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Abstract— An elaborate hardware performance monitor
(HPM) has become increasingly important for handling huge
performance variation of near-threshold computing and recent
process technologies. In this paper, we propose a new approach
to the problem of predicting critical path delays (CPDs) using
HPM. Precisely, for a target circuit or system, we formulate the
problem of finding an efficient combination of ring oscillators
(ROs) for accurate prediction of CPDs on the circuit as a mixed
integer second-order cone programming and propose a method of
minimizing the total number of ROs for a given pessimism level of
prediction. Then, we propose a prediction flow of CPDs through
statistical estimation of process parameters from measurements
of the customized HPM and machine learning based delay
mapping from the estimation. For a set of benchmark circuits
tested using 28nm PDK and 0.6V operation, it is shown that our
approach is very effective, reducing the pessimism of CPDs and
minimum supply voltages by 6.7~52.9% and 20.6~50.8% over
those of conventional approaches, respectively.

I. INTRODUCTION

Most power consumption of current CMOS circuits occurs
in the charging/discharging process of capacitance, and it
increases with supply voltage (Vgq) quadratically, in spite of the
non-scalability of threshold voltage (V). Therefore, it could
be possible to reduce energy per operation dramatically by
lowering Vg4, as shown in Fig. 1(a), compared to the super-
threshold voltage (super-Vy,) regime (Vgg>>Vy). Contrary to
severe performance degradation in the sub-threshold voltage
(sub-V) regime (Vgg<Vip), the near-threshold voltage (NTV)
regime (Vg2 Vin) provides a well-balanced trade-off between
performance and energy efficiency and could be a more
practical alternative to low-voltage operation [1]. However
there are several barriers to the use of NTV operation, one of
which is how to handle the significant increase in performance
variation, illustrated in Fig. 1(b). Simply adding a margin
for handling such a large performance variation sacrifices
significant performance loss for near-threshold computing
(NTC).

Wide performance spread is not the only concern of NTC.
Fig. 2(a) shows normalized variations of an effective channel
length (Log) at different process technologies, indicating that
the variation at Snm is expected to be increased by 62% over
that at 28nm. Besides, Meinhardt, Zimpeck, and Reis [3]
reported that the impact of the variation of gate workfunction
from metal gate granularity on Ion current is increased by up
to 2X at 7nm in comparison with that at 20nm, as shown by the
blue curve in Fig. 2(b). These results cause large performance
variation, and as a result, handling it is increasingly important
for advanced process technologies as well as NTC.

For handling the variation for NTC and recent process nodes,
speed binning could be used, where each die is classified
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Fig. 1: (a) Energy per operation and delay in different Vgq regimes [1]. (b)
Impact of Vgq scaling on the period of an inverter-based ring oscillator at
28nm process technology.
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Fig. 2: (a) Variation of L.g at 28nm, 10nm, 7nm, and Snm process technologies
taken from 28nm industry PDK and IRDS 2017 roadmap [2]. (b) Impact
of gate workfunction variation on Ioy for High Performance (HP) and Low
Standby Power (LSTP) version of sub-22nm FinFET PTM-MG models [3].

by its maximum operating frequency (fm.x). However, its
usage is restricted to specific areas, such as a processor chip.
Another solution is applying adaptive voltage scaling (AVS), in
which, after timing closure is completed with the worst corner,
lower Vg (Vaamin) 1S applied to fast dies to save their power
consumption. The essential condition for the success of AVS
is that the measurement for estimating the amount of variation
for each die should be sufficiently accurate. As a result, much
research is being actively conducted on hardware performance
monitor (HPM) to meet the condition in academia and industry
[4], [5], [6], [7], [8].

