set of attack-relevant BBs
Output: Attack-relevant graph
1: = RemoveCycle();
2: Attach the HPC data to each node in ;
3: for each pair of nodes , , do
4: , =all the paths between and in G without going

through any other attack-relevant BBs;
5: =AttackCorrelationEvaluation(,);
6: end for
7: =the maximum spanning tree of ;
8: Restore all the nodes and edges of to ;
9: return ;

a

d

b e

c

(a) (b)

(d)

g
f

a

d

b e

c g
f

a

e

c 0

(e)
c

(f)

a
b e

c

Remove cycles

Attack Correlation

Evaluation
Obtain

maximum
spanning tree

Restore the
CFG edges

h h

a

d

b e

c g
f

h

(c)

Attach HPC data
1702

4525083

0

0

0

7388 0

M
a
x

a
b
c

c
a

3

M
a
x

c
a

a

e

Fig. 3: The steps of the attack-relevant graph construction

and identify potential attack-relevant BBs in the CFG by leveraging

runtime information in two steps.

In the first step, we collect HPC data with corresponding instruction

addresses by executing the PoC using tracking tools, e.g., perf-intel-

pt [15] in our implementation for Intel processors. We then map

all the HPC data to the BBs in the CFG according to instruction

addresses of the HPC data and BBs, based on which we compute

the HPC value of each BB which is the sum of the selected 11 HPC

events (excluding the timestamp) shown in Table I. A BB with non-

zero HPC value is regarded as a potential attack-relevant BB, as the

BB contains instructions that conducted cache-related operations.

In the second step, we eliminate further more attack-irrelevant

BBs using cache access information based on the following key

observation. During a cache side-channel attack, some cache sets

must be accessed multiple times and there exist at least two BBs that

access overlapped cache sets. Consider the Flush+Reload attack, the

sets of cache sets accessed by the BBs of the Flush and Reload steps

are X = {3, 4, 5, 8, 15} and Y = {3, 4, 5, 8, 10, 24, 34, 50, 77, 78},

respectively, leading to X ∩ Y = {3, 4, 5, 8}. Based on this obser-

vation, we collect the accessed memory addresses (including flushed

addresses) of each potential attack-relevant BB obtained in the first

step. This is done by utilizing Intel PT [16] in our implementation for

Intel processors. Then, we identify the cache sets that are accessed by

multiple BBs and eliminate the BBs that do not access any memory

addresses corresponding to the multiply-accessed cache sets.

2) Attack-relevant Graph Construction: To further build the attack

behavior model, we propose to construct an attack-relevant graph

by connecting all the identified BBs with the most possible attack-

relevant paths from the original CFG. Intuitively, we choose a path

between each pair of attack-relevant BBs with the highest average

HPC value as the most possible attack-relevant path. All such paths

are merged together, leading to an attack-relevant graph. This attack-

relevant graph contains the paths that are highly correlated with the

attack behavior and also covers some attack-relevant BBs that may

have been eliminated due to the lack of cache access operations, but

conducted necessary operations for the attack.

Our idea is formalized in Algorithm 1. We exemplify it using an

example whose CFG is shown in Fig. 3 (a), where the attack-relevant

blocks are highlighted in red color.
1) First of all, in order to make the attack-relevant graph loop-

free, cycles/loops in the CFG G are eliminated by removing the

backward edges (line 1, Algorithm 1). For example, we eliminate

Fig. 4: The extracted attack-relevant graph

the cycle a → b → c → d → a in Fig. 3 (a) by deleting the

backward edge d → a, resulting in the CFG shown in Fig. 3 (b).

2) We then attach the HPC values to all the BBs for attack correlation

evaluation (line 2), leading to the CFG shown in Fig. 3 (c).

3) In lines 3-5, we build a directed, weighted graph G′ as follows.

For each pair of attack-relevant BBs vi, vj ∈ N , we compute all

the paths between vi and vj in the CFG G that do not go through

any other attack-relevant BBs, forming the set Pi,j (line 4). For

each path p = vi → vi+1 → · · · → vj−1 → vj in Pi,j , we

evaluate its attack correlation value Vp as the average HPC value

of all BBs in the path p excluding the endpoints vi and vj , i.e.,

Vp =

{
1

j−i−1

∑j−1
k=i+1 HPC(vk), if j > i+ 1;

MAX, if j = i+ 1.
where HPC(vk) is the HPC value of the BB vk and MAX a large

enough value. Specially, if vi and vj are directly connected, Vp =
MAX. Then, we add an edge vi → vj into G′ which is labeled by

(p, Vp) (line 5). For example, in Fig. 3(c), there are two paths

a → b → c and a → c connecting a and c that does not goes

through any other attack-relevant BBs. Thus, a → c with labels

(a → b → c, 3) and (a → c, MAX) are added (cf. Fig. 3 (d)).

