
Concurrent Monitoring of Operational Health in
Neural Networks Through Balanced Output Partitions

Elbruz Ozen and Alex Orailoglu

Computer Science and Engineering

University of California, San Diego

La Jolla, CA 92093

elozen@eng.ucsd.edu, alex@cs.ucsd.edu

Abstract— The abundant usage of deep neural networks
in safety-critical domains such as autonomous driving raises
concerns regarding the impact of hardware-level faults on deep
neural network computations. As a failure can prove to be
disastrous, low-cost safety mechanisms are needed to check the
integrity of the deep neural network computations. We embed
safety checksums into deep neural networks by introducing a
custom regularization term in the network training. We partition
the outputs of each network layer into two groups and guide
the network to balance the summation of these groups through
an additional penalty term in the cost function. The proposed
approach delivers twin benefits. While the embedded checksums
deliver low-cost detection of computation errors upon violations
of the trained equilibrium during network inference, the regu-
larization term enables the network to generalize better during
training by preventing overfitting, thus leading to significantly
higher network accuracy.

I. INTRODUCTION

DNNs (deep neural networks) are perhaps the most popular

AI (artificial intelligence) algorithms in the recent past due

to their outstanding performance and broad applicability to

many practical, but challenging, AI problems. While the

potential application areas of DNNs span problems such as

image processing, speech recognition, and natural language

processing, a subset of the DNNs, CNNs (convolutional neural

networks), particularly specialize in computer vision tasks that

involve processing and interpreting complex visual data. Deep

neural networks can be observed running on various hardware

architectures in a myriad of real-life applications, including

safety-critical domains such as autonomous driving [1].

The automotive industry enforces strict safety requirements

on its products [2]. Every electronic chip and software al-

gorithm in an automotive application is carefully tested and

equipped with rigid safety features to prevent the catastrophic

consequences of a potential failure. Electronic system de-

signers usually employ ECC [3] (error correction codes) to

prevent silent data corruption (SDC) in the memory elements,

and the execution path is protected by replicating the critical

components (full duplication, TMR) [4] despite the substantial

area and power overhead incurred. These solutions deliver

error detection and protection against transient SEUs (single-

event upsets), transient timing errors, and permanent hardware

defects that might show up after system deployment. Circuit-

level hardening methods [5] do exist to detect and mitigate the

effects of transient SEUs or timing errors, but their notable

area, delay, and power overheads make them a less appealing

solution for consumer products.

Deep learning is computationally expensive and usually

necessitates dedicated hardware to meet the performance

requirements of real-time applications. While GPGPUs and

dedicated DNN engines deliver billions of MAC operations

every second, they also comprise a significant portion of the

system area and power budget. While the deep neural networks

in safety-critical systems require safety mechanisms, modular

redundancy fails to constitute an appealing solution for DNN

hardware due to significant area and power demands.

We utilize the application-specific characteristics of deep

neural networks to introduce fault tolerance at the algorithm

level, and achieve significant coverage of error cases on

off-the-shelf commercial chips, incurring neither hardware

nor significant performance overheads. We summarize our

contributions as follows:

• We introduce a simple penalty term into the DNN cost

function to train a productive error checking invariant and

employ this invariant for error detection.

• We implement a comprehensive error injection frame-

work and utilize it to compare and demonstrate the

effectiveness of the checksums through exhaustive error

injection experiments.

• We draw attention to our observations that indicate that

the introduced penalty term delivers a rather useful and

perhaps somewhat unexpected ancillary effect. It acts as a

regularizer during DNN training and noticeably improves

test set accuracy by reducing overfitting and improving

generalization.

II. AN INTRODUCTION TO DEEP NEURAL NETWORKS

Deep neural networks are brain-inspired machine learning

algorithms commonly used for classification and regression

tasks. The central computation unit in a neural network is

called a neuron, whose responsibility is taking a weighted

sum of its inputs and processing the sum with a non-linear

activation function. The neurons are organized as a sequence

of layers, with the network getting deeper as the number

of layers increases. Modern deep neural networks for image

processing [6], [7], [8], [9] heavily rely on two types of

layers, namely, convolutional and fully-connected, where the

input is initially processed by a series of convolution layers

to extract the useful features, with the fully-connected layers

subsequently performing the final classification task. Unlike

the fully-connected layers, convolutional layer neurons are

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE
169

3A-3

only locally connected to the previous layer, and the weight

values are shared among different neurons. Deep neural net-

works also employ other types of operations such as non-

linear activations, and frequently pooling and normalization

layers. The training procedure involves a cost function, which

measures the distance between the expected and produced

DNN outputs. Categorical cross-entropy is a commonly used

cost function for the single-label classification problem and

can be expressed as follows for a single training example:

