
Exploring Graphical Models with Bayesian
Learning and MCMC for Failure Diagnosis

Hongfei Wang, Wenjie Cai, Jianwen Li, and Kun He
School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China

Abstract—Graphical models are powerful machine learning
techniques for data analytics. Being capable of statistical rea-
soning and probabilistic inference, graphical models have the
advantages of encoding prior knowledges into the learning pro-
cedure, and producing explainable models that can be understood
and effectively tuned. In this work, we describe our exploration
on the frontier of using graphical models for improving circuit
diagnosis results. A statistical framework has been proposed for
this aim, which builds Bayesian inference models using directed
chain graphs, and structural learning models using undirected
tree graphs. As a generative model, the framework integrates
Markov chain Monte Carlo (MCMC) algorithm for sampling to
evaluate the quality of diagnostic results. It exploits maximum-
likelihood to estimate the underlying defect types, which can
be informative towards the possible follow-up failure analysis.
Five circuit examples demonstrate that the proposed framework
achieves the same or better results over a state-of-the-art work.
Moreover, our method also shows opportunities for dealing with
missing features and locating root causes.

I. INTRODUCTION

Manufactured integrated circuits (ICs) are usually tested

to ensure the production quality meets expectations before

shipping to customers. The portion of the ICs passing the

tests out of the entire manufactured batch of ICs is called

yield. Much endeavors in silicon industry can be attributed to
bringing up the yield, which is directly related to profits. Yield

learning therefore makes huge efforts to boost yield during

early production volume ramping, and maintain the yield level

after process maturity.

A critical practice to facilitate yield learning is logic di-

agnosis, which is a software-based analytics. Diagnosis maps

a failure phenomenon to a set of possible defects or loca-

tions insides failing ICs, using the applied test patterns, the

failure-log files collected from the testers, and the circuitry

description. Owning to the advancement of technology nodes

and engineering capability, modern circuits are becoming more

and more sophisticated than ever before. As a result, more than

often, fault models explaining the failures cannot be obtained

deterministically. According to our own experience and our

industrial partners, diagnostic tools integrate heuristics and

statistical analysis to produce diagnosis reports. This gives

the rise of using machine learning (ML) to build data-driven,

statistical models to enhance diagnostic results [1]–[15].

One broad research area in ML is to learn graphical mod-

els [16]–[18], also known as probabilistic graphical models

[19]. Although being successful in multiple applications in-

cluding speech recognition, computer vision, genomics and

This work was supported by the National Natural Science Foundation of
China (NSFC) under grant No. 61702473. Corresponding authors: Hongfei
Wang (hongfeiw@alumni.cmu.edu); Kun He (brooklet60@hust.edu.cn).

proteomics, graphical models have rarely been used for fail-

ure diagnosis, except for an early work in [3]. This early

exploration, however, only set foot in one particular subfield

of graphical models. We provide more detailed comparison

between [3] and our work in Section VI.

In this paper, a novel ML framework that we call DIA-
GRAM (DIAgnosis using GRAphical Models) is proposed
to improve circuit failure diagnosis results. To the best of our

knowledge, DIAGRAM is the first work systematically leverag-
ing multiple key techniques from graphical modeling for use

in diagnosis. DIAGRAM is capable of predicting the sufficient
amount of test-data volume for a quality fault diagnosis using

Bayesian inference. More importantly, DIAGRAM can work
with missing data (up to 5% missing) without surrendering

significant loss in accuracy. Such capability comes from the

fact that DIAGRAM trains generative models, which make it
very applicable in real-world data analytics where industrial

test data may not be perfectly complete and handy. DIAGRAM
can also find the maximum likelihood structures among the

failing population of circuits. The graph architectures thereby

constructed can be potentially useful towards allocating scarce

resources for very limited number of failure analysis.