One of the most reasonable approaches using HPM is to ex-
ploit statistical analyses concerning physical parameters (PPs).
It is an extension of statistical static timing analysis (SSTA)
and starts from a linear model between HPM measurements
and critical path delays (CPDs) to the variations of PPs. Liu
and Sapatnekar [4] estimated the amount of spatial variation
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by measuring the same type of ring oscillators (ROs) allocated
over a chip, and later, they modeled the maximum delay of a
target circuit through SSTA and analyzed its correlation with an
arbitrary path [5]. Chan, Gupta, Kahng, and Li [6] observed the
sensitivity of CPDs to the variations of PPs forms clusters and
suggested to insert one representative RO per each cluster. The
biggest advantage of these approaches is that its interpretation
is easy enough to be properly exploited for further analysis and
optimization. However, a basic premise is that target variables,
e.g., CPDs, fmax, etc. depend on the variations of PPs linearly,
which is not true for NTC and advanced process nodes. Severe
asymmetry for NTV regime in Fig. 3 clearly shows that the
premise is no longer valid.

On the other hand, the approaches with advanced machine
learning techniques have emerged recently. The most distin-
guishing feature is that they use the dataset only consisting
of the pairs of HPM measurements and their corresponding
fmax With no intervention of any PP information. From the
dataset of RO frequencies and their corresponding fiax of
target circuit, Mu, Chao, Chen, and Wang [7] first selected
important parameters using stepwise regression and trained
their fnax prediction model with Bayesian linear regression.
Sadi, Kannan, Winemberg, and Tehranipoor [8], on the other
hand, employed path slack sensors as their HPM and trained
a speed binning model by applying various kinds of machine
learning techniques. Contrary to the statistical model based
approaches, it can be easily applied to the modeling of behav-
iors for the NTV regime and advanced process technologies
since it requires no assumption. However, it is much harder to
interpret trained models, and consequently, deeper analysis and
optimization on HPM become a daunting task. For instance,
Mu, Chao, Chen, and Wang [7] did not consider the impact
of the total number of ROs in HPM, their design, allocation,
etc., and Sadi, Kannan, Winemberg, and Tehranipoor [8] could
not provide enough evidence to support the efficacy of their
algorithm theoretically and empirically.

To the best of our knowledge, no work has considered the
optimization on HPM taking into account the prediction of
target CPDs, under wide and non-linear performance variation,
such as the NTV regime and advanced process technologies. In
this paper, we propose a highly effective HPM synthesis and
CPD prediction methodology for handling such a large and
complex variation, with a little amount of pessimism. Precisely,
our contributions are twofold, namely:

o formulating the problem of finding an efficient combi-
nation of ROs for accurate estimation of PPs related to
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Fig. 3: Change of the period of an inverter-based RO for variation of GPPs
concerning threshold voltages at 28nm for N-type and P-type MOSFETs at
Vaa=1.0V (super-V4, regime) and Vgq=0.6V (NTV regime). Note that the
normalized variations -1.0 and +1.0 mean —30 and 430 value of a parameter,
respectively.
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global variation (GPPs) as a mixed integer second-order
cone programming while considering design dependency,
and proposing a method of minimizing the total number
of ROs under a pessimism level constraint of prediction;
e proposing a prediction flow of CPDs by combining
statistical estimation of GPPs and a neural network based
CPD prediction model so as to deal with wide and non-
linear performance variation, through exploitation of the
optimized HPM.
Simulation results demonstrate that our proposed flow outper-
forms conventional approaches by 6.7~52.9% and 20.6~50.8%
in terms of the average prediction errors of CPDs and Vg min,
respectively, and tracks ground truth! fiay and Vad.min With little
pessimism. We also provide the importance of our optimization
on HPM composition by showing that it is able to reduce the
average prediction error of Vigmin by 22.0~57.1% over the
existing methods.

II. PROPOSED HPM METHODOLOGY
A. Overall Flow

Fig. 4 shows the overall flow of our proposed HPM method-
ology. During a design phase, we construct the following two
models:

e HPM2PP (Sec. 1I-B): A model for estimating GPPs from

measurements of ROs in HPM;

e PP2CPD (Sec. II-E): A model for predicting the variation

of CPDs from the estimation of GPPs.

Before constructing an HPM2PP model, we solve the problem
on the composition of HPM (Sec. II-C) and optimize the total
number of ROs in it (Sec. II-D). We handle the local random
variation effect on target CPDs separately because it is purely
independent of HPM measurements. During a production stage,
we executed the following procedures for each die sequentially
(Sec. II-F):

1) Estimate GPPs of each die from its HPM measurements
using the HPM2PP model constructed during the design
phase.