−
M∑

c=1

yo,c log(po,c) (1)

In Equation (1), M denotes the total number of classes and

yo,c represents the true binary label for example o and class

c. For single-label classification, yo,c = 1 holds only for a

single c for a particular example. po,c denotes the predicted

output probability produced by the output layer (with Softmax

activation) of the network. Training is carried by calculating

the gradient of DNN parameters through the backpropagation

algorithm and updating the parameters to reduce the loss at

each step until a minimal point is found.

III. ERROR CHECKING WITH COMPUTATION INVARIANTS

We aim to embed invariants into deep neural network

computations as these invariants could be utilized at inference

time to detect discrepancies in the computations. The errors

could be caused by various types of hardware-level faults,

but independent of their provenance, these errors are detected

as long as they violate the introduced invariant. Let us start

our discussion by considering the following invariant for a

particular DNN layer:

∥∥∥∥∥

Sl∑

i=1

hl
i

∥∥∥∥∥
F

= 0 , ∀l (2)

In Equation (2), hl
i denotes the output of the i’th computa-

tion unit in the l’th layer and Sl represents the total number

of computation units in the l’th layer. In the simplest case,

Equation (2) can be considered to indicate that the outputs

of a fully-connected layer always sum up to zero. As the

summation will be a matrix for the convolutional layers, we

use the Frobenius norm to generalize Equation (2) for both

fully-connected and convolutional layers by reducing the left-

hand side to a single number. This invariant is quite useful

for error checking since any single output error is always

detected, or in general, any error pattern is detected as long

as the individual errors do not cancel each other’s footprint

on the checksum by accumulating to zero.

The reader will realize that the presented invariant requires

the outputs of the computation units to span both positive

and negative quantities so that they could potentially sum

up to zero. While the computation units with a hyperbolic

tangent (tanh) activation function produce both positive and

negative outputs, the range of the very commonly used ReLU

and Sigmoid activation functions is restricted to only non-

negative quantities, thus precluding the direct utilization of

the presented invariant.

We introduce an alternative invariant which allows us to

perform a similar check for a set of non-negative quantities.

Let us partition the computation units into two groups at

each layer, sum each group separately, and set the norm of

their difference to zero as in Equation (3). We refer to this

invariant as the balance checksum. The balance checksum can

detect all errors in a single computation unit; errors in multiple

computation units are guaranteed to be detected unless they

end up in the same balance of the output partitions.

∥∥∥∥∥∥

�Sl/2�∑

i=1

hl
i −

Sl∑

i=�Sl/2�+1

hl
i

∥∥∥∥∥∥
F

= 0 , ∀l (3)

Although the balance checksum is useful for detecting

errors, the introduction of such a mathematical property to

neural network computations involves significant challenges.

First, the balance checksum forces the layer outputs to adhere

to a linear invariant without considering the norm operator.

Linear invariants are straightforward to introduce in linear

systems and are the key component for numerous error

detection methods such as ABFT (Algorithm-Based Fault

Tolerance) [10]. The linearity of fully-connected and con-

volution layer operations (excepting the non-linear activation

functions) enables us to integrate similar invariants through

simple weight and input modifications [11]. However, the

scope of such an approach is strictly limited to the linear

stages of the computation with data being left unprotected

in the non-linear stages. In addition, the linear sessions are

frequently interrupted by non-linear activation functions at the

end of each layer. As the checksum generation and check

operations should be performed within the boundaries of each

linear stage, such an approach consequently incurs significant

overhead. The mathematical introduction of such an invariant

involves substantial challenges for non-linear systems, prod-

ding us to follow a rather distinct approach to tackle this

problem.