II. BACKGROUND

A. Overview of Machine Learning for Test and Diagnosis

During the past two decades, machine learning (ML) has

been extensively studied to promote efficiency, efficacy, and

intelligence in chip test and diagnosis. Generally, the data set

used to learn a model can be represented as an N ×M matrix

(denoted by X), where each row is an input instance described
by M features. We use Xj

i (1 ≤ i ≤ N , 1 ≤ j ≤ M) to

represent the j-th feature value of the i-th data instance.
If labels are available, which contain numerical values of

particular interests, supervised learning can be used as the

basic guideline for training. Usually, the labels can be specified

in a N × 1 vector (denoted by Y), corresponding to each
instance Xi (i.e., a row X(i, ·) from the matrix X). Once the
training completes, given unlabelled data instances X∗, the
learned model predicts its estimated labels Ŷ ∗ based on any
reasonable hypothesis from learning.

Example classification questions formulated from chip test

and diagnosis applications include “is this JTAG access a

legitimate one or an illegal attack [20] ?”, “does the diagnostic

report match the precise failure culprits [7] ?”, “would the test-

data volume collected so far sufficient for a quality diagnosis

[1] ?”, and “can we discard these tests without incurring

noticeable defect escapes [21]–[23] ?”. Other ML techniques

have been applied to address real-world problems where

labels are partially available. The work in [24] employs active

978-1-7281-4123-7/20/$31.00 © 2020 IEEE

151

2D-4

learning, where the true/ false labels of defects can be acquired

interactively or adaptively [24].
Training a model does not necessarily require the presence

of labels, especially when they cannot be obtained easily.

Unsupervised learning explores the underlying patterns and

trends withinX , irrespective of labels Y . As a typical unsuper-
vised learning method, clustering has been shown to be highly

effective for reasoning the spatial and temporal correlation (or

causation) among wafers, dies, and test patterns [10]–[14],

[25], [26].

B. A Brief on Graphical Models
Graphs are made up by nodes and edges. Graphical models

are an important family of ML paradigms that are primarily

used for probabilistic inference and causal reasoning. The

nodes hold variable values from observation or sampling. The

edges encode belief relationships among nodes. Fig. 1 shows

examples of two most commonly used graph models: undi-

rected model and directed model. Most graphical modeling

involves the task of identifying a joint distribution of the

variable nodes. In Fig. 1, the joint distribution is p(θ,X) for
both models.

Xθ

(a)

Xθ

(b)
Fig. 1. Examples of two basic graphical models. (a) Undirected graph models.
(b) Directed graph models.

The presence of an arrow on an edge not only differentiates

between undirected and directed graphical models, but also

indicates a formalization of the relationships between the

linked nodes. In Fig. 1 (b), the joint distribution can be further

factorized as p(θ,X) = p(θ)p(X|θ). For directed models, θ
can be regarded as the unobserved model parameter that causes

the quantities observed viaX . On this occasion, we can encode
any available prior knowledge into the model through the

specification of p(θ). Other possible circumstances for using
directed models also exist. For example, if treating both θ and
X as evidences observable, the occurrence of θ precedes that
of X . Likewise, chained graphical models can be configured
in this sequential manner.
Graphical models are intuitive and often self-explained.

This is one huge advantage comparing with many other ML

techniques [16] [17] [19]. We provide a taxonomy of most

graphical models in Fig. 2, though not meant to be all-

inclusive.
Unlike many types of ML techniques, graphical models are

seldom used for circuit test and diagnosis. One early work

in [3] proposed a method to capture the root causes of failing

chips, by combining the layout-aware diagnosis with Bayesian

networks. Using the terminology in Fig. 2, the work [3] adopts

parameter learning to build Bayesian nets with directed models

for discriminative analysis, i.e., classification of the suspects

against actual defects.

III. PROBLEM SETTING

When testing chips, the output responses of failing ones

are recorded in case diagnosis is later performed. Insufficient

���������	
������

���������
������

�����������
�	����

���	�����
�����

�

���������
�������������

��������
�������

�������������
�����������

	
�	������������� ���
��
�������������
	��������������

Fig. 2. Several types of graphical modeling methods.

data collection could lead to inaccurate diagnosis, while an

excessive amount increases the overall cost from multiple

aspects. The test measurement data volume has to be sufficient

to enable accurate diagnosis. Since each output port has

a fan-in logic cone, back-cone tracing is employed during

diagnosis to locate possible defect sites [27]. Halting an

operating ATE (automatic test equipment) at a premature stage

or adopting the stop-on-first-fail test mode is likely to prevent

diagnosis software from locating defect accurately. The cost

of collecting test measurement data can be significant due to

the extra test time incurred for going beyond the first failing

pattern, the data-storage cost for high-volume products, and

the expensive maintenance due to ATE wearout. Practices such

as test compaction and multi-site testing, either produce the

inaccurate diagnosis, or do not necessarily reduce test-data

volume. Therefore, optimizing the test-data volume meets the

twin goals of reduced test cost and improved diagnosis quality.

