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Abstract— Wafer inspection locates defects at early fabrica-
tion stages and traditionally focuses on pixel-level defects. How-
ever, there are very few solutions that can effectively detect large-
scale defects. In this work, we leverage Convolutional Neural
Networks (CNNs) to automate the wafer inspection process and
propose several techniques to preprocess and augment wafer
images for enhancing our model’s generalization on unseen
wafers (e.g., from other fabs). Cross-fab experimental results
of both wafer-level and pixel-level detections show that the F1
score increases from 0.09 to 0.77 and the Precision-Recall area
under curve (PR AUC) increases from 0.03 to 0.62 using our
proposed method.

I. INTRODUCTION

Wafer inspection is an important step in semiconductor

chip fabrication. Defects of interest (DOIs) of wafers are

detected to ensure the yield of clean wafers. This operation

is executed multiple times at different stages throughout

the whole fabrication process. Wafer inspection is split into

two major stages, namely, unpatterned wafer inspection and

patterned wafer inspection [1]. Unpatterned wafers, or bare

wafers, are inspected by wafer manufacturers. These wafers

are visually uniform across their surfaces. In this stage, there

are no circuit patterns or dies yet on the wafers. The roughness

of the wafers is examined by projecting a laser beam. Patterned

wafer inspection is performed by chipmakers. In this stage,

there is already some circuitry on the wafers. Pattern images

between adjacent dies are compared and the difference is used

to detect defects [2]. In this work, we focus on a specific DOI

named entry transition signature, which happens when the

wafer is entering the equipment. Figure 1 illustrates this DOI.

Note that the wafer data used in our experiments come from

a leading semiconductor manufacturing company (hereinafter

called the Company) and is subject to the constraints of Non-

Disclosure Agreement. Hence, we can only conceptually show

a manually generated pseudo wafer image here. Wafer-level

defect detection is a challenging task because of the vast

amount of defects, which vary from layer to layer and fab

to fab. As a result, handcrafting the required detection recipes

is impractical.

In recent years, Convolutional Neural Networks (CNNs)

have demonstrated impressive performance in computer vision

tasks [3]. This observation motivated us to apply CNNs to

automate the wafer defect detection process and improve its

efficiency. However, the data obtained from different fabs are
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Fig. 1: Illustration of the entry transition signature: (a) pseudo

wafer image; (b) mask of the DOI.

so diverse that the generalization of a CNN model trained by

standard normalization and augmentation methods (hereinafter

called the standard method) is generally poor. That is, the

model trained from the fab1 data can not successfully predict

the defects of the fab2 data. The size of our wafer dataset

is also small, which further limits the training quality of the

model.

In order to address these issues, we propose several meth-

ods to preprocess and augment the wafer images used for

model training. For the preprocessing, we propose an outlier-

excluded adaptive clipping method to iteratively calculate

the real mean and variance and clip the pixels beyond a

threshold. We also combine the masked normalization with

clipping to avoid the interference of background pixels. For the

augmentation, we propose to leverage gamma correction [4]

to alter the contrast of the wafer images. We also apply

the random rotation by considering the geometric shape of

the wafer. We perform our experiments on the wafer images

obtained from two fabs. We achieve a 97.78% accuracy on

within-fab wafer defect detection using the Company’s CNN-

based in-house model. As a variation of Fully Convolutional

Network (FCN), this model was originally developed by the
Company for the study of the patterned wafer defect detection.

We also increase the F1 score from 0.09 to 0.77 and the PR

AUC from 0.03 to 0.62 on cross-fab wafer defect detection

by replacing the standard method with our proposed method.

Our experiments also confirm the extensibility of the proposed

method to other segmentation models such as FCN [5] and

Mask R-CNN [6].
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II. PRELIMINARY

A. Wafer Defect Detection

Wafer images can be generated by three methods: electron-

beam, brightfield inspection, and darkfield inspection [7], [8].

After obtaining the wafer images, we can apply customized

algorithms to identify defective areas.

In this work, we use the darkfield inspection to generate the

wafer haze maps, i.e., the aforementioned wafer images. How-

ever, our developed model and method can be easily extended

to other inspection methods with necessary customization.