2) Infer changes of CPDs from the estimation result of
GPPs using the PP2CPD model constructed during the
design phase.

3) Add margins for local random variation to the inference.

4) Decide Vygmin of the die from the final prediction result
of CPDs.

B. Construction of an HPM2PP Model

The fundamental assumption of our HPM2PP model is that
HPM measurements can be represented as a linear combination
of GPPs [4], [5], [6], i.e.,

d=d+="x+¢ (1)

where d, d, =, x, and ¢ denote HPM measurements and
their expectations, sensitivities of them with respect to GPPs,
changes of GPPs, and errors from local random variation,
measurement resolution, etc., respectively. Note that the
sensitivity means the change of a measurement divided by
the change of a parameter apart from the impact of local
random variation. For the validity of linearity, we monitor ROs
in HPM with a sufficiently high level of Vy,.

YGround truth means the target we aimed to estimate through prediction in
our experiments. For example, in our experiments, we prepared the ground
truth CPDs from SPICE simulation on circuit netlists considering variations
of GPPs.
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Fig. 4: The overall flow of our proposed HPM methodology during (a) a design phase and (b) a production stage.

An HPMZ2PP model is a linear inverse problem of which
objective is to find x from d, but it is hard to solve accurately
because of a limited number of measurements and involvement
of purely random components €. Therefore, it is reasonable to
select the most probable one among all solutions of x. We adopt
Ridge regression and justify it through Bayesian interpretation
[9]. Let us assume that for M GPPs, x follows a multivariate
normal distribution N (0, X). Then the probability density
function (pdf) of a prior distribution for x is

1 1 1¢1
PN = e, P { 2% X}
and for N measurements of a die, the likelihood of the
observation d is also a normal distribution by Eq. (1), of
which pdf is

p(@=0) -

—_————— X
VemNdets,

o[ {3 (@)} m0 (- (3 =)
According to Bayes’ theorem, the posterior distribution of x
given d is proportional to the multiplication of the prior and
the likelihood, so it follows N (ﬁx,ix), where 1, and ¥
are

i, = SxEx ! (& - H) ©)

S l=ntrEntE" 3)

respectively. Note that >, is a diagonal matrix consisting of €.

Eg. (2) indicates the maximum a posteriori (MAP) estimation of
x, which is linearly dependent on d, and Eq. (3) is related to the
estimation uncertainty of x, so it should be taken into account
for the pessimistic prediction of GPPs and the consequent
changes of CPDs.

From the prior distribution, we can calculate a MAP
estimation of variations for each die from HPM measurements
using Eq. (2), and taking account of the direction of increase
of a CPD to GPPs, i.e., sensitivities of a CPD with respect to
GPPs k and the estimation uncertainty >, simultaneously, we
can find out the pessimistic estimation of the parameters x* as

X" =M, +CL p @)

It should be noted that CL denotes a user-defined parameter
related to confidence level and p represents the amount of

additional pessimism per unit confidence level, which can be

calculated as
p = Sxk/VKTEk (3)

For the fast computation of x* during a production stage,
we prepare >,=Y; !, d, and p in advance through SPICE
simulation during a design phase and collect them into our
HPM2PP model.

C. Optimization on the Composition of HPM

The distance between x* and [, along k, i.e., kT (x* — ),
can be exploited as a metric of the amount of pessimism that
a given HPM2PP model has. Therefore, it could be possible
to improve the accuracy of an HPM2PP model by selecting
the combination of ROs that minimizes it.

Problem (Finding the Composition of HPM for a Single
Direction of Increase of CPDs): Given T types of ROs, total
number of their instances N, sensitivities with respect to GPPs,
mean and standard deviation of measurements for each type
of RO, and a single direction of increase of CPDs k, find
the combination of ROs in HPM which is the most accurate
for an HPM2PP model, i.e., the combination that minimizes
kT (x* — 1, ).