It is desirable even when data-collection cost is not an issue.

For software-based logic diagnosis, it is conceptually intuitive

to deem that “the more data, the better result”. It turns out

that an excessive amount of fail data may lead to degradation

of diagnostic resolution [1] [7].

The state-of-the-art solution uses a ML-based method to

tackle the problem [1]. Test-data volume optimization is for-

mulated as a binary classification task. Following the notation

introduced in Section II-A, obtaining the <X,Y> is the first

step to enable supervised ML. First, the test responses are

processed into the “X” via the developed feature extraction
technique. Altogether seven features are extracted for each of

the failing test patterns of a CUT (chip under test), such as

“number of test patterns that have been applied” and “total

number of erroneous output bits that have been accumulated”.

Next, the diagnosis results are generated and subsequently

processed into the “Y ”. A chip that has failedMi test patterns

is used for diagnosis, one failing pattern for each diagnostic

result. A golden diagnosis result for a failing chip refers to the
one generated when using all the applied tests, that is, from the

first test pattern through the last failing test. An intermediate
result refers to any outcome generated without using the entire

set of test patterns. A numerical value in the label vector “Y ” is
produced by measuring the similarity between an intermediate

diagnosis result and a golden diagnosis, using the metrics

developed in [1]. Hence, Y j
i is the label for the jth failing

pattern from the ith CUT.

152

2D-4

Once the data is prepared, a classification model is trained.

Whenever a CUT fails a test pattern, the model is invoked

to determine if the amount of test data accumulated so far is

sufficient for an accurate diagnosis analysis. If yes, terminate

testing; if no, continue. The termination point for each CUT

is thereby dynamically determined, measured by data-volume

reduction (DVR) ratio, DV R = 1
N

∑
(1− |tTi |/|Ti|)× 100%,

where N is the total number of chips, |Ti| is the test-data
volume collected for the ith chip, by accumulating the number
of failing output bits for all failing test patterns, from the

first to the last. |tTi | is the optimized volume calculated in
a similar way, from the first pattern to the test-termination

point predicted for this CUT.

IV. GRAPHICAL MODELS FOR IMPROVING DIAGNOSIS

A. Graphical Models for Sampling and Inference

In statistics and ML, inference generally means using the

observed data with any available, prior knowledge to make

reasonable predictions. A prediction can be a numerical value

for an unobserved variable, or logical judgements from a

decision system. DIAGRAM builds Bayesian graphical models
(also called Bayesian nets) for inference.

The designed models are shown in Fig. 3. Following the

problem setting and notations described in Section III, X
denotes the extracted features, and Y denotes the diagnostic

results. Hence, Xjk
i denotes the kth feature extracted for the

jth failing pattern from the ith chip. We use Z to denote the

hidden defect in a failing CUT. The subscript and superscripts,

i, j and k, are used for indexing CUTs, diagnostic results (from
using the correspondingly failing test patterns), and features

extracted from failing outputs, respectively. We will not use

these indices in the following explanation unless necessary.

Fig. 3 (a) shows the basic skeleton for the graphical models.

It reveals the causal relations we coded into the model:

an injected defect Z leads to failing of a CUT, observed

by the failing output responses, which are used to produce

diagnostic results Y , and also extracted for features X . The
joint distribution between X , Y , and Z can be factorized as

p(X,Y, Z) = p(Z)p(X|Z)p(Y |Z,X). In Fig. 3 (a), there
is an arrow pointing to diagnosis Y from the features X .
This is because although features X are not directly used

for diagnosis, they are originally from the CUT’s outputs,

which produced failure-log files for diagnostic results. Hence

we reserve an directed edge between X and Y . Defects in
the CUT are hidden and cannot be observed directly, hence

represented by filled nodes (with the gray Z’s).
One key idea in graphical models with Bayesian theory is

that it sees almost everything as from certain probability distri-

butions. Static, fixed values from observation or evidence are

regarded as from stochastic variables as well, only with vari-

ance approaching zero. Fig. 3 (b) represents the distribution

configuration for different CUTs and diagnosis. We order the

defect types into categorical numbers starting from 1, 2, ..., 5.
A specific defect injected for a CUT is randomly selected from

an uniform distribution, with upper and lower bound given by

θ. We set initial values as θ = [0, 6], where other reasonable

��
X

��

Y

Z
����

(a)

