Analyzing The Security of The Cache Side
Channel Defences With Attack Graphs

Limin Wang, Ziyuan Zhu, Zhanpeng Wang, Dan Meng
{wanglimin, zhuziyuan, wangzhanpeng, mengdan}@iie.ac.cn

Institute of Information Engineering
Chinese Academy of Sciences

Outline

® Introduction

Introduction

Cache side channel attacks on the microarchitecture

FLUSH+RELOAD[1] EVICT+TIME[2]

PRIME+PROBE[3] CACHE COLLISIONI4]

Flush+Reload in detalil
(1) Flush cache lines mapped from carefully chosen memory address.

cache

\flush
(2) Wait for the victim to access the flushed address and re-cache the data.

\access
(3) The attacker will re-access the chosen memory address, record the time.

[Short access time -> victim has accessed
Fast access time -> victim has not access

cache

Introduction

Hardware vulnerabilities on the microarchitecture

Spectre[5] Meltdown[6]

Spectre in detall

(1) Train the branch predictor, make a wrong branch prediction.
©) Exploit it, then the processor speculatively executes the attack program.
(3 The attacker accesses the victim’s data illegally and make them cached.

—— () loop 1¥999 ——— | (2) loop 1000 l

Actual branch

branch2 == branch2
If...else... < If...else... <peCU|atively
executes
—» branchl _wbranchl %= -=-===- »X

Actual branch

Predicted branch Predicted branch

Introduction

The increasing risk of cache side channel attacks

FLUSH+RELOAD EVICT+TIME

PRIME+PROBE CACHE COLLISION

Hardware vulnerabilities make cache attacks more powerful

(1) Flush carefully chosen cache lines.
(2) Waits for the victim to access the flushed address and re-cache the data.

@ Re-accesds the cache lines, record the time.

%

Meltdown Spectre

v

The attacker accesses data illegally and make them cached.

Outline

® Motivation

Motivation

Analyze the security of the defences

Proposed defences to prevent attacks

Software — OS — Secure Cache — Microarchitecture

Code KPTI [8] SP Cache [9] InvisiSpec [10]
Obfuscation [7]

The scope of defences extends from software to hardware

Problems of microarchitecture defences
(1) Hardware is hard to patch after been published.
(@ Itis also hard to design perfect defences.

\

It Is necessary to analyze the security of the microarchitecture
defences at the early stage of designing the processors[i1]

Outline

® Method

Method

Icroarchitecture mo
ith security desi

Model Pass PN
Checker

1
\ - ' counterexamples ! i
L S 0 __-I G 0 =

| raph reduction
attack graphs module

Challenges
How to develop How to model the How to generate the
security specifications complex Attack Graph for cache

for various exploits? microarchitecture? side channel attacks?

Method

Proposed Approach: Detall

1. How to develop security specifications for various exploits?
e Background: the features of different exploits
e Approach: expressed as a sequence of states
e How to: the details of our method
e Advantages: the advantages of our method

2. How to model the complex microarchitecture?

3. How to generate the Attack Graph for cache side channel attacks?

10

Method

1. Security specifications: Background

| stepl step2 | step3——

flush

. . . Spectre . reload .

evict

The features of different exploits:

@ The cache attacks can be divided into several steps.

@ Successful attack step => states become what the attacker expects.

@ Different methods to make the system reach the insecure states.

@ The aim of the defences => make the insecure states hard to reach.

11

Method

1. Security specifications: Our approach

: stepl step2 : step3 |

flush

. . . Spectre . reload .

evict

Key points: Even though exploits are increasing rapidly,
but the relevant insecure states do not .

How to develop security specifications
Traditional: Methods in each step

1. Flush->Spectre->Reload 2. Evict->Spectre->Reload
This paper: A sequence of insecure states

1. S1->52->53->54

12

Method

1. Security specifications: How to

| stepl step2 } step3——|

flush

. . . Spectre . reload .

evict

How to develop security specifications for exploits:
@ Divide the attack into several steps manually.

@ Analyze the insecure states.

@ Express the security specification with computation tree logic.