The Problem is analogous to the optimal experiment design
(OED) problem [10], [11], [12], [13], which is to find the
best combination of experiments for estimating underlying
parameters accurately with the limited number of observations.
According to Sagnol and Harman [14], the OED problem

(DD\K (M(W)) = (DD\K (zs: wlAlA;r>

i=1

max
wew

(6)

where Opx : M — (det KTM*IK)A/IC into a mixed integer
second-order cone programming (MISOCP). Using Eq. (4) and
Eq. (5), the objective of the Problem can be transformed into

mink" (x* -, ) & minCL\/kT (=t + EE;lET)_l k

—1

S

—1
& max {det K" (2;1 T EzglaT) k}
From structural similarity between M (w) = >°7_, w;A;AT
£r) (&)

in Eq. (6) and B! +EX 12T = QeQL + S0 mi(5) (£,
we can write an MISOCP formulation for the Problem i)y
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modifying the original one [14]. Meanwhile, upon the obser-
vation of Chan, Gupta, Kahng, and Lai [6], we can extend our
formulation to optimize the average of the metrics associated
with each cluster of CPDs. Thus, the final formulation is

w
maximize E Jw /W

w=1

T
subject to  QxZo,w + Z iz@w =kuJw, w € [W]
=1 7t
{Ztvw}z < Qt,wnt/(N + 1)7 te [T]vw € [W}
1Z0,w1* < go,w/(N +1), w € [W]
T
q0,w + th,w S Juu w e [W}
=1
qtw 2> 0, te[T),we W]
q0,w 2 03 w e [W}

T
Znt S N
t=1

where W denotes the number of clusters, [W] and [T]
represent {1,--- , W} and {1,---, T}, respectively, and k,,
is the direction of increase of the w-th CPDs cluster. In the
formulation, 2 ., qo.w, Jw for w € [W] and z; 4, i for
{t,w} € [T] x [W] are intermediate variables, and n, for
t € [T are the target variables we aim to find. Note that n;
means the number of instances of the ¢-th type RO.

D. Optimization on the Total Number of ROs in HPM

A large number of ROs reduces the uncertainty of predictions
at the cost of additional area and measurement overhead.
Therefore, engineers should choose the proper number of
ROs carefully with consideration of them. To resolve this,
we propose a search flow described in Algorithm 1. Our search
flow first increases the total number of ROs and finds out
the pessimism level of predictions for each case. When L
consecutive searches fail to achieve relative update 7, the
algorithm stops to solve the MISOCP formulation and increase
the number of ROs with the same ratios of ROs in HPM
obtained at last. Note that to take into account non-linearity,
we run Monte-Carlo simulation using the PP2CPD models
constructed in Sec. II-E.

E. Construction of a PP2CPD Model

A PP2CPD model is used to predict changes of CPDs
that correspond to changes of GPPs x* obtained from an
HPM2PP model. To consider non-linearity, we construct a
PP2CPD model using a neural network [15] which is one of the
most representative machine learning techniques today. For the
preparation of training and validation datasets, we first generate
the set of GPPs and apply them into SPICE simulation of each
critical path to capture its delay change. It should be noted that
we exclude the impact of local random variation on changes
of CPDs in this step since it is completely independent of
change caused by GPPs. We also use an exhaustive grid search
method to decide hyper-parameters of a PP2CPD model, i.e.,
the number of hidden layers and units in them, a regularization
parameter, and stepsize of weights updating, for each critical
path. Specifically, we collect average p and standard deviation
o of prediction errors of CPDs concerning the validation dataset
for each hyper-parameter set and select the one whose —p +
CL.o is smaller than that of the others. We use that value as our
margin of inference results obtained from the PP2CPD model

2D-2

Algorithm 1 Optimal number of ROs in HPM and its composition

In: Target prediction pessimism level earger
PP2CPD model for each CPD
Sensitivities and local random variation of each RO
Initial value of the total number of ROs Nj
Stepsize of RO number increase for new composition search AN
Stopping criterion for new HPM composition search (Leric, Terit)
QOut: Optimal number of ROs in HPM and its composition

N < Ny // Initialize the total number of ROs in HPM
L+0 /I Initialize a counter for HPM composition search
ep < € /I €: Infinitesimal for numerical stability
while True:
if L < Lere:
Obtain new HPM composition using MISOCP solver for N
else:
Increase RO instances with the same ratios of HPM(#ROs=/Ny)
Analyze uncertainty of a MAP estimation using Eq. (3)
Run Monte-Carlo simulation with the PP2CPD models
Calculate pessimism level of predictions e
if e < Ctarget +
Return N and the current HPM composition
else if L < L
if (60 — e)/eﬂ > Terits
L<+0 /I Reset the counter
else:
L+ L+1
Nf ~ N
eg e+ e€
if L < Lege:
N <~ N + AN
else:
N < N + N

/l Increase the counter
/I Save the current HPM composition

for guaranteeing pessimistic prediction of CPDs. Note that the
time required to generate datasets does not matter since it can
proceed while fabricating and characterizing target design.