���

�

�
�
�

�
�
�

�

��
�

� � 	
 �
�

�

�	

���

�

���

(b)

�
�

� ��	

��

���

��

�
�
�

�
	
�

�

�

�

�

�

(c)

�
�

��
�
�

�

��

��

��

�

�

��

��

��
	�
�

 � �
 �
�

���

��

������

(d)
Fig. 3. Design of Bayesian graphical models for diagnosis. (a) Basic model
skeleton. (b) Representation of distribution models for chips and diagnostic
results. (c) Illustration of different failing test patterns, with corresponding
output responses and diagnostic reports (including both intermediate and gold
ones). (d) Multivariate response model representation for features extracted.
The plates in (b), (c), and (d) allow a more compact representation for
indexing chips, test patterns, and features extracted from failure-log data.
Hidden variables are represented by filled gray nodes.

intervals can work as long as to include [1, 5]. A floor

function is used to truncate any decimals so that the generated

numbers are integers representing the defect-type category.

For the ith CUT, the diagnostic results are approximated by
exponential distribution with input parameter λi. Exponential

distribution has the property that the cumulative distribution

function is approaching 1 with the increase of inputs. Such

property roughly matches the fact that a diagnostic result Y j
i

is increasing from 0 towards 1. A typical example Yi looks like

the sequence: 0, 0, 0.1135, 0.1135, 0.5922, 0.8187, 1, ..., 1. The
increase of j’s indicates that more failing patterns have been
incurred, which also suggests that the current intermediate

diagnostic result is becoming more similar or the same as the

golden diagnosis. The initial values are λi = 1 for all CUTs.

The rectangular plate in Fig. 3 (b) depicts that the enclosed

subgraph is repeated for a number of N chips. On the other

hand, it also means that the unenclosed parameter node θ is
shared by multiple nodes. The same idea and representation

are also illustrated in Fig. 3 (c) and (d).

Fig. 3 (c) shows that both features Xj
i and the diagnostic

result Y j
i are updated, with the occurrence of each failing test

pattern denoted by index j. 1 ≤ j ≤ Mi, Mi represents the

ith chip failed a total number of Mi failing patterns.

Fig. 3 (d) presents the feature distribution model. The

feature Xjk
i (1 ≤ k ≤ K) is derived using the information

starting from the first one till the the jth failing test pattern,
as explained in Section III. We deem a feature as observed

values, comparing the hidden defect type represented by Z.
Since multiple observations (i.e., the features) made on the

153

2D-4

same test (i.e., the jth failing test pattern) and same CUT
(i.e., the ith CUT) may be correlated, we can assume that
they follow a multivariate normal (MVN) distribution as,

Xj
i =

⎡
⎢⎣

Xj1
i
...

XjK
i

⎤
⎥⎦ ∼MVNk(μi,Σi), k = 1, 2, ...,K (1)

where the mean μi is a vector of size K, and the covariance
matrix Σi is a square of size K×K. The rest of the modeling
task is to specify the mean vector and covariance matrix.

For the kth element in the μi vector, we construct a linear

regression model as

μk
i = αk + βkZi (2)

In Equation (2), the intercept αk and slope βk are generated

from normal distributions, i.e., αk ∼ Normal(0, 10−4),

βk ∼ Normal(1, 10−4). The Σi matrix follows a Wishart

distribution by Σ−1
i ∼ W (R, ρ). The Wishart distribution

serves as a vague conjugate prior for the precision matrix of

multivariate normal distribution, with ρ = K and R = ρA,
where A is a diagonal matrix of size K × K. All initial
values for parameters are deliberately set to be vague and

least informative, as they will be iteratively updated by MCMC

(explained below).