4) Since the higher the value Vp of a path p, the higher the probability

that p is correlated with attack behaviors, to find the most possible

attack-relevant paths, we take Vp as the weight and compute the

maximum spanning tree (MST) G′′ of the weighted graph G′ (line

7) using the MST algorithm [17]. G′′ connects all the attack-

relevant BBs with the maximum weights. For the example in

Fig. 3 (d), we obtain the MST shown in Fig. 3 (e).

5) Finally, for each edge in the MST G′′, the labeled path p is

restored, namely, the edges and nodes in the path p are added

into a new directed graph GA that is used as the attack-relevant

graph. For example, the labeled path a → b → e of the edge

a → e in Fig. 3 (e) is restored, and two edges a → b and b → e
are added into the attack-relevant graph as shown in Fig. 3 (f).

By Algorithm 1, we can build an attack-relevant graph which

includes all the potential attack-relevant BBs and their control flows.

For the Flush+Reload example, Fig. 4 shows its attack-relevant graph

obtained from the CFG in Fig. 1 (b), where the potential attack-

relevant BBs are highlighted in red color, covering all the manually

identified attack-relevant BBs highlighted by green checkmarks.

3) Attack Behavior Model Construction: Due to the diversity of

attack variants, similar attack behaviors of the attack programs may

have different pure syntactic code information, which makes them

look dissimilar with each other. Therefore, it is important to embed

semantic cache information in attack behavior models to detect attack

variants. To do so, we propose to enhance each BB in the attack-

relevant graph with a CST, thus capturing semantic cache information.

To measure the CST, w.l.o.g., we set a specific scenario for the

simulation of each BB. In this scenario, initially, the cache is full

of data and the attack is not mounted, that is IO= 1, and AO= 0.

Then, we simulate each attack-relevant BB by feeding the accessed

memory addresses of the instructions in the BB (collected in Section

III-A1) into a cache simulator (e.g., [18]), and observe the decreasing

of IO and the increasing of AO to obtain the corresponding CST for

the BB, which captures the semantic cache information. Finally, we

flatten the attack-relevant graph into a BBS according to the execution

timestamp of each BB and embed the collected CSTs into BBS,

resulting in a CST-BBS, which models the attack behavior of PoC.

Authorized licensed use limited to: Nanjing University. Downloaded on December 12,2023 at 04:57:42 UTC from IEEE Xplore. Restrictions apply.

TABLE II: THE ATTACK DATASET
Abbr. Type Samples1 #C2 #M3

FR-F Flush+Reload (FR) Family
FR-IAIK, FR-Mastik, FR-Nepoche 3

400FF4-IAIK 1

ER5-IAIK 1

PP-F Prime+Probe (PP) Family PP-IAIK, PP-Jzhang 2 400

S-FR Spectre-like Variants of FR
Spectre-FR6-Kocher, Spectre-FR-Opsxcq,
Spectre-FR-Idea4good

3 400

S-PP Spectre-like Variants of PP Spectre-PP-Trippel 1 400
1Samples: cf. [19] for the source of the attack samples. 2#C: number of col-
lected attacks.3#M: number of mutated variants. 4FF: Flush+Flush attack. 5ER:
Evict+Reload attack. 6Spectre-FR: Spectre V1 Attack.

B. Similarity-based Detection and Classification

In this subsection, we propose an approach to calculate the

similarity between two CST-BBSes. We first show how to calculate

the distance between two CSTs, based on which we calculate the

complete distance of two CST-BBSes for the similarity comparison.

1) Distance Between Two CSTs: Consider two CSTs τi = Si
bi−→

S′
i for i = 1, 2, let ISi be the instruction sequence of the BB bi and

CSPi be the pair of cache states (Si, S
′
i). We measure the similarity

between two CSTs from two dimensions, i.e., IS and CSP.