The defects to be detected are generated from a Copper

Electroplating (CuECP) process, which causes phenomenal

yield issues in both IC and memory fabs such as Micron,

Global Foundries, Samsung, and TSMC. There are several

types of signatures reported from the field in the CuECP layer.

Out of the remaining haze map signatures, we focus on the

entry transition signature for the following two reasons: First,

this signature commonly exists in both IC and memory fabs;

second, among all the signatures, the entry transition signature

appears first when the process quality degrades. Thus, an

accurate detection of this DOI allows customers to fix process

drift at the earliest possible time.

B. Convolutional Neural Networks and Semantic Segmenta-
tion

CNNs are capable to effectively extract spatial features of

images and achieve state-of-the-art performance in computer

vision applications. Among these applications, semantic seg-

mentation segments an image into different areas each of

which represents a different class. As a variation of CNN,

FCN [5] is an end-to-end, pixel-to-pixel structure that is

widely used in semantic segmentation. FCN adds a skip

architecture to the base CNN model to combine information

from various layers. This information is then sent to the

deconvolution layers to perform semantic segmentation. Mask

R-CNN (Region-based Convolutional Neural Network) [6]

adds a set of mask predictions in parallel to a set of bounding

box predictions and obtains state-of-the-art results on instance

segmentation. In our experiments, we evaluate the above

models since wafer defect detection can be also considered

as a semantic segmentation problem, where the wafer haze

map is segmented into the background and defective regions.

C. Related Works

There has been a growing body of research on wafer defect

detection over the recent decade [10], [11], [14]. However,

these works mostly focused on the detection of pixel-level

defects and used traditional image analyzing tools to achieve

this goal. Machine learning models such as CNNs were also

adopted in some other works [12], [13]. Despite of the success

in these works, we haven’t seen any techniques for detecting

larger defects in fine-grained wafer images were reported.

Furthermore, there are yet no implementations of state-of-the-

art deep learning models.

III. METHODOLOGY

A. Motivation

In this work, we obtained wafer haze maps from two

fabs and partition them into training, validation, and testing

datasets. As we will show in Section IV-B, the Company’s

model trained with the standard method has limited gen-

eralization to handle cross-fab data: when the training and

testing datasets are from the same fab, i.e., within-fab, the

results of the accuracy, F1 score, and PR AUC are reasonably

good. However, when the training and the testing datasets

are from different fabs, i.e., cross-fab, all these metrics are

far from unsatisfactory. In addition, the amount of training

data is usually limited, which further constrains the training

quality of the defect detection model. We carefully examined

the obtained wafer haze maps from the fabs and made the

following observations:

• The wafer area is circular. The surrounding background

area does not contribute to the training quality of the

model.

• The DOI is contrast-sensitive: When the contrast between

the DOI area and the normal area is low, i.e., the average

intensity of the pixels in the DOI area is close to the one

of the normal area, it is very hard to detect such a DOI.

• The intensity range of the wafer pixels is wide. Addi-

tionally, the distribution of wafer pixels in the low (high)

intensity region is dense (sparse).

• The distribution parameters vary between the fabs, in-

cluding the intensity range and the sparsity.

The goal of this work is to develop an approach to effec-

tively detect wafer defects based on CNN models by lever-

aging the above observations. In Section III-B, two data pre-

processing techniques are proposed to address the discrepancy

between the data obtained from different fabs. In Section III-C,

two data augmentation techniques are developed to deal with

the limited size of the training dataset. As we shall show in our

experiments, the combination of both data preprocessing and

augmentation methods will greatly enhance the generalization

of the CNN models for wafer defect detection.

B. Data Preprocessing

Because the raw data is usually biased, noisy, and has large

variance, data preprocessing is commonly adopted in machine

learning applications. Normalization is a standard procedure

of the data preprocessing which subtracts the mean from the

data and divide the data by the standard variance to generate

the normalized data with zero mean and unit variance. Such

a standard normalization process, however, cannot be directly

applied to wafer defect detection. Figure 2 (a) and (b) compare

the wafer haze map histograms before and after applying

the standard normalization. Here the y-axis is displayed in

logarithmic scale. The normalized wafer haze maps from fab1

and fab2 are still very different: The pixels of fab2’s wafers

have a more sparse distribution in the high-intensity region

than the pixels of fab1’s wafers and the pixels of fab2 have a

wider intensity range. This comparison indicates that the data

discrepancy between the wafer haze maps from different fabs

cannot be eliminated by the standard normalization. Thus, we

propose the so-called data discrepancy-aware preprocessing to

address this issue.

