
Analyzing The Security of The Cache Side

Channel Defences With Attack Graphs

Limin Wang, Ziyuan Zhu, Zhanpeng Wang, Dan Meng

1

Institute of Information Engineering

Chinese Academy of Sciences

{wanglimin, zhuziyuan, wangzhanpeng, mengdan}@iie.ac.cn

Outline

⚫ Introduction

⚫ Motivation

⚫ Method

⚫ Experiments

⚫ Conclusions

2

Introduction

Cache side channel attacks on the microarchitecture

FLUSH+RELOAD[1] EVICT+TIME[2]

PRIME+PROBE[3] CACHE COLLISION[4]

Flush+Reload in detail

Flush cache lines mapped from carefully chosen memory address.

Wait for the victim to access the flushed address and re-cache the data.

The attacker will re-access the chosen memory address, record the time.

3

flush

cache

cache

access

Short access time -> victim has accessed
Fast access time -> victim has not access

Introduction

Hardware vulnerabilities on the microarchitecture

Spectre[5] Meltdown[6]

Spectre in detail

Train the branch predictor, make a wrong branch prediction.

Exploit it, then the processor speculatively executes the attack program.

The attacker accesses the victim’s data illegally and make them cached.

4

If…else…

branch1

branch2

| loop 1~999 |

Actual branch
Predicted branch

If…else…

branch1

branch2

| loop 1000 |

Predicted branch

Actual branch

speculatively
executes

Introduction

The increasing risk of cache side channel attacks

FLUSH+RELOAD EVICT+TIME

PRIME+PROBE CACHE COLLISION

Hardware vulnerabilities make cache attacks more powerful

Flush carefully chosen cache lines.

Waits for the victim to access the flushed address and re-cache the data.

Re-access the cache lines, record the time.

The attacker accesses data illegally and make them cached.
5

Outline

⚫ Introduction

⚫ Motivation

⚫ Method

⚫ Experiments

⚫ Conclusions

6

Motivation

对微结构上的防御措施进行安全性分析亟需解决的问题

7

It is necessary to analyze the security of the microarchitecture

defences at the early stage of designing the processors[11]

Analyze the security of the defences

Proposed defences to prevent attacks

Software OS Secure Cache Microarchitecture

Code

Obfuscation [7]
KPTI [8] SP Cache [9] InvisiSpec [10]

Problems of microarchitecture defences

Hardware is hard to patch after been published.

It is also hard to design perfect defences.

The scope of defences extends from software to hardware

Outline

⚫ Introduction

⚫ Motivation

⚫ Method

⚫ Experiments

⚫ Conclusions

8

Method

9

Proposed Approach: Analyzing defences with attack graph

Challenges

Microarchitecture model

with security designs

Security specifications

Model

Checker

Attack graph

generator

Graph reduction

module

How to develop

security specifications

for various exploits?

How to model the

complex

microarchitecture?

How to generate the

Attack Graph for cache

side channel attacks?

Pass
OK

Reduced

attack graphs

Fail

counterexamples

Method

10

Proposed Approach：Detail

2. How to model the complex microarchitecture?

1. How to develop security specifications for various exploits?

●Background: the features of different exploits

●Approach: expressed as a sequence of states

●How to: the details of our method

●Advantages: the advantages of our method

3. How to generate the Attack Graph for cache side channel attacks?

Method

11

1. Security specifications: Background

The cache attacks can be divided into several steps.

Successful attack step => states become what the attacker expects.

Different methods to make the system reach the insecure states.

The aim of the defences => make the insecure states hard to reach.

The features of different exploits:

Method

12

1. Security specifications: Our approach

Key points: Even though exploits are increasing rapidly,

but the relevant insecure states do not .

Traditional: Methods in each step

This paper: A sequence of insecure states

1. Flush->Spectre->Reload 2. Evict->Spectre->Reload

1. S1->S2->S3->S4

How to develop security specifications

Method

13

1. Security specifications: How to

How to develop security specifications for exploits:

Security Specification：¬EF(S2 U S3)

Do NOT Exist a sequence in the Future

Divide the attack into several steps manually.

Analyze the insecure states.

Express the security specification with computation tree logic.

In the sequence, S2 holds Until S3 is true

Method

14

1. Security specifications: Advantages

Advantages:

A security specification is able to represent a class of exploits.

Can enumerate the known and unknown attack paths that

are able to reach these insecure states.

Method

15

Proposed Approach：Detail

2. How to model the complex microarchitecture?

●Background: the properties of the microarchitectures

●Approach: abstract instruction method
●How to： the details of our method

●Advantages: the advantages of our method

1. How to develop security specifications for various exploits?

3. How to generate the Attack Graph for cache side channel attacks?

Method

16

2. Microarchitecture model: Background

The states of the properties change:

The features of

microarchitecture :

Cache coherence

Core1

Cache …

Core2

Cache …

Core1
S

Cache …

Core2

Cache …

Complex &

with lots of properties.