To measure the similarity between two instruction sequences

IS1 and IS2, we first perform an instruction normalization [20]

with following three rules to eliminate the changes introduced

by compilers: (1) The immediate data is replaced by “imm”. (2)

The accessed memory addresses are replaced by “mem”. (3) The

registers are replaced by “reg”. For example, the instruction mov
-0x18(%rbp),%rax will be normalized as mov mem, reg.

After normalization, the distance DIS1,2 between IS1 and IS2 is

measured via the normalized Levenshtein distance [21], defined by

DIS1,2 =
LevenshteinDistance(IS1,IS2)

max(len(IS1),len(IS2))
.

Now, we measure the similarity between CSP1 and CSP2. Recall

that CSPi = (Si, S
′
i), where Si = (AOi, IOi), S

′
i = (AO′

i, IO
′
i) for

i = 1, 2. The distance DCSP1,2 between CSP1 and CSP2 is defined

by: DCSP1,2 = |P2 − P1|, where Pi =
|AOi−AO′

i|+|IOi−IO′
i|

2
for

i = 1, 2. Intuitively, Pi measures the cache changes in the CST τi.
The resulting distance DCSP1,2 between CSP1 and CSP2 measures

the similarity of cache changes between the CSTs τ1 and τ2.

With DIS1,2 and DCSP1,2 , the similarity of two CSTs τ1 and τ2 is

measured by Distance(τ1, τ2) =
DIS1,2

+DCSP1,2

2
.

2) Distance Between Two CST-BBSes: To measure the similar-

ity degree between two CST-BBSes, we adapt the Dynamic Time

Warping (DTW) algorithm [7], which is widely used in attack

identification [22]. The main idea of the DTW algorithm is that it

uses a distance function to compare the similarity degree between

two given subsequences, and match the similar subsequences in two

complete sequences in order. In this work, we use Distance(τ1, τ2) as

the distance function in the DTW to support the similarity comparison

of two CST-BBSes. The distance D calculated by the DTW is in the

range [0, ∞), the larger the distance, the less the similarity. In this

paper, we use 1
D+1

to convert the distance into the range (0,1], as the

similarity score, thus, the larger the score, the more the similarity.

3) Attack Detection and Classification: To deploy our approach,

we build a repository of attack behavior models from the PoCs of ex-

isting attacks. Given a target program, SCAGUARD first performs the

attack behavior modeling on the target program. Then, it calculates

the similarity degree between the target program and all the PoCs of

attacks, respectively. The high similarity degree implies that the target

program belongs to the same attack family as the compared attack

PoC. If all of the similarity scores between the target program and

the selected PoCs are lower than a threshold, e.g., 45% (cf. Section

V for optimal threshold selection), the target program is considered

to be a benign one.

TABLE III: THE BENIGN DATASET

Type Description Number

SPEC2006 All of the SPEC2006 test cases in [23] 12

LeetCode
230 solutions to Leetcode algorithm

problems are collected [6], [24]1 230

Encryption
6 commonly-used crypto-systems such as RSA and
AES are collected and mutated. Then randomly
select 25 samples from each category [6]

150

Server
Applications

SQLite, OpenSSH, OpenSSL, Vsftpd, Thttpd, Gzip,
OpenVPN, OpenNTPD [25]

8

1 To make the number of benign samples the same as the number of an attack
type (i.e., 400), we collect 280 leetcode solutions.

IV. EVALUATION

A. Experimental Setup

Platform. We conduct our experiments under Ubuntu 16.04 running

on the PC with Intel i7-6700 CPU and 32 GB RAM.

Attack Dataset. As listed in Table II, the attack dataset contains 4

attack types, where FR-F and PP-F are called source attacks and their

Spectre-like variants are called Spectre-variants.

To expand the diversity and number of subjects, similar to the

recent works (e.g., [26], [27]), we create 400 PoCs (including the

samples) for each attack type via code mutation [28], where the

variants of source attacks are called mutated source attacks and the

variants of Spectre-variants are called mutated Spectre-variants. Note

that we retain the attack functionality during mutation so that the code

mutation does not fundamentally break the attack behaviors.