1) Masked normalization: As shown in Figure 1, even

though the haze map is square, the effective area of the wafer,

i.e., the wafer area, is circular. The rest of the area is called the

background. This fact is also reflected in Figure 2 (a) where
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Fig. 2: Histogram comparison (left: fab1 wafers, right: fab2

wafers): (a) original wafer haze maps; (b) haze maps after

the standard normalization; (c) haze maps after the proposed

preprocessing method.

the pixels at zero intensity indeed represent the background

area. Since the background pixels do not contribute to the

training of the model, we want to keep the intensity of

these pixels as zeros as the inputs of the CNN-based model.

The standard normalization, however, shifts the intensity of

the background pixels to negative values. We propose the

following procedure to manage the background pixels in

particular:

(i) Detect the background pixels and obtain a mask for them;

(ii) Exclude the masked pixels from the pending wafer haze

map (say, valid data);

(iii) Perform the normalization (standard or proposed) on the

valid data only;

(iv) Attach the pixels in the background mask and set their

intensities to zero.

As a result, only the pixels of the wafer area will be

processed in the feature extraction phase using CNNs.

2) Outlier-excluded adaptive wafer haze map clipping:
Figure 2 (a) shows that although the intensity range of the

pixels is wide, there exist some pixels whose intensities are

significantly higher than that of most of the pixels. This

observation is particularly obvious in fab2. We call such

pixels “outliers”, which need to be properly handled in data

preprocessing. The presence of these outliers may due to

various reasons such as fabrication discrepancy and process

variation. Note that the distributions of these outliers are

different between fab1 to fab2. In addition, the intensity range

of fab2 pixels is significantly larger than the one of fab1

(∼ 3.1×).

Our proposed solution of the above issues is summarized

in Algorithm 1. First, we obtain the mask for the whole wafer

area and shrink the mask by mask th = 2 pixels. This is

because we find that the boundary of the wafer area is a mix

of high- and low-intensity pixels, which affect the detection of

the defect boundary. Note that this operation will not interfere

the detection since the defective area is usually much wider.

Excluding these pixels also helps the calculation of the mean

and the variance. Second, within the valid data (masked area),

we iteratively calculate the current mean and variance, and

Algorithm 1 Outlier-excluded Adaptive Clipping with Masked

Normalization.

Input: Wafer haze map xi ∈ R
dim (dim is the dimension of

the data, in our case is 98 × 98, i ∈ [1, training set size]).
Iteration number iternum = 10. Clipping threshold clip σ = 3.
Outlier exclusion threshold outlier σ = 4. Mask shrink threshold
mask th = 2.
Do:
1. Calculate the mask for wafer area mask.
2. Shrink mask by mask th pixels.
3. Calculate the real mean μxi and the standard variance σxi by
excluding outliers:
Set data valid as pixels in mask of xi.
for iter = 0; iter < iter num; iter ++ do

a. Calculate μxi and σxi of data valid.
b. Remove pixels outside (μxi − outlier σ · σxi , μxi +
outlier σ · σxi) from data valid.

end for
4. xi[xi > μxi + clip σ · σxi ] = μxi + clip σ · σxi

xi[xi < μxi − clip σ · σxi ] = μxi − clip σ · σxi

6. Apply the standard normalization on xi.
7. Set pixels in the background area as zeros.
Output: The preprocessed wafer haze map x̂i.

then remove the pixels we considered as the outliers, that is,

their intensities are larger or smaller than certain thresholds.

After several iterations, we exclude all outliers and obtain the

real mean and variance. At the end, we clip the wafer area

based on these statistics, apply the standard normalization,

and attach the background zeros.

After the clipping, the processed wafer haze maps are

distributed over about the same intensity range and maintain

the similar features, as shown in Figure 2 (c).

C. Data Augmentation

Data augmentation is often used when training samples are

very limited either in quantity or variety, which is exactly our

case. In this work, we propose two augmentation techniques

that are customized to wafer haze maps.