F. Procedures During a Production Stage

During a production stage, we first estimate pessimistic
values of GPPs for each cluster of CPDs of a die, i.e., x* in
Eq. (4), from HPM measurements using the HPM2PP model
constructed in its design phase. After that, starting from the
lowest level of Vgg among candidates, we increase it until the
operation meets a target frequency furget> 1.€., fmax> fiargets
to find Viamin. For calculating finax for a given Vyq level,
we infer changes of CPDs originated from GPPs using its
PP2CPD model and cover their local random variation by
adding margins. Then reciprocal of maximum among the
predictions is fi.x at that level.

III. EXPERIMENTAL RESULTS

To validate our HPM methodology, we used our industry
partner’s 28nm PDK and DK characterized at 0.6V of V4. We
could not conduct the experiments with an advanced process
node due to confidentiality issues, but we expect that its overall
trend would be similar to the results. We considered total
19 types of GPPs such as polysilicon gate length defined in
the PDK and assumed that 12 types of ROs are available
as candidates of our HPM components, by combining a few
kinds of cell types, driving strengths, etc. as follows: BUF:1~.3,
INV:1~4, DELAY:1~2, MUX, NAND2, and NOR2. Sizes
of our training and validation datasets for PP2CPD model
construction were 3,000 and 1,000, respectively, for each
critical path, and note that we did not take into account
GPPs related to back-end-of-line (BEOL) process, which are
remained as our future work.
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A. Effectiveness of Our Optimization on HPM Composition

We found the optimized combination of ROs by solving
the MISOCP formulation using IBM CPLEX Optimizer [16]
through PICOS interface [17] with a total of 50 ROs in
HPM for the benchmark circuits listed in Table I, and the
results are summarized in Table II. Interestingly, only a
few types of ROs, i.e., BUF:3, INV:3, MUX, and NOR2,
accounted for the majority of HPM while five types of ROs,
i.e., BUF:1, INV:1~2, INV:4, and DELAY:1, were not used
at all. Besides, the instance number of ROs were changed
remarkably depending on a target design. We also investigated
the efficacy of our optimization on prediction of changes
of CPDs, fmax, and Vggmin in our methodology using five
different combinations: HPMOPT (our optimization result),
RANDOM (randomly generated), ALLINV:2 (consisting of
INV:2 only), ALLNAND2 (consisting of NAND2 only), and
ALLNOR?2 (consisting of NOR2 only). Our target design was
SPARC core of Oracle OpenSPARC T1 processor, and we
assumed five candidate levels of Viq between 0.52V and 0.60V.
We finished timing closure of the target circuits and then
extracted and analyzed 100 setup timing critical paths using
Synopsys PrimeTime with Synopsys HSPICE.

We excluded local random variation margins since they are
common in all of them, and results are shown in Table III. The
first five rows show the statistics on difference between ground
truth explained in the introduction and prediction of CPDs,
fmax> and Vg min, respectively, for the five combinations, and
the column with #Pess represents the number of dies that do
not include any optimistic predictions among total 1K dies, so
the value divided by 1,000 means yield. For a fair comparison,
we set a yield of each combination to 0.999 by adding or
subtracting a proper amount of margin. From the table, it is
shown that the prediction using our HPMOPT outperforms the
others by 24.8~49.0% and 19.2~48.5% in terms of average and
standard deviation of prediction errors of CPDs, respectively.
The accurate prediction of CPDs by our HPMOPT led precise
predictions of frax and Vigmin as well; specifically, our
HPMOPT reduces prediction errors by 21.2~52.2% of fi.x and
22.0~57.1% of Vygmin compared to the others. Note that the
numbers in the Max. column of AVgyymin in Table III denote
the worst case misprediction of Vggmin level. For example,
the maximum difference between the prediction using our
HPMOPT and the ground truth is one level of Vg, while
RANDOM predicts two levels higher in the worst case.