Specifying a model distributions is both an opportunity and

a challenge. The model can benefit from appropriate distri-

bution configuration, but may suffer performance degradation

otherwise. Fortunately, as a generative model, DIAGRAM uses
Markov chain Monte Carlo (MCMC) for sampling and update.

Theoretical expositions on MCMC can be found in many

references [16]–[19]. Here we explain the crucial ideas behind

without heavy math.

The first MC, Markov chain, is a general approach to
iteratively model the transitional distribution along the chain

variables. Given sufficient iterations, a Markov chain enters

into a stationary state, similar to an equilibrium system whose

underlying joint distribution is little affected by the initial

values. The second MC, Monte Carlo, is a widely appli-
cable sampling method. By using the acceptance-rejection

sampling theory, Monte Carlo especially suits the scenarios

when data distribution is not easily obtained. Putting the

two MCs together, MCMC methods are used to approximate

the posterior distribution of model parameters or interested

variable by sampling with reasonable choices. For Bayesian

models, much of the inference, prediction, and estimation

come from posterior distribution, which is the product of prior

distribution and likelihood distribution. Intuitively, Markov

chain minimizes the negative impact of any possible improper

prior configurations, while Monte Carlo makes the likelihood

more reasonable through sampling and estimation. Moreover,

MCMC particularly fits into the diagnosis problem here.

Sampling techniques can be viewed as generating virtual pop-

ulation of failing chips and symptoms, with similarities to the

provided observation (the actually real data asX , Y , and Z). A
sequence of correlated variables represented by chain models

depicts the correlation among chips, tests, and diagnostic

results. Variable interaction is initialized by prior configuration

and finally smoothed and determined by likelihood. Therefore,

DIAGRAM leverages MCMC as a powerful tool for inference.

B. Graphical Models for Structural Learning

Bayesian analysis is a powerful tool in data science, yet it

requires that the data used obeys independent and identical

distribution (i.i.d.). Validation of such assumption can be very

difficult by nature, thus in many cases we just assumed so

by approximation [28]. However, In circumstances like wafer

excursion, process variation, change of fabrication equipments,

etc., the assumption of i.i.d. may fail to be true. Insisting on

using Bayesian methods puts the learned model on the fringe

of a potential problem - even a statistical model barely fits the

imperfect test data and occasionally works, it depicts things far

from the physical, real silicon world. To put short, Bayesian

models can be both efficient and effective towards determining

the go/ no-go of a chip by analyzing test correlation, but may

be in a state of inertia when catching the critical anomalies

hidden in the power traces and heat-dissipation features.

DIAGRAM circumvents the i.i.d. constraint using Chow-

Liu algorithm [29]. It searches for the maximum weighted

spanning trees in a graph. A tree can be viewed as a directed

acyclic graph. The dependence among graph nodes are thereby

calculated via maximum likelihood estimation. Deriving such

graph structure does not need to follow the Bayesian approach.

Hence, this functionality in DIAGRAM does not need to meet
the prerequisite of i.i.d. in order to find the dependence

structure, which is found to be positively correlated with the

defect types.

V. EXPERIMENTS

The experiment setting is adopted from [1] and kept consis-

tent for comparison. Five benchmark circuits are performed to

demonstrate the viability of our method for a variety of circuit

types. The circuits include c499 and c7552 from the ISCAS’85

benchmarks, s5378 and s7552 from the ISCAS’89 sequential

circuits, and b12 from the ITC’99 suite. The defect simula-

tion framework from [30] is used to create a population of

realistic failures from various benchmark designs, which have

simulation responses from layout-injected defects. Randomly-

selected defects are generated for each possible defect type

that includes open, bridge, cell defects, transistor stuck-open,

and transistor stuck-closed. Defects are injected, one at a time,

into the layout of each benchmark. An extracted netlist of each

defective circuit is then simulated at the circuit-level using

100% stuck-at test sets generated by a commercial ATPG tool.

The resulting simulation responses form the virtual test data

for the failing population of circuits created.

DIAGRAM is programmed in R language with multiple

packages [31] providing graphical model primitives. Part of

DIAGRAM’s inference functionality is built upon the BUGS
(Bayesian inference Using Gibbs Sampling) project [32] [33].