Security Specification: ;EF(SZ U S3)

Do NOT Exist a sequence in the Future‘\
In the sequence, S2 holds Until S3 is true

13

Method

1. Security specifications: Advantages

| stepl step2 | step3——
flush
. . . Spectre . reload .

evict

Advantages:
@ A security specification is able to represent a class of exploits.

@ Can enumerate the known and unknown attack paths that
are able to reach these insecure states.

14

Method

Proposed Approach: Detail

1. How to develop security specifications for various exploits?

2. How to model the complex microarchitecture?

e Background: the properties of the microarchitectures
e Approach: abstract instruction method

e How to: the details of our method

e Advantages: the advantages of our method

3. How to generate the Attack Graph for cache side channel attacks?

15

Method

2. Microarchitecture model: Background

Cache coherence

The features of AC/OLQ/\ Core2
S

microarchitecture : Cache . CretE

l The instruction executes

(7) Complex & S Corel Core2
with lots of properties. Cache ... Cache

@ The states of the properties change:

-- triggered by the execution of instructions.
-- due to the restrictions between different microarchitecture components.

16

Method

2. Microarchitecture model: Our approach

Abstract instruction model:

Model

Build a state transition model for

microarchitecture at the instruction level. instructions

restrictions

To express the states change triggered
by instructions and restrictions.

to satisfy the security specification

l The microarchitecture model has satisfy

Noted:

Security Specifications v

Do not exist a sequence of insecure states. ~EF(S2 U S3)

17

Method

2. Microarchitecture model: How to

How to build a model:

M=(S, |, R) S= {A, V, Al, C}
Microarchitecture model Properties
S : a set of microarchitecture states A: Attacker
| - initial stat V. Victim
- INitial States Al: Abstract Instructions
R : transition relations, RS S x S C: Microarchitecture Components
Instructions € Al
{A1 V1 AI’ C} > {A,l V’l Al,l C’}

18

Method

2. Microarchitecture model: How to

How model checking works:
Model:

M=(S, I, R)
1= {s0} @ ﬁ
S={s0, s1, s2, s3, s4, s5, s6, s7} @ @ @ @

R= {s0->s1, s0->s4, sO->s6,
s1->s2, s1->sb, s6->s7, @ @

s2->s3, s5->s3, s7->s3}

Security Specification: -EF (s1->s2->s3)

Counterexample: S0->s1->s2->s3

19

Method

2. Microarchitecture model: How to

Come back to our method:

Microarchitecture model

Insecure

NOw X Generate an counterexample to prove that
Satisfy? < the model does not satisfy the specification
: o

v
Security specification

20

Method

2. Microarchitecture model: Advantages

Advantages:

Abstract model removes redundant features and
Can conveniently express the microarchitecture.

@ The modeling method facilitates the construction of
attack graphs.

21

Method

Proposed Approach: Detall

1. How to develop security specifications for various exploits?

2. How to model the complex microarchitecture?

3. How to generate the Attack Graph for cache attacks?

e Background: what is the attack graph
e Our approach: how to generate an attack graph
e How to: the details of our method

e Advantages: the advantages of our method

22

Method

3. Attack Graphs: Background

What is the attack graph:

@ Preconditions: the states have to be
true before the atomic attack performs.

Atomic
Attack

Postconditions: the states will be true
after the atomic attack performs.

Preconditions Postconditions

Exploit a vulnerability
R ——

Nodes in a network

O

23

Method

3. Attack Graphs: Our approach

Our approach:

State transition model=>
(1) The counterexample is a

sequence of states. Current States Next States

Divide the counterexample

@ into 3 parts, and transform AttackGraphs
them to attack graph.

Preconditions Postconditions

Atomic attack
24

Method

3. Attack Graphs: How to

How to
transform:

Microarchitecture state

{A

Current
Microarchitectu

Preconditions

tate

Abstract

Atomic Attack

A. Attacker
: V: Victim
Properties . apstract Instructions
C: Microarchitecture Components

Microarchitecture state

.V, Al, C} S= {A, V', Al C}

Instruction

Postconditions
25

Method

3. Attack Graphs: How to

How to reduce:

(a) Attack paths with similar structure.