TABLE I: The benchmark circuits used in our experiments.
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B. Effectiveness of Our Proposed CPD Prediction Flow

To verify the effectiveness of our CPD prediction flow,
we compared it with other previously published ones and
conventional signoff results. Specifically, we compared the
quality of prediction with four methods: STATISTICAL, ML-
BASED, HPM-AVERAGE, and SLOW-SLOW. STATISTICAL is
a method that exploits statistical model utilized in [4], [5],
[6], and ML-BASED is a neural network model with no
consideration on GPPs, like [7], [8]. On the other hand, HPM-
AVERAGE interpolates changes of CPDs using the average of
HPM measurements, and SLOW-SLOW is the signoff results
with SS corner. Note that SLOW-SLOW does not use HPM
methodology, so the assigned supply voltages for all dies are the
same regardless of an amount of global variation. We applied
them to our SPARC core with the same HPM composition
used in Sec. III-A, i.e., HPMOPT, in common.

The results are shown in the last four rows of Table III.
Our method (the row starts with HPMOPT) achieves a 20.6%
pessimism reduction for prediction of Vigmin On average in
comparison with STATISTICAL. In the case of ML-BASED,
the standard deviation of prediction error itself is slightly
smaller than that of ours, but the average prediction error
is much larger; consequently, it predicted Vggmin for each
die by 41.4% more pessimistic than ours, on average. HPM-
AVERAGE produced the poorest result among them due to its
excessive simplicity and no consideration of characteristics of
each RO type. Compared with conventional signoff results at
SS corner, i.e., SLOW-SLOW, ours recovers 70.1% and 67.5%
of pessimism for fp.x and Vgamin On average, respectively. As
a result, it is expected to reduce about 6.67% dynamic power
consumption on average by lowering V44 additionally with our
proposed HPM methodology.

C. Exploration of the Number of ROs and Prediction Quality

For exploring the trade-off between the total number of ROs
and prediction quality of CPDs, we applied Algorithm 1 in
Sec. II-D. We intentionally set Ny, AN, and Ctarget t0 1, 1, and
0, respectively, and applied no stopping criterion for a new
HPM composition search (Leyi, 7eric) to investigate its impact.
The results for SPARC core with 100K Monte-Carlo samples
are shown in Fig. 5(a). We observed that a sharp decline
of CPDs prediction pessimism when the number of ROs is
insufficient. For example, 99% quantile value of maximum
CPD prediction decreases by 202.1ps and 29.6ps when the
total number of ROs increases from O to 1 and from 3 to 4,
respectively. Therefore, it is important to find out the range

Design Description ﬁgl scels  Of R'O.numbers c'are'fully in which the pessimi§m of CPD
: [MHz] prediction drops significantly for further exploration.
SPARC Microprocessor core of OpenSPARC T1 | 282 11130,605 On the other hand, because of saturation of prediction quality,
aes_cipher AES cipher (encrypt) block 282 17,012 hine f HPM ition h | £ .
aes_inv_cipher | AES inverted cipher (decrypt) block 238 | 23214  scarching for a new HPM composition has almost no etfect mn
des_perf_opt | Performance-optimized DES block 300 | 20,702  comparison to simply increasing the number of ROs with the
usb_phy USB 1.1 PHY 667 510 same ratios of previously obtained HPM composition when
wb_dma DMA/Bridge IP Core 500 3,315 they are sufficient, as shown in Fig. 5(b). Hence, we believe
TABLE II: The optimized composition of HPMs for the benchmark circuits listed in Table I.