The datasets are divided into two disjoint sets: 90% are

randomly sampled for training, the rest 10% for testing. The

154

2D-4

experiment is repeated 10 times (10-fold cross validation) to

calculate averaged values. On average DIAGRAM achieves the
same level of performance as the work in [1], i.e., an accuracy

> 90% with a DVR (data-volume reduction) ≥30.2%.
DIAGRAM produces generative models, implying that the

learning procedure can tolerate missing data. We randomly

replace a number of extracted features in X with NA (denoting
the absence of observed values) for 2% and 5%. The results

on c7552 are presented in Fig. 4, comparing to the method in

[1]. Plots of the other benchmarks resemble this one. The work

[1] uses decision-tree method for test-termination prediction,

which is shown to be the winner out of all the ML methods

experimented. For decision trees, as a classic ML method,

we treat missing data in two ways: one is to delete the

data instances with missing values and go on training the

models using the remaining data, the other is to interpolate

the missing values with the means calculated from the rest

and train on the combination of both real and synthetic data.

The first one essentially means a model is fed with few

examples during training, while the second one may derail

the training procedure from the reality. Either way, we see

a degradation of accuracy in Fig. 4 for all three methods.

DIAGRAM’s performance also suffers from missing data, since
data with missing values provides fewer evidences for the

observed nodes in the graphical model. However, DIAGRAM
manages to maintain the accuracy > 90%, which is least

impacted by the missing data comparing with generic ML

method in [1].

Complete Data 2% Missing Data 5% Missing Data

87

88

89

90

91

92

A
cc

ur
ac

y
(1

00
%

)

Trees trained from actual data
Trees trained with interpolated data
DIAGRAM

Fig. 4. Using DIAGRAM for inference with missing data, comparing with
decision-tree learning. The DVR is maintained as ≥21.0%.

We now presents more close inspection into DIAGRAM’s
inference mechanisms. Fig. 5. Remember in Section IV-A, the

model parameters such as alpha and beta are initialized
in a vague fashion. Fig. 5 (a) shows the history plot of

these parameters, each using the first element (alpha[1]
and beta[1]) as examples. The traces are plotted against
iteration number, showing that the designed Markov chain

converges to its stationary distribution with approximately 600

iterations onwards. Most model parameters in a converged

Markov chain typically look like this: a random variable

scattering about a stable value [34]. The plot provides a hint

on the number of iterations that should be adopted to make the

chain graph stable, though empirically >2K iterations would
be sufficient in our experiments.

DIAGRAM makes inference based on learned distribution,
meaning that we can also infer the hidden node values as

model parameters. Fig. 5 (b)∼(d) reveal the defect type

(a) (b)

(c) (d)
Fig. 5. Plots of model parameters using c499 as an example. (a) Trace plots
of linear regression model parameters. (b) Boxplot with 2.5% and 97.5%
percentiles for the mean value, (c) Running quantile against iterations, and
(d) Density of an inferred node denoting defect types.

inferred for the 5th chip as a hidden, unobserved node in the
graphical model illustrated in Fig. 3 (i.e.,Zi, where i = 5). In
Section IV-A, we encode the defect types into whole integers

(1, 2, ...) as categorical factors. From Fig. 5 (b)∼(d), this
inferred value is “1”, indicating the chip has an open defect

injected before test-response simulation.

Note determining the actual defect types can be intrinsically

hard. Previous works resort to physical layouts for help [3] [7]

[24]. Fig. 6 reveals such difficulty by showing the results from

using a variety of clustering techniques [17]. None of them

can produce a homogeneous cluster, where the majority failing

chips belonging to only one defect type. We also performed

Radom Forests (with 100 trees) for classification, only with

accuracy < 47%. On the contrary, the structural learning
functionality in DIAGRAM is able to identify different defect
types with > 83% accuracy. DIAGRAM finds a spanning tree
structure in an undirected graph, as illustrated in Fig. 7 for

b12 circuit as an example.

1 2 3 4
Clusters

0

20

40

60

80

100

N
um

be
r

of
 C

U
T

s

open
stuck-open
stuck-closed
cell defects

Fig. 6. Clustering results on s9234. Spectral clustering and kmeans ++
algorithm are employed on extracted features from the failing chips.