(b) Attack paths that merging the similar structure
(c) Attack paths with the same structure.

(d) Attack paths with logically equivalent structure.

26

Method

3. Attack Graphs: Advantages
Advantages:
@ High readability.
@ Easy to simplify.

Outline

® Experiments

Experiments

An Simple Example

1. No defences
[2. Static-Partition Cache (SP Cache)
3. SP Cache + InvisiSpec

No Flush(Evict) + Reload with Spectre

' Microarchitecture’model

] Modified Pass =7 ""]
i el | NUSMV > OK .
- Fail
______________ - \ 4

: Reduced : Graph reduction Attack graph
 attack graphs module generator

29

Experiments

Microarchitecture model (No Defences)

M=(S, |, R) Table: Selected microarchitecture
/‘ components and properties

MicroarChiteCture Components P* Components Properties (abbr.) Value
& Their Properties

ExistSC (sc) boolean
Py Cache iGN) b
. Xis n oolean
Noted: : .
. . P Branch Prediction- TSuccessful, TFailed
More detail the model is, ® Predicor Result () NTSuccessful, NTFailed
More accurate the resultis, normal. squash
; 3 Processor Mode (md) diet)
But more time needed. preciction, eviet
AttackerOP (aop) 'clﬂush load, store, branchy
Py Attacker e
RWAddr (addr) ~sc, addr_gn
Abstract Instructions » o ViCM clflush, load, store, branch
t > VlCUmﬂ’VAddr (addr) addr_sc, addr_gn
| cIqush load store branch A/ng Wiime (m) unsigned integer

— o e e e e e e e e e e w)

30

Experiments

| an’ we . if(aop
— 'I“, fruc, ’“ aop = load) caopte AL vop e Alim’ =10 I
M_(S I R) | s =true i f(vop =load) I
10 . e oy load
1 (cop. vop. g, se. b)) = (aop’ . vop' . gn' . s, fin') I
\ e NN R ===
i -
gn' = truc i f{aop = store) ;o oy
State Transition Tt v o) flar vt
tin' = 0 A d = cvict A = falscif{tm=n—1 /A aop = store)
tm' = tm+1 Cifltm < n—1 N aop = storc)
store

fin. se.tin) — (aop!'. vop! . g’ s/ tim’)

instructions —
> S

aop = bragfh vop = branch . md' = prediction . tm’ = 0.

TSuccessfull T Fuiled

NT Success full A\“f','-'u;m} yvap' € A, aopf € A

Load (attacker) => :] : : branch
y . . aop . vop e e tim) = (aop L vond o’ et fin?
attacker’s data is in cache =true /[T g e T

T Failcd
"= S S i f = t +i .
med = squcsh i f(md = prodiction A pr € {A\'Tl-‘uifu!})
TSuccess ful
NTSuccessful

Load (victim) => d[
victim’s data is in cache =true A

md = normal 0 fCmd = prodiction A opr € {

(rned) — (md’) branch
' _g;’_ ?ru_e_ i?(;o_p_ To;d_) _____________ Tl
| = 5 = / / ! _ | [s = false:if(addr = addr_sc) o
|{ sc’ =true, if(vop =load) ’ aop’ € A,vop’ e A, tm'=0 |{.ﬂ;~u,rur.~z iy = addrons) 90 €A,
! 1 : .
J ’ 7 7 7 7 Vaop = clflush v vop = el flush . tm’ =0, vop/ € A Clﬂush
I (aop 3 Vop) gn) SC) tm) _> (aop) Vop) gn) SC) tm) I[rm'n)_ vop ., sc. gn., tin) — (”“'”f_ {.“.”1_ st .’1'”{- “”,))

e o o o oo o e e e e e o e mm mm o o mm mm Em o Em mm mm Em o Em Em = —

Figure: State transition for abstract instructions

31

Experiments

Microarchitecture model (SP Cache)

———stepl | step2 } step3 |
flush

. ,@ . Spectre . reload .
eN1tt T

Make it unreachable

Static-Partition Cache (SP Cache)

-- Statically separates the cache for the victim and the attacker.
-- Attacker cannot evict victim’s cache lines.
-- The state transition about Evict strategy will be deleted from the R.