IV. TRAINING BALANCED OUTPUT PARTITIONS

Deep neural network training enables us to adjust the

DNN parameters so that the network learns to perform the

desired task correctly. The cost function plays an integral role

in the training stage as parameter updates are continuously

undertaken to minimize the cost function. One can set various

training goals for the network through simple modifications on

the cost function. An extra penalty term in the cost function

is frequently used in the regularization methods to simplify

the classifier complexity by guiding weight and activations to

zero. As a simple model is less likely to suffer from overfitting

to the training data, regularization methods evince superior

network generalization capabilities to future test examples. We

similarly integrate the balance checksum into our target DNN

model by including it as a penalty term in the DNN cost

function and guiding the network to minimize the checksum

error while learning to identify the correct labels in the training

data. Our overall cost function can be formulated as follows

for a single training example:

−
M∑

c=1

yo,c log(po,c) + λ
L∑

l=1

1

Nl

∥∥∥∥∥∥

�Sl/2�∑

i=1

hl
o,i −

Sl∑

i=�Sl/2�+1

hl
o,i

∥∥∥∥∥∥

2

F

(4)

170

3A-3

The first part in Equation (4) is the categorical cross-entropy

for the correct output labels. The second part is a mean square

error for the group output differences. The name and function

of λ is analogous to the coefficient used in the regularization

methods. We use the hyperparameter λ to control the impact of

the penalty term on the cost function and prevent the penalty

term from hindering the main learning task. In Equation (4),

L denotes the number of layers and Nl the output size of each

computation unit in layer l. hl
o,i corresponds to the output of

the i’th computation unit in the l’th layer for input example

o after the activation function. An exception needs to be

taken for the outputs of the last layer, forcing us to extract

hL
o,i before the application of the Softmax activation function.

The sum of the Softmax activation function outputs is always

normalized to 1 as shown in Equation (5) with the most likely

class obtaining a rather elevated probability; therefore, it is

not straightforward to integrate the balance checksum to the

last layer after the Softmax function. We embed the balance

checksum in the last fully-connected layer before the Softmax

function, and as the Softmax layer outputs sum to 1, we check

this property to protect data during the Softmax computation.

M∑

c=1

po,c = 1 , ∀o (5)

Finally, we partition the layers according to neuron (filter)

indices; however, any equivalent partitioning scheme works as

long as the trained scheme is used for error checking since the

neurons (filters) are interchangeable before the training.

V. ERROR CHECKING AT RUNTIME

Network training minimizes the additional penalty term in

the cost function and consequently helps to balance the output

partitions. As the network is required to satisfy the main

classification task, the differences between groups typically

fail to match zero exactly, instead slightly deviating from it.

Our observations indicate that as a result of training with the

additional penalty term, the maximum deviation between the

groups reduces by two orders of magnitude, thus providing us

sufficient resolution to detect significant computation errors.

We introduce individual threshold values for each layer and

check if the difference between the groups deviates more than

the determined threshold rather than focusing on a strict check

of equality to zero. We learn the threshold values by profiling

Fig. 1. Checking the balance in fully-connected layers

the training examples. We perform a full run on the training

set to determine the maximum balance deviation at each layer

and multiply these values with a small margin before setting

them as the error thresholds.

We introduce some additional modifications on the DNN

model as well to detect errors at runtime. The correctness of

the computations at each layer is checked by an extra com-

putation unit in the next layer. For fully-connected layers, we

employ an additional neuron in the next layer (check neuron)

as shown in Figure 1 to check if the balance is satisfied.

While the check neuron is connected to the outputs of all

the computation units of the previous layer, we set the weight

values for the first group connections as 1, and -1 for the other

group. The check neuron accumulates both group outputs and

calculates the difference at each prediction. We introduce 1×1
convolution filters (check filters) after each convolutional layer

to check if the two group outputs are balanced. The channels

of the check filter that convolve with the first group outputs

are set to 1; the remaining channels are set to -1. In this way,

the check filter group-wise accumulates the output channels

of the previous convolutional layer and takes the difference.

As the generated checksum is a 2D matrix rather than a single

value for the convolutional layers, we calculate the maximum

value and use it for the threshold calculations and online error

checking. The outputs of the check neurons and check filters

are forwarded to DNN outputs without being processed with

the activation functions. The modified DNN produces a single

check value for each layer together with the predictions, and

we compare the check values with the thresholds to determine

if an error has occurred.