Fig. 7 shows several densely connected components. Two of

them are denoted by A and B in the plot. Adjacent nodes indi-
cate the corresponding failing chips are more correlated than

the non-adjacent ones. Such correlation is verified as a function

of defect types via hypothesis testing using permutation test.

When choosing the failing individuals for more expensive and

time-consuming PFA (physical failure analysis), it is desirable

155

2D-4

that the PFAed ones are representative of the entire population.

Using Fig. 7 as an example, it would be reasonable to choose

one from A component, one from B component, and one from
the isolated nodes, if only three PFA sources are available.

1

2

3
4

5

6

7

8

9

10

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

30
31

32

33

34

35

36

37

39

40

41

42

43

44

45

46

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

71

72

73

74

75

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

129

130

131

132

133

134

135

138

139

140

141

142

143

144

145

146

148

149

150

151

152

153

155

156

157

158

159

160

161
162

163

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183
184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199
200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

238

239

240

241

242

243 244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260�

�

Fig. 7. Undirected graphical models from structural learning.

VI. DISCUSSION AND CONCLUSIONS

DIAGRAM differs from the early work in [3] in multiple

aspects. First, the two works target entirely different problems.

[3] aims to improve diagnosis results and identify the roots

cause for the failing population. DIAGRAM uses the problem
setting of [1] to evaluate its functionalities. Second, their

model configurations (both observed and hidden node defini-

tion) are different. Finally, [3] produces no generative model,

which means it can neither use missing data nor estimate

model parameters.

DIAGRAM provides an opportunity of handling missing data
by using generative models. Missing data exist for various

reasons, in addition to the erroneous data logging. Some

companies collect a finite amount of test data during ATE

execution. The collection is terminated if the accumulated

failing bits exceed the limit. As a result, the responses for

the last failing pattern may be incomplete. On the other

hand, information from physical layout and post-silicon circuit

fabrics is usually very limited [24]. In any of the cases,

working with partial or incomplete information is crucial for

learning models in test and diagnosis applications.

Instead of parameter learning, DIAGRAM adopts structural
learning to uncover the underlying correlation structure among

the failing chips. The densely connected nodes are more likely

to fail from similar causes. Since the primary objective of

root cause analysis is to identify and understand the cause of

most failures, we found DIAGRAM to be both promising and
beneficial towards post-diagnosis failure analysis.

REFERENCES

[1] H. Wang et al., “Test-data volume optimization for diagnosis,” in DAC,
2012, pp. 567–572.

[2] Q. Huang, C. Fang, S. Mittal, and R. D. S. Blanton, “Improving
diagnosis efficiency via machine learning,” in ITC, 2018.

[3] B. Benware, C. Schuermyer, M. Sharma, and T. Hermann, “Determining
a failure root cause distribution from a population of layout-aware scan
diagnosis results,” IEEE Design & Test of Computers, vol. 29, no. 1,
pp. 8–18, 2012.

[4] L.-C. Wang and M. S. Abadir, “Data mining in EDA - basic principles,
promises, and constraints,” in DAC (invited paper), 2014.

[5] J. Tikkanen, S. Siatkowski, N. Sumikawa, L.-C. Wang, and M. S. Abadir,
“Yield optimization using advanced statistical correlation methods,” in
ITC, 2014.

[6] C.-K. Hsu et al., “Variation and failure characterization through pattern
classification of test data from multiple test stages,” in ITC, 2016.

[7] Y. Xue, X. Li, and R. D. Blanton, “Improving diagnostic resolution of
failing ICs through learning,” TCAD, vol. 37, no. 6, pp. 1288–1297,
June 2018.

[8] H. G. Stratigopoulos, “Machine learning applications in IC testing,” in
ETS, 2018, pp. 1–10.

[9] C. Shan, P. Babighian, Y. Pan, J. Carulli, and L.-C. Wang, “Systematic
defect detection methodology for volume diagnosis: A data mining
perspective,” in ITC, 2017, pp. 1–10.

[10] N. Sumikawa, L.-C. Wang, and M. S. Abadir, “A pattern mining
framework for inter-wafer abnormality analysis,” in ITC, 2013.

[11] C.-K. Hsu, P. Sarson, G. Schatzberger, F. Leisenberger, J. Carulli,
S. Siddhartha, and K.-T. Cheng, “Variation and failure characterization
through pattern classification of test data from multiple test stages,” in
ITC, 2016.