1) Random rotation: To address the limitation in quantity,

we propose random rotation. Since the valid wafer area is

almost a perfect circle, we can rotate the wafer area in random

degrees to enrich the spatial information of the wafer data.

Thus the segmentation result will not overfit specific spatial

features of wafer data in the training dataset, e.g., defects are

only present at specific angles. The rotation operation can be

performed by applying the following formulas:

x2 = cos(θ)(x1 − x0)− sin(θ)(y1 − y0) + x0

y2 = sin(θ)(x1 − x0) + cos(θ)(y1 − y0) + y0,
(1)

where (x0, y0) are the coordinates of the center of the rotation,

θ is the angle of the rotation, (x1, y1) is the source pixel (the

pixel before the rotation) and (x2, y2) is the destination pixel

(the pixel after the rotation). In this way, every destination

pixel is assigned to a source pixel. Note that if the destination

pixel is not assigned to any source pixel (due to the sin and

cos functions), it will create a “hole” such as x2 = y2 = 0.

We propose to use bilinear interpolation [9] to solve this issue,

i.e., assigning an interpolant to the destination pixel when the

above scenario occurs. Bilinear interpolation can be expressed

as the following equation:
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f(x, y) =

[
x2 − x x− x1

]
[
f(x1, y1) f(x1, y2)
f(x2, y1) f(x2, y2)

] [
y2 − y
y − y1

]

(x2 − x1)(y2 − y1)
,

(2)

where f(x, y) is the pixel value at point (x, y) and (xi, yj) is

one of the four points used for interpolation.

Other interpolation algorithms such as bicubic interpolation

and spline interpolation require information from more sur-

rounding pixels thus become more computationally intensive.

The results, however are similar to that of bilinear interpola-

tion in this case.

2) Random gamma correction: To address the limitation

in variety, we propose to use random gamma correction to

augment the wafer data. Gamma correction is widely used to

encode and decode luminance values in videos or images to

compensate the difference between the perceptions of human

eyes and camera sensors [4]. Gamma correction, or gamma

encoding, is a nonlinear operation defined by the following

expression:

Vout = αV γ
in, (3)

where Vin and Vout are pixel values of the images before and

after gamma correction. α is a constant and γ is the gamma

index. Usually α = 1 and Vin, Vout ∈ (0, 1).
We perform experiments on pseudo wafer haze maps that

are similar to the ones in Figure 1, to illustrate how gamma

correction works. Figure 3 shows the experiment results

adopting γ = 1, 0.5, 1.5, separately. The range of the chosen

gamma is larger than the one we use in the experiment, i.e.,

(0.5, 1.5) vs. (0.75, 1.25), for a better illustration. Both haze

map and histogram comparisons are included. The haze map

becomes brighter or darker when γ < 1 or γ > 1, respectively.

The consequence is also illustrated as the shift of pixels’

intensities in the histograms. This result indicates that gamma

correction can effectively alter the contrast of wafer haze maps

by applying different γs without changing spatial features.

On the contrary, other pixel-level operations such as adding

Gaussian noise either decreases the quality of the image or

incurs distortion. Since entry transition signatures are contrast-

sensitive, augmenting data with gamma corrections can greatly

improve the variety of the data and thus enhance the model’s

robustness. We also observe in the experiment results that

gamma correction can substantially increase PR AUC, which

means the pixel-level segmentation is greatly improved.

By combining random rotation and random gamma correc-

tion (i.e., randomly choose γ from (0.75, 1.25)), we increase

the size of training dataset by 30 ∼ 40×. Note that we im-

plement online data augmentation, i.e., randomly augmenting

the data at the start of each training epoch, to further improve

the variety. More details can be found in Section IV.

IV. EXPERIMENTS

A. Dataset and Evaluation Metrics

The diameter of the wafers we possess is 30cm. We choose

to use 3mm pixel haze map, i.e., one pixel represents the

average values of a 3 × 3 mm wafer area, since the entry

transition signature is at the macro level. This hypothesis is
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Fig. 3: Comparison of gamma corrected wafer haze maps and

corresponding histograms: (a) γ = 1 (no gamma correction);

(b) γ = 0.5; (c) γ = 1.5.

validated by the comparison study on using 3mm and 600μm

pixel haze maps: our results show that these two configurations

obtain similar performance. The dimension of the data is 98×
98 (not 100×100 because of the special handling at the edge).