Benign Dataset. The same as each attack type, we collect 400 benign

programs which are listed in Table III. Similar to prior works [4]–

[6], 392 out of 400 benign programs are the SPEC2006 cases,

commonly-used cryptosystem, and diverse Leetcode solutions, which

have different degrees of memory accesses. Furthermore, we also

collect various real server applications, following the prior work in

security community (cf. Server Applications in [25]), we choose

the 8 most commonly-used real-world applications, such as SQLite,

OpenSSH, etc.

B. Accuracy of Attack-relevant BB Identification

In this subsection, we evaluate if SCAGUARD can identify all

the attack-relevant BBs by counting #BB, #TAB, #IAB, and #ITAB

(cf. Table IV). The results in Table IV indicate that SCAGUARD

can achieve an average accuracy of 97.06% (66 out of 68 BBs)

in identifying the manually identified attack-relevant BBs and most

attack-irrelevant BBs are eliminated.

Summary: SCAGUARD can effectively identify attack-relevant BBs

and shrink the size of BBs for further analysis.

C. Effectiveness of SCAGUARD

To evaluate the effectiveness of SCAGUARD, we consider five dif-

ferent scenarios, as summarized in Table V. We measure the similarity

between Flush+Reload and another Flush+Reload implementation

(in S1), Flush+Reload and Evict+Reload (in S2), Flush+Reload and

Prime+Probe (in S3), Flush+Reload and its Spectre-variant (in S4),

Flush+Reload and the benign program (in S5), respectively. Details

of these scenarios please refer to [25].

The similarity score in Table V shows that with the increase of the

differences between the programs, the similarity degrees reported by

SCAGUARD gradually decrease. Also, the similarity degrees for all

the attacker-only scenarios are greater than 66% while the similarity

degree between the attack and the benign program is less than 16%. It

indicates that SCAGUARD can effectively distinguish between attack

programs and their variants, as well as benign programs.

Summary: SCAGUARD is very effective for detecting cache side-

channel attacks.

Authorized licensed use limited to: Nanjing University. Downloaded on December 12,2023 at 04:57:42 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: RESULTS OF ATTACK-RELEVANT BB IDENTIFICATION

Attack #BB1 #TAB2 #IAB3 #ITAB4 Accuracy
FR-F 18174 98 3612 95 96.94%
PP-F 1547 40 914 39 97.50%
S-FR 1334 64 352 62 96.88%
S-PP 1572 70 872 69 98.57%
Avg. 5657 68 1438 66 97.06%
1#BB: number of BBs. 2#TAB: number of manually identified attack-relevant
BBs (ground-truth). 3#IAB: number of identified attack-relevant BBs by our
approach. 4#ITAB: number of manually identified attack-relevant BBs that are
identified by our approach.

D. Comparison with Prior Approaches

In this subsection, we compare SCAGUARD with the rule-based

detection approach SCADET [6] and machine learning-based ap-

proaches with different classifiers: Support Vector Machine based

one of NIGHTs-WATCH (SVM-NW) [5], Linear Regression based of

NIGHTs-WATCH (LR-NW) [5] and K-Nearest Neighbors Algorithm

based malicious loop finding approach (KNN-MLFM) [4]. We note

that SCADET is the unique learning-free approach, while the others

are the most highly cited papers published within the past 5 years

using machine learning and have been proven to be very effective

in detecting Flush+Reload and Prime+Probe attacks [4], [5], [22].

For a fair comparison, SCADET is the author-provided tool [6] and

we reproduce SVM-NW, LR-NW, and KNN-MLFM to their best

performance according to their papers. We conduct four types of

evaluation E1∼E4, where SCAGUARD use only one PoC for each

attack type for attack behavior modeling and the three learning-based

approaches use 10-fold cross validation to obtain the best model

with the fine-tuned parameters. Besides, SCADET always uses its

designated rules for each evaluation. The details of samples chosen

for training/modeling or classification refer to [25].

• E1: Classification of mutated-variants. The mutated-variant clas-

sification task is to classify mutated variants (i.e., FR-F, PP-F, S-FR

and S-PP) when some of them are known to the defender.

• E2: Classification of Spectre-like variants. This classification

task is to classify spectre-like variants (i.e., S-FR and S-PP) when

only their non-spectre-like counterparts (i.e., FR-F and PP-F) are

known to the defender.

• E3: Classification of other attack family’s variants (Gener-
alizability). To evaluate the generalizability of SCAGUARD, we

consider two sub-tasks. The first one is to classify Prime+Probe

Family when only the Flush+Reload Family is known to the

defender. The second one is to classify Flush+Reload Family when

only Prime+Probe Family is known to the defender.