[12] A. Ahmadi, C. Xanthopoulos, A. Nahar, B. Orr, M. Pas, and Y. Makris,
“Harnessing process variations for optimizing wafer-level probe-test
flow,” in ITC, 2016.

[13] Z. Poulos and A. Veneris, “Clustering-based failure triage for RTL
regression debugging,” in ITC, 2014.

[14] N. Sumikawa, M. Nero, and L.-C. Wang, “Kernel based clustering for
quality improvement and excursion detection,” in ITC, 2017.

[15] H. Wang and K. He, “Improving test and diagnosis efficiency through
ensemble reduction and learning,” ACM TODAES, vol. 24, no. 5, pp.
49:1– 49:26, 2019.

[16] C. M. Bishop, Pattern Recognition and Machine Learning. Springer,
2006.

[17] K. P. Murphy, Machine Learning: A Probabilistic Perspective. The
MIT Press, 2012.

[18] S. L. Lauritzen, Graphical Models. Clarendon Press, 1996.
[19] D. Koller and N. Friedman, Probabilistic Graphical Models: Principles

and Techniques. The MIT Press, 2009.
[20] X. Ren, V. G. Tavares, and R. D. Blanton, “Detection of illegitimate

access to JTAG via statistical learning in chip,” in DATE, 2015, pp.
109–114.

[21] S. Biswas, H. Wang, and R. D. Blanton, “Reducing test cost of
integrated, heterogeneous systems using pass-fail test data analysis,”
ACM TODAES, vol. 19, no. 2, pp. 20:1– 20:23, 2014.

[22] H.-G. D. Stratigopoulos, P. Drineas, M. Slamani, and Y. Makris, “Non-
RF to RF test correlation using learning machines: a case study,” in VTS,
2007, pp. 9–14.

[23] S. Biswas, P. Li, R. D. Blanton, and L. T. Pileggi, “Specification test
compaction for analog circuits and mems,” in DATE, 2005, pp. 164–169.

[24] Y. Xue, X. Li, R. D. Blanton, C. Lim, and M. E. Amyeen, “Diagnostic
resolution improvement through learning-guided physical failure analy-
sis,” in ITC, 2016, pp. 1–10.

[25] H. H. Chen, R. Hsu, P. Y. Yang, and J. J. Shyr, “Predicting system-level
test and in-field customer failures using data mining,” in ITC, 2013.

[26] C. J. Shan, P. Babighian, Y. Pan, J. Carulli, and L.-C. Wang, “Systematic
defect detection methodology for volume diagnosis: A data mining
perspective,” in ITC, 2017.

[27] S. Venkataraman and S. B. Drummonds, “POIROT: a logic fault
diagnosis tool and its applications,” in ITC, 2000, pp. 253–262.

[28] W. Zhang, X. Li, F. Liu, E. Acar, R. A. Rutenbar, and R. D. Blan-
ton, “Improving diagnostic resolution of failing ICs through learning,”
TCAD, vol. 30, no. 12, pp. 1814–1827, December 2011.

[29] C. K. Chow and C. N. Liu, “Approximating discrete probability distribu-
tions with dependence trees,” IEEE Transactions on Information Theory,
vol. 14, no. 3, pp. 462–467, 1968.

[30] W. C. Tam and R. D. Blanton, “SLIDER: Simulation of layout-injected
defects for electrical responses,” TCAD, vol. 31, no. 6, pp. 918–929,
2012.

[31] S. Hojsgaard, “CRAN Task View: gRaphical Models in R,” 2019.
[Online]. Available: https://CRAN.R-project.org/view=gR

[32] WinBUGS, 2019. [Online]. Available: http://www.mrc-
bsu.cam.ac.uk/software/bugs/the-bugs-project-winbugs/

[33] OpenBUGS, 2015. [Online]. Available: http://www.openbugs.net
[34] D. Lunn, C. Jackson, N. Best, A. Thomas, and D. Spiegelhalter, The

BUGS Book: A Practical Introduction to Bayesian Analysis. Boca
Raton, FL: Chapman and Hall/CRC, 2012.

156

2D-4

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