Our wafer dataset includes the data obtained from two fabs.

Note that it took our collaborated company one year to collect

these data from customers for this particular task. This fact

indicates that the wafer defect detection task typically has a

very small amount of training data.

A detailed description can be found in Table I. The numbers

of the wafers with and without DOIs can be found in the

rows named “DOI” and “non-DOI”, respectively. Note that

data from fab1 are used for both training and testing while the

data from fab2 wafers are used only for testing. For fab1 data,

we choose to use 40% for training, 20% for validation, and

40% for testing. All the DOI regions of the data are manually

annotated by professionals for both training and testing.

In the experiments, we use multiple metrics including recall,

precision, F1 score, and accuracy to evaluate the mode’s wafer-

level performance (classification). We also use PR AUC to

evaluate the model’s pixel-level performance (segmentation).

The PR curve is obtained by applying different thresholds of

the segmentation model and indicates the tradeoff between the

pixel-level precision and recall.

B. Standard Method - Baseline

We train the Company’s model on fab1’s data and test it on

the data from both fab1 and fab2. We implement the baseline

method, i.e., training with the standard method, to demonstrate

the effectiveness of applying the CNN model on the wafer

defect detection task and its limitation. We include the results

on accuracy, F1 score, and PR AUC for a complete analysis.

TABLE I: Wafer dataset description.

Fab1 Fab2
Total 228 343
DOI 26 59

non-DOI 202 284
Dimension 98× 98 98× 98

Purpose training and testing testing
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Fig. 4: Result of baseline method. Train on fab1, test on fab

1: (a) confusion matrix; (b) PR curve; train on fab 1, test on

fab2: (c) confusion matrix; (d) PR curve.

The confusion matrix and PR curve are summarized in

Figure 4, where (a) and (b) are the results tested on fab1’s

data, (c) and (d) are the results tested on fab2’s data. The

corresponding metrics can be summarized as the follows:

• For testing on fab1: recall = 100%, precision = 81.82%,

accuracy = 97.78%, F1 score = 0.900, PR AUC = 0.81.

• For testing on fab2: recall = 5.09%, precision = 60%,

accuracy = 83.09%, F1 score = 0.094, PR AUC = 0.03.

The above results indicate that: 1) the Company’s model and

the standard method work well in the analysis of the within-

fab wafers (e.g., train and test in the same fab), despite of

the limited amount of the training data; 2) the model trained

with fab1’s data using the standard method performs badly

on fab2’s data (cross-fab data). Even though the accuracy

(83.09%) looks reasonable, it is indeed because most of the

wafer data are non-DOI data (i.e., 284 out of 343 for fab2’s

data) and the model by default classifies the wafers as non-

DOI (near-zero recall). This also indicates that the accuracy

cannot solely provide a useful evaluation when there is a large

skew in the class distribution. The F1 score, on the other hand,

is a better choice here, taking both the recall and precision

into consideration. The low recall (only 5.09%) indicates that

the model cannot detect any DOIs on the wafer haze maps in

most cases. In addition, the PR AUC is nearly zero. It indicates

that pixel-wise segmentation performance is even worse, that

is, almost all the pixels are assigned as background with

extremely high confidence scores. In summary, the standard

data preprocessing and augmentation method work well on

within-fab data but not on cross-fab data.

C. Proposed Data Preprocessing and Augmentation Methods

In this section, we summarize our proposed method for the

training of the Company’s model on both within-fab and cross-

fab data. The corresponding confusion matrix and PR curve

are shown in Figure 5. By comparing the results in Figure 4

and Figure 5, we can make the following observations:

• For the within-fab data, both the standard method and

proposed method achieve similar results. Compared to
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Fig. 5: Result of the proposed method. Train on fab1, test on

fab 1: (a) confusion matrix; (b) PR curve; train on fab1, test

on fab2: (c) confusion matrix; (d) PR curve.
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Fig. 6: Comparisons of recall, precision, F1 score, PR AUC,

and accuracy under different combinations of the proposed

techniques.

the standard method, the proposed method has one less

false detection and the PR AUC increases from 0.81 to

0.93. The limited improvement is because the original

result of the standard method is already very good on

this small dataset.