• E4: Classification of obfuscated variants (Robustness). To eval-

uate the robustness of SCAGUARD against the attacker who tries

to obfuscate an existing PoC in order to bypass the detection ap-

proach, for each PoC out of 400 PoCs of the attack type FR-F (resp.

PP-F), we generate obfuscated variants by applying the commonly-

used obfuscation technique, polymorphic technique [29], resulting

400×2 new obfuscated variants. These obfuscated variants inserted

with junk code (e.g., NOP) have, on average, 70.49% more BBs per

sample than the original one. Our goal is to detect the obfuscated

variants while only their non-obfuscated counterparts are known to

the defender.

Results Analysis. The results are reported in Table VI, where the best

ones are highlighted in bold font. We can observe that SCAGUARD

is very effective for all the tasks E1∼E4. Its precision is 3.25-70.27%

higher than the three learning-based approaches with higher Recall

and F1-score. SCAGUARD also outperforms the learning-free tool

SCADET. In particular, for E2∼E4, the learning-free tool SCADET

fails to detect any of variants, indicating that our attack behavior

models are better than the manually designed rules of SCADET.

TABLE V: SIMILARITY COMPARISON OF 5 TYPICAL SCENARIOS

No. Scenario Description Score

S1
Flush+Reload (FR) Different implementations

of the same attack
94.31%

Another implementation

S2
Flush+Reload Different variants

of the same attack
84.32%

Evict+Reload (ER)

S3
Flush+Reload Different attacks exploiting

the same vulnerability
74.48%

Prime+Probe (PP)

S4
Flush+Reload Different variants exploiting

different vulnerabilities
66.92%

Its Spectre variant

S5
Flush+Reload An attack program

and a benign program
15.10%

Benign Program

Note that in the two sub-tasks of E3 (denoted by E3-1 and E3-2 in

Table VI), we can observe that the precision of all the three learning-

based approaches drops dramatically, indicating that learning-based

approaches without a large dataset of high-quality training samples

such as CSCAs are over-fitted, which greatly reduces their ability to

identify and classify attack variants. In contrast, SCAGUARD can still

achieve the precision of 91.28% and 92.55% in both sub-tasks, re-

spectively, significantly outperforming all the other approaches. These

results indicate that SCAGUARD is more generalizable, because our

approach is not tailored to specific patterns, but a generic design for

detecting CSCAs. Recall that CSCAs exploit the timing difference

caused by cache operations (e.g., cache hit and cache miss). To probe

the time difference, the attacker inevitably needs to perform cache

operations multiple times, for attack preparation and attack execution,

which definitely changes the cache states. Therefore, even if new

cache side-channel attack families appear, our approach SCAGUARD

can still quickly and automatically build the attack behavior models

for them by leveraging the static CFG, HPC data, and cache state

changes, then identify such new attack families.

Summary: SCAGUARD is more effective than prior approaches,

in particular on new (Spectre-like, other attack family’s, and obfus-

cated) variants.

V. DISCUSSION

Time cost. In our evaluation, we also record the time costs of attack

detection. The average time cost of SCAGUARD is 636.96s, compa-

rable to the rule-based method SCADET which is 562.76 seconds.

The learning-based methods take 5.91s, 5.66s and 7.20s, respectively.

The difference in the time costs is reasonable, as both SCAGUARD

and SCADET do not have pre-trained models but have to collect

runtime information. Thus, similar to SCADET, SCAGUARD is more

suitable for offline detection scenarios. For instance, SCAGUARD can

be deployed at the server cluster as a guard for cache attacks. When

an untrust program needs to be installed on a server, one can first

perform a security check by applying SCAGUARD.

Through further analysis, we observe that 56.6% of the time cost

is spent on collecting the accessed memory addresses and 39.3% on

the file I/O. One potential solution to these time costs is to integrate

SCAGUARD into kernels or implement it as a hardware module. We

leave this optimization as future work.

Threshold. The threshold of similarity degree can be used to control

the trade-off between false positive and false negative rates. In our

experiments, we follow recent works in security community, e.g.,

HOLMES [30], to choose the optimal one by measuring the Precision,

Recall, and F1-Score. The results are shown in Fig.5. We can find that

when the threshold falls in 30%∼60%, the corresponding Precision,

Recall, and F1-Score are all greater than 90%, so 30%∼60% is

an acceptable threshold range. Thus, we use the middle value of

30%∼60%, i.e. 45%, as the threshold for all the other experiments.