M=(S, I, R)

32

Experiments

Microarchitecture model (SP Cache + InvisiSpec)

| stepl step2 i step3 |

flush

° e Spectre e reload °
InV|S|Spe

Make them unreachable

InvisiSpec

-- InvisiSpec loads data into a new Speculative Buffer before committing
the result until the speculative load is finally safe.

-- The state transition about the branch will be modified to
the mechanism InvisiSpec describes. \

M=(S, |, R)

33

Experiments

Security Specification

Flush (Evict) + Reload with Spectre

———stepl : step2 } step3 |
flush
. . . o . — .
evict

A sequence of insecure states

Security Specification (informal): -EF(S2 U 83)/\

Security Specification (formal): —-EF(E[sc = false U((md = squash)EX(sc = true))])

__

__

34

Experiments

Microarchitecture model Security specification
_ Model Checking
1. With no defences mmmm) -EF(S2 U S3)
2. With SP Cache Satisfy? (Flush + Reload with Spectre)
3. With SP Cache + InvisiSpec (Evict + Reload with Spectre)

Table : Results of model checking

Secure Counterexamples Reduced Attack Paths Runtime
Designs (Number) (Number) (S)

None 247 22 4421

SP Cache 81 20 3.404
SP Cache

InvisiSpec ! 0 0.849

35

Experiments

Attack Graphs
) f

Initial state:
sc=false

1
Secret Is not
In cache
I
Flush ! Flush
|
Evict !
\
\
\
Squash Squash

(b)
(a) The attack graph of micro-architecture without any security designs

(b) The attack graph of micro-architecture with SP Cache

36

Outline

® Conclusions

Conclusions

Conclusions:

1. Use instruction abstract method to conveniently
model the microarchitecture.

2. Use the sequence of insecure states to express
the security specification.

3. Proposes a novel use of the attack graph technology to visualize
the cache side-channel attack path.

Limitions:
1. State space explosion problem.

2. The attack that do not violate the security
specifications will not be identified.

Reference

[1] Yarom, Yuval, and Katrina Falkner. "FLUSH+ RELOAD: a high resolution, low
noise, L3 cache side-channel attack." 23rd {USENIX} Security Symposium ({USENIX}
Security 14). 2014.

[2] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient Cache Attacks on AES, and
Countermeasures,” J Cryptol, vol. 23, no. 1, pp. 37-71, Jan. 2010.

[3] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomareyv, and A. Jaleel, “A high-resolution
side-channel attack on last-level cache,” in Proceedings of the 53rd Annual Design
Automation Conference on - DAC '16, Austin, Texas, 2016, pp. 1-6.

[4] J. Bonneau and I. Mironov, “Cache-Collision Timing Attacks Against AES,” in
Cryptographic Hardware and Embedded Systems - CHES 2006, vol. 4249, L. Goubin
and M. Matsui, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 201—-
215.

[5] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in 2019
IEEE symposium on security and privacy (SP), 2019, pp. 1-19.

Reference

[6] M. Lipp et al., “Meltdown: Reading kernel memory from user space,” in 27th
{USENIX} security symposium ({USENIX} security 18), 2018, pp. 973—-990.

[7] B. Kopf, L. Mauborgne, and M. Ochoa, “Automatic Quantification of Cache Side-
Channels,” in Computer Aided Verification, vol. 7358, P. Madhusudan and S. A.
Seshia, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 564-580.

[8] L. Muller, “KPTI a Mitigation Method against Meltdown,” Advanced Microkernel
Operating Systems, p. 41, 2018.

[9] D. Page, “Partitioned cache architecture as a side-channel defence mechanism.”

[10] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and J. Torrellas,
“InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy,” p. 14.

[11] A. T. Markettos, R. N. M. Watson, S. W. Moore, P. Sewell, and P. G. Neumann,
“Through computer architecture, darkly,” Commun. ACM, vol. 62, no. 6, pp. 25-27,
May 20109.

The End

Thank you!
Any questions?

41