• For the cross-fab data, the proposed method detects

many more DOIs than the standard method does. Note

that the number of false detection also increases, which

slightly affects the precision. The improvement in the

defect detection is also reflected by the recall and the F1

score: The recall increases from 5.01% to 79.66% and

the F1 score increases from 0.09 to 0.77. The PR AUC

also increases from 0.03 to 0.62, indicating a substantial

improvement in the pixel-level detection too.

Next, in order to individually evaluate the benefit that

was introduced by each technique included in the proposed

method, we apply different combinations of data preprocessing

and data augmentation techniques. The results are summarized

in Figure 6. Four experiments are performed with the standard

method (baseline), the data preprocessing only (with prepro-
cessing), the data augmentation only (with augmentation),

and the combination of these two techniques (with both),

respectively. We include the same metrics from Section IV-B
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TABLE II: Comparison of all metrics for the Company’s model, FCN, and Mask R-CNN.

Metrics
the Company’s model FCN [5] Mask R-CNN [6]

baseline proposed improvement baseline proposed improvement baseline proposed improvement
Recall 5.09% 79.66% 15.65× 3.39% 76.27% 22.12× 8.48% 87.72% 10.35×

Precision 60.00% 74.60% 1.24× 40.00% 73.77% 1.84× 55.56% 74.63% 1.34×
F1 score 0.09 0.77 8.56× 0.06 0.75 11.81× 0.15 0.81 5.48×
PR AUC 0.03 0.62 20.67× 0.03 0.55 18.33× 0.03 0.66 22.00×
Accuracy 83.09% 91.84% 1.11× 83.09% 92.96% 1.12× 82.75% 91.25% 1.10×

in the results.

From the results, we can see that the data augmentation

obtains slightly better results than the data preprocessing. It

implies that the quantity/variety of the training data plays a

more important role in the training of the model under our

setup. Moreover, a reasonable PR AUC is obtained only when

all the techniques are applied. Our proposed method also

achieves a slightly better accuracy than the baseline. These

results convincingly validate the enhanced generalization of

the CNN model when our proposed method is applied.

D. Extensibility of the Proposed Method

We also apply other CNN models to perform wafer defect

detection with our proposed method to validate its extensibil-

ity. The first one is the FCN [5] based on VGG-16 and the

second one is the Mask R-CNN [6] based on ResNet101. The

same metrics aforementioned in Section IV are used in our

experiments here. We also include the improvement of the pro-

posed method over the standard method. Table II summarizes

all the results, including the ones of the Company’s model

for comparison purpose. Note that the Company’s model is a

variation of the FCN.

As a state-of-the-art CNN model, Mask R-CNN achieves

a very good performance in some segmentation competitions.

In our wafer defect detection task, however, the performance

of Mask R-CNN is only slightly better than that of FCN and

the Company’s model. It is probably because of the limited

size and dimension of the training dataset. Nonetheless, our

proposed method still greatly improve the generalization of

both Mask R-CNN and FCN. On average, we obtain an 8.50×
improvement in the F1 score and 20.33× improvement in

the PR AUC across all the models. We believe our proposed

method can be extended to other CNN models with necessary

customization. Note that even though only entry transition

signatures are examined, the proposed method should be easily

adapted to other defects with similar spatial features (e.g., area,

type of wafer) with no or minor modifications. This is due to

the similarity in texture between raw wafer haze maps whose

characteristics are captured by our method.

V. CONCLUSION

In this paper, we demonstrate the feasibility to use state-of-

the-art segmentation models for wafer defect detection. Par-

ticularly, we study the entry transition signature and achieve

an accuracy of 97.78% on within-fab data. We also propose

customized preprocessing and augmentation techniques in

order to effectively perform defect detection on cross-fab

data. Our results show that the proposed method can improve

the F1 score and PR AUC by up to 11.81× and 22.00×,

respectively, indicating a substantially enhanced generalization

of the adopted segmentation model. We plan to test our method

on more DOIs and continue to improve the performance of the

model once more training data are collected from different

fabs.
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