Limitation. Some attack programs under disguise may need complex

input to trigger their hidden malicious behaviors. In this paper, we

focus on the programs whose attack behaviors can be triggered

Authorized licensed use limited to: Nanjing University. Downloaded on December 12,2023 at 04:57:42 UTC from IEEE Xplore. Restrictions apply.

TABLE VI: THE CLASSIFICATION RESULTS OF SCAGUARD AND OTHER 4 EXISTING ATTACK DETECTION APPROACHES

Approach
E1: Mutated-variants E2: Spectre-like variants E3-1: PP-F E3-2: FR-F E4: Obfuscated variants

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score
SVM-NW 94.58% 94.20% 94.24% 90.49% 90.0% 90.04% 21.01% 36.25% 26.61% 78.99% 73.75% 72.51% 89.49% 88.89% 88.88%
LR-NW 68.15% 51.51% 49.00% 66.96% 55.83% 52.56% 75.64% 72.50% 71.63% 64.88% 63.75% 63.05% 42.82% 64.17% 51.33%

KNN-MLFM 91.32% 91.70% 91.45% 42.66% 63.33% 50.94% 67.58% 66.25% 65.60% 82.74% 77.50% 76.56% 88.66% 88.34% 88.23%
SCADET 50.00% 27.50% 35.48% 0 0 0 0 0 0 0 0 0 0 0 0

SCAGUARD 96.64% 96.50% 96.52% 95.2% 95.0% 95.03% 91.28% 91.25% 91.25% 92.55% 91.25% 91.18% 92.74% 92.23% 92.25%

Fig. 5: Classification results of SCAGUARD by varying the threshold value.

by directly executing them. Therefore, if the attack behaviors of

the target program are not triggered during the data collection, it

would not be able to construct a precise attack behavior model by

analyzing the dynamic runtime information. Unfortunately, to the best

of our knowledge, the existing cache attack detection solutions do not

consider such attack scenarios as well [4], [5], [22]. To cope with this

issue, one may adapt coverage-driven testcase generation approaches

to trigger attack behaviors. We leave this as future work.

VI. RELATED WORK

To mitigate cache side-channel attacks, novel secure cache archi-

tectures are proposed to avoid the malicious eviction of victim’s cache

lines, and constant-time analysis techniques are proposed to detect or

eliminate cache side-channels of programs [3]. Though promising,

they are hard to update quickly. To remedy these problems, machine

learning-based and rule-based detection approaches are proposed.

Learning-based detection approaches. Attack-oriented learning-

based approaches, e.g., [31], collect the runtime information of attack

programs, based on which, a classifier is trained to detect attacks.

Recent works proposed victim-oriented approaches, e.g., anomaly-

based detection method [32], which learns a classifier using the HPC

data of benign programs, thus does not require any attack samples.

However, the data from a single source may lead to a high false

positive ratio and the identified attacks cannot be further classified.

To reduce false positives and classify attacks, Mushtaq et al. [5]

proposed to collect the victim’s data in two scenarios, i.e., with and

without the attacker running in the environment. Wang et al. proposed

Phased-Guard [22] to identify and classify a given program in two

steps. After utilizing the anomaly detection mechanism to check if

the victim is being attacked, a multi-class classifier is trained to

classify the attack. However, they still require a large number of

attack samples and often either fail to detect new attack variants that

are not included in the training set or produce false positives. Instead,

our approach requires only a few PoCs of existing attacks and is able

to detect and classify new variants.

Rule-based detection approach. The learning-free approach of

SCADET [6] manually extracts cache set access patterns of existing

attack programs from which detection rules are created. The heuristic

rule based approach relies on manually designed cache access pat-

terns which are labor-intensive. Moreover, the heuristic rules are also

not flexible and can be easily bypassed by attack variants. In contrast,

our approach automatically builds attack behavior models from PoCs

and the model is able to detect and classify new attack variants.

VII. CONCLUSION

We proposed a novel approach to detect and classify cache side-

channel attacks. We introduced the notion of CST-BBS as attack

behavior models which is able to capture both attack-relevant syntac-

tic code information and semantic cache information. We presented

an approach to automatically build attack behavior models from

PoCs of existing attacks and a similarity comparison approach for

detecting and classifying attack variants via attack behavior models.