VI. SIMULATING HARDWARE-LEVEL FAULTS ON THE

DNN GRAPH

We design a comprehensive simulation tool to measure the

effect of hardware-level faults on the DNN computation graph.

Our simulation tools afford us the ability to inject bit errors

into both activation values and weights during DNN execution.

A bit error model is commonly employed to model the

transient errors caused by SEUs (single event upsets) and also

useful for simulating timing errors in sequential circuits. Our

simulator injects activation errors via dedicated error injection

layers embedded into the target network. Error injection layers

produce error patterns dynamically for each prediction. We

preprocess the weights to inject errors before runtime. The

error-injected weights may affect multiple predictions until the

weight values are refreshed by the correct ones. The simulator

allows control of the error rate and the data width in the

fixed-point format. We utilize our simulation framework to

measure the DNN accuracy at different error rates and evaluate

the performance of various error detection methods through

exhaustive error injection experiments.

VII. EXPERIMENTAL METHODS

We utilize a DNN model similar to AlexNet [6] to im-

plement error detection methods and perform error injection

experiments. Our target network model includes five convolu-

tional and three fully-connected layers with the network being

trained with the SGD (stochastic gradient descent) [12] opti-

mizer (learning rate=10−2, decay=10−6, momentum=0.9, with

171

3A-3

Fig. 2. Penalty coefficient vs. maximum checksum deviation and accuracy

Nesterov momentum) on the German Traffic Sign Recognition

Benchmark Dataset (GTSRB) [13]. We up-sample GTSRB

images, and adjust the output layer of the AlexNet network

for GTSRB classification. We develop the target network,

simulation tools, and error detection methods in Keras [14]

and TensorFlow [15]. We use an NVIDIA GTX1060 GPU

for the experiments and Intel i5-8600K CPU for additional

performance measurements.

VIII. EXPERIMENTAL RESULTS & DISCUSSION

We start by training the target model with a variety of

penalty coefficients (λ) and observing the maximum difference

between the layer output partitions. Figure 2 demonstrates that

the penalty term is highly effective in balancing the output

partitions through the entire network. The observed maximum

deviation decreases more than two orders of magnitude and

delivers us sufficient resolution to detect even the small

imbalances caused by errors.

We observe during network training another remarkable

phenomenon; Figure 2 indicates that network accuracy tends

to improve in line with an increase in the penalty coefficient

instead of the penalty term limiting the learning efficiency.

A 3% accuracy increase in both validation and test data

compared to the base case without the penalty term can be

observed. As we will explore shortly, the balance checksum

acts as a network regularizer and helps to improve network

generalization by ameliorating the overfitting problem.

We compare the accuracy increase of our methods to the

conventional regularization methods used in practice. We

train our model with L1/L2 weight and L1/L2 activation

regularization methods and report the highest accuracy that we

could obtain through a parameter sweep. We compare these

results with the accuracy of the network under a balanced

partitions constraint with λ = 10−4, which delivers the best

accuracy that we could obtain for our network. Figure 3

outlines the best accuracy values for training, validation,

and test datasets. While almost all regularization methods

have a positive impact on network accuracy, training the

network with balanced output partitions delivers significantly

higher accuracy than the standard regularization methods. If

the layer outputs are considered as vectors, the introduced

balance penalty term constrains the span of the generated

Fig. 3. The comparison of regularization methods

output vectors by forcing them to be orthogonal to the vector

Vl = [1, 1, 1,,−1,−1,−1] that has a length of sl and

populated by a sequence of (�Sl/2�) 1’s and (sl − �Sl/2�)
-1’s. As this constraint reduces the number of distinct features

that can be extracted by one, we can expect a degradation in

accuracy at a first glance.

To address this concern, we first extract the intermediate

activations after non-linear functions at each layer for a

randomly chosen set of 6400 test examples, then apply PCA

[16] (principal component analysis) to find the number of

dimensions that account for 99% variance of the activation

values at each layer output. The results in Figure 4 indicate

that most layers are under-utilized as they extract much fewer

features than the layer size (for instance, the first convolutional

layer with 96 filters only extracts 11 distinct features). As the

output data has much fewer useful features than the potential

number of features that the layer can represent, reducing

the maximum number of features that can be extracted by

one proves to have no negative impact on accuracy.1 On

the contrary, the approach we propose auspiciously improves

accuracy by reducing overfitting due to the following reasons.