Design | Runtime [sec] | #BUF:2  #BUF:3  #DELAY:2  #INV:3  #MUX  #NAND2  #NOR2  #Others | #Total
SPARC 1.54 0 12 1 9 14 4 10 0 50
aes_cipher 1.83 2 19 2 0 21 2 4 0 50
aes_inv_cipher 1.88 3 18 2 0 19 2 6 0 50
des_perf_opt 2.30 0 11 1 10 13 5 10 0 50
usb_phy 1.24 0 10 2 11 12 5 10 0 50
wb_dma 1.79 0 5 2 17 9 6 11 0 50

143



2D-2

TABLE III: Statistics on the difference between ground truth and prediction of CPDs, fmax, and Vg min for 1,000 dies. All values in parentheses are normalized
to the results of our HPMOPT, and in bold is the best result for each criterion.

ACPDs [ps] ([a.u.]) A fmax [MHz] ([a.u.]) AVidmin [mV] ([a.u.])

Method #Pess Avg. Std. Avg. Std. Avg. | Max.
HPMOPT 999 175.584 (1.000) | 51.812 (1.000) 41.216 (1.000) | 15.979 (1.000) | 9.700 (1.000) | 20 (1)
RANDOM 999 236.140 (1.330) | 64.104 (1.237) 52.322 (1.269) | 17.607 (1.102) | 12.440 (1.282) | 40 (2)
ALLINV:2 999 || 342.822 (1.930) | 94.831 (1.830) | 83.485 (2.026) | 28.796 (1.802) | 21.860 (2.254) | 40 (2)
ALLNAND2 999 348.273 (1.961) | 100.612 (1.942) | 81.146 (1.969) | 29.162 (1.825) | 21.020 (2.167) | 40 (2)
ALLNOR2 999 || 334.404 (1.883) | 91.838 (1.773) | 86.313 (2.094) | 29.562 (1.850) | 22.620 (2.332) | 40 (2)
STATISTICAL ([4], [5], [6]) | 999 190.346 (1.072) | 55.602 (1.073) 52.126 (1.265) | 17.239 (1.079) | 12.220 (1.260) | 40 (2)
ML-BASED ([7], [8]) 999 222.058 (1.250) | 50.743 (0.979) 53.186 (1.387) | 16.928 (1.059) | 13.720 (1.414) | 40 (2)
HPM-AVERAGE 999 376.734 (2.121) | 96.472 (1.862) 78.370 (1.901) | 27.717 (1.735) | 19.700 (2.031) | 40 (2)
SLOW-SLOW 1,000 || 583.091 (3.283) | 148.875 (2.796) | 137.975 (3.348) | 44.733 (2.799) | 29.840 (3.077) | 40 (2)

Estimation Uncertainty of Max. Delay (SPARC) vs. #ROs
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Fig. 5: (Upper) Changes of maximum delay estimation for SPARC core.
The blue line represents ground truth of maximum delay we assumed, i.e.,
maximum CPD at a typical corner in our experiment, and the light blue region
denotes the distribution of delays. (Lower) Changes of 99% quantile value of
maximum delay estimation for a few kinds of RO combinations. Note that
the figure is an enlargement of the yellow region in the upper plot.

that our stopping strategy for a new HPM composition search
in Algorithm 1 will save excessive computation time for that
case. In the case of SPARC core, for example, it would be
efficient to find out the combination of ROs using the MISOCP
formulation when their number is 25, and starting from this,
increase the RO numbers in HPM by 25, 50, 75, etc., until
target prediction pessimism level €grger 1S met. If egrger is
1.99ns, the total number of ROs would be 75 at last, as shown
in Fig. 5(b).

IV. CONCLUSION

In this paper, we proposed a highly effective HPM methodol-
ogy for accurate CPD prediction. Precisely, we formulated the
optimization problem of selecting an efficient combination of
ROs in HPM for accurate estimation of GPPs as an MISOCP
formulation and proposed a method of minimizing the total
number of ROs under a pessimism level constraint of prediction.
Then we proposed a prediction flow of CPDs by combining a
statistical estimation of GPPs and a neural network based CPDs
prediction model to deal with wide and non-linear performance
variation. From the experiments using a 28nm industry PDK

and 0.6V operation, we validated the efficacy of our HPM
methodology. We are currently extending our methodology to
consider the variation of parasitic resistance and capacitance
in back-end-of-line (BEOL) process. We are also investigating
and researching the adaptation of the proposed prediction flow
to actual silicon measurements beyond PDK-based model.
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