The instruction executes

-- triggered by the execution of instructions.

-- due to the restrictions between different microarchitecture components.

S’

Method

17

2. Microarchitecture model: Our approach

Abstract instruction model:

Build a state transition model for

microarchitecture at the instruction level.

To express the states change triggered

by instructions and restrictions.

S S’
instructions

restrictions

¬EF(S2 U S3)

satisfy

Model

Security Specifications

Do not exist a sequence of insecure states.

The microarchitecture model has

to satisfy the security specification
Noted：

A: Attacker
V: Victim
AI: Abstract Instructions
C: Microarchitecture Components

Method

18

2. Microarchitecture model: How to

How to build a model:

Microarchitecture model

S : a set of microarchitecture states

I : initial states

R : transition relations, R ⊆ S × S

S=｛A，V，AI，C｝

｛A，V，AI，C｝ ｛A’，V’，AI’，C’｝
Instructions ∈ AI

Properties

M=(S, I, R)

M=(S, I, R)

I= {s0}

S= {s0, s1, s2, s3, s4, s5, s6, s7}

R= {s0->s1, s0->s4, s0->s6,

s1->s2, s1->s5, s6->s7,

s2->s3, s5->s3, s7->s3}

Security Specification: ¬EF (s1->s2->s3)

Method

19

2. Microarchitecture model: How to

How model checking works:

Model：

Counterexample： s0->s1->s2->s3

s0

s4

s1

s6

s5

s2

s7

s3

Method

20

2. Microarchitecture model: How to

Come back to our method:

Microarchitecture model

Security specification

Satisfy?

NO Generate an counterexample to prove that

the model does not satisfy the specification

Insecure

Method

21

2. Microarchitecture model: Advantages

Advantages:

Abstract model removes redundant features and

Can conveniently express the microarchitecture.

The modeling method facilitates the construction of

attack graphs.

s0

s4

s1

s6

s5

s2

s7

s3

Method

22

Proposed Approach：Detail

2. How to model the complex microarchitecture?

1. How to develop security specifications for various exploits?

3. How to generate the Attack Graph for cache attacks?

●Background: what is the attack graph

●Our approach: how to generate an attack graph

●How to: the details of our method

●Advantages: the advantages of our method

Method

23

3. Attack Graphs: Background

Postconditions: the states will be true

after the atomic attack performs.

What is the attack graph:

Preconditions: the states have to be

true before the atomic attack performs.
Atomic

Attack

Preconditions Postconditions

Attacker

(vul1,ip1)

(vul2,ip1)

(vul3,ip2)

(vul4,target)

(vul4,target)

(vul1,ip3)

(vul4,target)

Exploit a vulnerability

Nodes in a network

S1

S2

S3

S1

S4

S5

Method

24

3. Attack Graphs: Our approach

Our approach:

S S’

Counterexample

C A C’

Attack Graphs

Divide the counterexample

into 3 parts, and transform

them to attack graph.

State transition model=>

The counterexample is a

sequence of states. Current States Next States

Preconditions Postconditions

Atomic attack

Method

25

3. Attack Graphs: How to

How to

transform:

Preconditions PostconditionsAtomic Attack

Microarchitecture state
S’=｛A’，V’，AI’，C’｝

A: Attacker
V: Victim
AI: Abstract Instructions
C: Microarchitecture Components

Microarchitecture state
S=｛A，V，AI，C｝

Properties

S S

C A C

Abstract Instruction

Current

Microarchitecture State

Next

 Microarchitecture State

Method

26

3. Attack Graphs: How to

How to reduce:
(a) Attack paths with similar structure.

(b) Attack paths that merging the similar structure

(c) Attack paths with the same structure.

(d) Attack paths with logically equivalent structure.

Method

27

3. Attack Graphs: Advantages

Advantages:

High readability.

Easy to simplify.

Outline

⚫ Introduction

⚫ Motivation

⚫ Method

⚫ Experiments

⚫ Conclusions

28

An Simple Example

Experiments

29

Microarchitecture model

with security designs

Security specifications

Modified

NuSMV

Attack graph

generator

Graph reduction

module

Pass
OK

Reduced

attack graphs

Fail

1. No defences
2. Static-Partition Cache (SP Cache)
3. SP Cache + InvisiSpec

No Flush(Evict) + Reload with Spectre

Microarchitecture model (No Defences)

Experiments

30

M=(S, I, R)

Microarchitecture Components

& Their Properties

More detail the model is,

More accurate the result is,

But more time needed.