First, it restricts the activation range of the computation units

and prevents the units from generating large activation values

similar to Dropout [17] or activation regularizers since larger

activation values will make it harder to balance the layer

partitions. Second, correlating the layer outputs reduces model

complexity and makes it harder to overfit to the training data.

We assess the error and error-caused misprediction de-

tection capabilities of our approach in Figure 5. We uti-

lize 4 different evaluation metrics: error detection precision,

error detection recall, (error-caused) misprediction precision

and (error-caused) misprediction recall. Precision and recall,

commonly used measures of detector effectiveness, capture

1The last output layer constitutes an exception as it is fully-utilized; we
employ an extra neuron specifically for balancing the outputs and omit the
additional neuron’s output in the network decisions.

Fig. 4. The percentage of utilized output dimensions at each layer

172

3A-3

Fig. 5. Error recall, error-caused misprediction precision and error-caused misprediction recall for activation and weight errors

the accuracy of the detector among the positively identified

examples and the detector coverage on the actual positive

examples, respectively. For instance, while error precision

indicates the percentile of the cases the detector is correct

among the identified error cases, error recall indicates the

percentile of the error cases being detected. A mathematical

definition of precision and recall is provided in Equation (6).

TP, FP, and FN denote True Positive, False Positive, and False

Negative examples, respectively:

Precision =
TP

TP + FP
Recall =

TP

TP + FN
(6)

We implement three different error detection methods to

compare with our approach. We design two duplicated models

and employ the replicated DNN graph to check the con-

sistency of the computations. The first method, Duplicated
P.E. (prediction equality), checks if both replicated networks

predict the same class (e.g., same traffic sign) and it reports an

error if the predictions differ. The second model, Duplicated
L.E. (likelihood vector equality), checks the probability vector

produced by the last Softmax layer and indicates an error

if they are not equal. We also implement a symptom-based
error detector (SED) outlined in [18] and compare it with

our approach. The symptom-based detector profiles the range

of the typical activation values, multiplies the range with

a margin (e.g., 1.1 as reported), and detects the errors at

runtime if an error causes the activation values to lie outside

of these thresholds. Similarly, we experimentally observe that

multiplying the differences with a margin (e.g., 1.4) before

setting as error thresholds prevents the false alarm cases.

We inject bit errors into both weights and activations

separately and report the indicated metrics for both activation

and weight errors at a variety of error rates to comprehensively

assess the delivered safety of the presented error detection

methods. We use 16-bit data types for error modeling where

1 bit is the sign, and 11 and 8 bits are allocated to fraction

bits in weight and activation values, respectively. We do not

plot error precision rates as all error detection methods achieve

perfect error precision (1.0). These methods never cause false

alarms if no error is present.

The following points in Figure 5 merit further attention.

First, our approach delivers consistently higher performance

than a symptom-based detector in all metrics for all activation

error rates. We observe a more significant advantage in low-

error rate regimes. Our method almost always outperforms

the symptom-based detector in weight error metrics as well.

Duplicated P.E. always delivers perfect error-caused mispre-

diction precision rates since no error is reported until at least

one network experiences a misprediction; however, Duplicated

P.E. has limited recall rates for both weight and activation

errors. Duplicated L.E. detects almost all error cases due to its

strict error detection criteria but consequently results in lower

precision rates for error-caused mispredictions. Although both

Duplicated P.E. and Duplicated L.E. have their advantages, the

overhead of duplication restricts in practice its utilization as a

safety solution for resource-intensive applications. Finally, we

observe that our method is sensitive to the input distribution,

as it also detects particular input errors. We aim to measure the

system performance under different input transformations and

further investigate its applicability to the adversarial machine

learning domain [19] in future work.

We compare the memory footprint and performance over-

head of the presented methods under fixed hardware archi-

tectures in Table I to provide a comprehensive overview.