We conducted extensive experiments on various attack and benign

programs. The experimental results demonstrate that the proposed

approach outperforms, in particular, on new attack variants, existing

promising learn-based and rule-based approaches.

REFERENCES

[1] Y. Yarom et al., “FLUSH+RELOAD: A high resolution, low noise, L3
cache side-channel attack,” in USENIX Security, 2014.

[2] E. Tromer et al., “Efficient cache attacks on aes, and countermeasures,”
J. Cryptol., vol. 23, no. 1, pp. 37–71, 2010.

[3] D. Ojha et al., “Timecache: Using time to eliminate cache side channels
when sharing software,” in ISCA, 2021.

[4] Z. Allaf et al., “A comparison study on flush+reload and prime+probe
attacks on AES using machine learning approaches,” in UKCI, 2017.

[5] M. Mushtaq et al., “Nights-watch: a cache-based side-channel intrusion
detector using hardware performance counters,” in HASP, 2018.

[6] M. Sabbagh et al., “SCADET: a side-channel attack detection tool for
tracking prime+probe,” in ICCAD, 2018.

[7] D. J. Berndt et al., “Using dynamic time warping to find patterns in time
series,” in AAAI Workshop, 1994.

[8] S. Das et al., “Sok: The challenges, pitfalls, and perils of using hardware
performance counters for security,” in S&P, 2019.

[9] M. Lipp et al., “Meltdown: Reading kernel memory from user space,”
in USENIX Security, 2018.

[10] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in
S&P, 2019.

[11] “Flushu+reload,” https://github.com/SCAGuard/RunningExample.
[12] D. Gruss et al., “Cache template attacks: Automating attacks on inclusive

last-level caches,” in USENIX Security, 2015.
[13] D. Gruss et al., “Flush+flush: A fast and stealthy cache attack,” in

DIMVA, 2016.
[14] “Angr binary analysis tool,” http://angr.io/.
[15] “Intel processor trace within perf tools,” https://man7.org/linux/

man-pages/man1/perf-intel-pt.1.html.
[16] “Intel processor trace,” https://software.intel.com/content/www/us/en/

develop/blogs/processor-tracing.html.
[17] “Maximum spanning tree using prim’s algorithm,” https://www.

geeksforgeeks.org/maximum-spanning-tree-using-prims-algorithm/.
[18] “A cache simulator,” https://github.com/jiangxincode/CacheSim.
[19] “The attack dataset,” https://github.com/SCAGuard/DataSet.
[20] Z. Xu et al., “SPAIN: security patch analysis for binaries towards

understanding the pain and pills,” in ICSE, 2017.
[21] Y. Xu et al., “Patch based vulnerability matching for binary programs,”

in ISSTA, 2020.
[22] H. Wang et al., “Phased-guard: Multi-phase machine learning framework

for detection and identification of zero-day microarchitectural side-
channel attacks,” in ICCD, 2020.

[23] J. Nomani et al., “Predicting program phases and defending against side-
channel attacks using hardware performance counters,” in HASP, 2015.

[24] “Leetcode: an online programming platform,” https://leetcode.com.
[25] “More details for scaguard,” https://github.com/SCAGuard.
[26] M. C. Tol et al., “Fastspec: Scalable generation and detection of spectre

gadgets using neural embeddings,” in EuroS&P, 2021.
[27] A. Alsaheel et al., “ATLAS: A sequence-based learning approach for

attack investigation,” in USENIX Security, 2021.
[28] “Mutate cpp,” https://github.com/nlohmann/mutate cpp.
[29] “Polymorph-lib,” https://github.com/JarateKing/polymorph-lib.
[30] S. M. Milajerdi et al., “HOLMES: real-time APT detection through

correlation of suspicious information flows,” in S&P, 2019.
[31] J. Demme et al., “On the feasibility of online malware detection with

performance counters,” in ISCA, 2013.
[32] M. Chiappetta et al., “Real time detection of cache-based side-channel

attacks using hardware performance counters,” Applied Soft Computing,
vol. 49, pp. 1162–1174, 2016.

Authorized licensed use limited to: Nanjing University. Downloaded on December 12,2023 at 04:57:42 UTC from IEEE Xplore. Restrictions apply.