Table: Selected microarchitecture

components and properties

Abstract Instructions

clflush load store branch

Noted：

Experiments

31

M=(S, I, R)

Microarchitecture model (No Defences)

State Transition

S S’
instructions

gn true if aop load

sc true if vop load
aop A vop A tm

aop vop gn sc tm aop vop gn sc tm

Load

Figure: State transition for abstract instructions

Load (attacker) =>
attacker’s data is in cache =true

Load (victim) =>
victim’s data is in cache =true

Experiments

32

Microarchitecture model (SP Cache)

Make it unreachable

SP Cache

Static-Partition Cache (SP Cache)

-- Statically separates the cache for the victim and the attacker.

-- Attacker cannot evict victim’s cache lines.

-- The state transition about Evict strategy will be deleted from the R.

M=(S, I, R)

Experiments

33

Microarchitecture model (SP Cache + InvisiSpec)

Make them unreachable

SP Cache

InvisiSpec

InvisiSpec

-- InvisiSpec loads data into a new Speculative Buffer before committing

the result until the speculative load is finally safe.

M=(S, I, R)

-- The state transition about the branch will be modified to

the mechanism InvisiSpec describes.

Experiments

34

Security Specification

Security Specification (formal): ¬EF(E[sc = false U((md = squash)EX(sc = true))])

Security Specification (informal): ¬EF(S2 U S3)

A sequence of insecure states

Do NOT Exist a sequence that S2 holds Until S3 is true in the Future

Flush (Evict) + Reload with Spectre

Experiments

35

Results

Microarchitecture model

1. With no defences

2. With SP Cache

3. With SP Cache + InvisiSpec

¬EF(S2 U S3)

(Flush + Reload with Spectre)

(Evict + Reload with Spectre)

Security specification
Model Checking

Satisfy?

Table ：Results of model checking

Experiments

36

Attack Graphs

(a) The attack graph of micro-architecture without any security designs

(b) The attack graph of micro-architecture with SP Cache

Flush

Evict

Squash

Flush

Squash

Initial state:
sc=false

Secret is not
in cache

Outline

⚫ Introduction

⚫ Motivation

⚫ Method

⚫ Experiments

⚫ Conclusions

37

Conclusions

38

Conclusions:

Limitions：

1. Use instruction abstract method to conveniently

model the microarchitecture.

2. Use the sequence of insecure states to express

the security specification.

3. Proposes a novel use of the attack graph technology to visualize

the cache side-channel attack path.

1. State space explosion problem.

2. The attack that do not violate the security
specifications will not be identified.

Reference

39

[1] Yarom, Yuval, and Katrina Falkner. "FLUSH+ RELOAD: a high resolution, low

noise, L3 cache side-channel attack." 23rd {USENIX} Security Symposium ({USENIX}

Security 14). 2014.

[2] E. Tromer, D. A. Osvik, and A. Shamir, “Efficient Cache Attacks on AES, and

Countermeasures,” J Cryptol, vol. 23, no. 1, pp. 37–71, Jan. 2010.

[3] M. Kayaalp, N. Abu-Ghazaleh, D. Ponomarev, and A. Jaleel, “A high-resolution

side-channel attack on last-level cache,” in Proceedings of the 53rd Annual Design

Automation Conference on - DAC ’16, Austin, Texas, 2016, pp. 1–6.

[4] J. Bonneau and I. Mironov, “Cache-Collision Timing Attacks Against AES,” in

Cryptographic Hardware and Embedded Systems - CHES 2006, vol. 4249, L. Goubin

and M. Matsui, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 201–

215.

[5] P. Kocher et al., “Spectre attacks: Exploiting speculative execution,” in 2019

IEEE symposium on security and privacy (SP), 2019, pp. 1–19.

Reference

40

[6] M. Lipp et al., “Meltdown: Reading kernel memory from user space,” in 27th

{USENIX} security symposium ({USENIX} security 18), 2018, pp. 973–990.

[7] B. Köpf, L. Mauborgne, and M. Ochoa, “Automatic Quantification of Cache Side-

Channels,” in Computer Aided Verification, vol. 7358, P. Madhusudan and S. A.

Seshia, Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 564–580.

[8] L. Müller, “KPTI a Mitigation Method against Meltdown,” Advanced Microkernel

Operating Systems, p. 41, 2018.

[9] D. Page, “Partitioned cache architecture as a side-channel defence mechanism.”

[10] M. Yan, J. Choi, D. Skarlatos, A. Morrison, C. W. Fletcher, and J. Torrellas,

“InvisiSpec: Making Speculative Execution Invisible in the Cache Hierarchy,” p. 14.

[11] A. T. Markettos, R. N. M. Watson, S. W. Moore, P. Sewell, and P. G. Neumann,

“Through computer architecture, darkly,” Commun. ACM, vol. 62, no. 6, pp. 25–27,

May 2019.

Thank you!

Any questions?

41

The End