We report the overhead for Duplicated L.E. and Duplicated

P.E. under a single heading as duplication dominates their

overall overhead. While duplicated models require doubling

of the network parameters, the symptom-based detector and
TABLE I

MEMORY AND PERFORMANCE OVERHEAD

Duplicated SED Balanced Part.
Parameters 100.00% 0.00% 0.01%
Perf. (CPU) 100.00% 1.08% 1.00%
Perf. (GPU) 33.32% 2.95% 2.39%

173

3A-3

our approach require almost zero memory footprint. SED

achieves 93x smaller performance overhead compared to the

duplicated models while the overhead of our approach can

be 100x lower than the duplicated methods. Even on a GPU,

appreciable overhead reductions can be observed by noting

that SED is 11x and our method 14x smaller than that of

duplication. The available hardware resources ameliorate the

overhead of the duplicated models on the GPU, but such

opportunities are rarely available on resource-limited edge

devices. As the experiments are performed on fixed hardware

platforms, we do not report hardware overheads, yet one could

expect duplication methods to neutralize the performance

overhead at the cost of duplicated hardware resources. The

small performance overhead of our method could be further

reduced with much smaller overheads than duplication.

IX. RELATED WORK

The effect of hardware-level faults on the DNN behavior has

started receiving significant attention in the recent literature.

Reagen et al. [20] and Neggaz et al. [21] present tools

and methods to simulate hardware-level faults as bit errors

on the DNN computation graph. Li et al. [18] present a

comprehensive analysis of the error behavior in DNNs as well

as practical methods to reduce the FIT (failure in time) rate in

DNN accelerators. A symptom-based error detector for DNNs

is presented in [18]. Ozen et al. [11] utilize linear checksums

to detect the errors in DNN layers. Schorn et al. [22] employ

a DNN-based on-line error detection method for deep neural

networks. The same authors [23] present a safety aware design

by measuring the importance of the neurons and mapping the

critical computations and data into hardened hardware. Choi

et al. [24] employ a similar approach to assign critical neurons

into more robust MAC units to alleviate the effect of timing

errors. Thundervolt [25] utilizes Razor flip-flops [26] and re-

computes the erroneous value to resolve the timing errors.

Balestriero et al. [27] employ penalty terms in the cost func-

tion to enforce orthogonality on the computation unit outputs,

thus improving the diversity of the extracted features at each

layer. Custom training methods are also utilized to detect and

provide resilience against adversarial examples [19]. Although

the utilization of balance checksums for adversarial example

detection is an intriguing idea for future work, the focus of

this work is limited to the identification of safety problems.

X. CONCLUSION

Deep neural networks play an integral role in various

safety-critical systems, including ADAS (Advanced Driver-

Assistance Systems) and autonomous driving. The impact of

hardware-level faults consequently raises questions about the

safety of DNN computations. We present an algorithmic fault-

tolerance method for deep neural networks by modifying the

training process with an additional penalty term. The intro-

duced invariant helps us attain detection rates commensurate

with state-of-the-art methods at only a fraction of their cost.

Our approach additionally helps to improve DNN accuracy by

acting as a regularizer during training. As traditional methods

fall short in a practical sense due to their high cost, we deliver

an alternative approach for fault-tolerance, thus engendering

safe and affordable DNN solutions for the consumer market

through algorithm-level modifications.

REFERENCES

[1] C. Chen, A. Seff, A. Kornhauser, and J. Xiao, “DeepDriving: Learning
affordance for direct perception in autonomous driving,” in IEEE
International Conference on Computer Vision, pp. 2722–2730, 2015.

[2] “ISO 26262-1:2018 road vehicles – functional safety.”
https://www.iso.org/standard/68383.html, 2018.

[3] H. Shaheen, G. Boschi, G. Harutyunyan, and Y. Zorian, “Advanced ECC
solution for automotive SoCs,” in 23rd International Symposium on On-
Line Testing and Robust System Design (IOLTS), pp. 71–73, IEEE, 2017.

[4] M. Baleani et al., “Fault-tolerant platforms for automotive safety-critical
applications,” in International Conference on Compilers, Architecture
and Synthesis for Embedded Systems, pp. 170–177, ACM, 2003.

[5] I. Lee et al., “Survey of error and fault detection mechanisms,” tech.
rep., University of Texas at Austin, 2012.

[6] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Advances in Neural
Information Processing Systems, pp. 1097–1105, 2012.

[7] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in International Conference on Learning
Representations, 2015.

[8] C. Szegedy et al., “Going deeper with convolutions,” in IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2015.

[9] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 770–778, 2016.

[10] K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE Transactions on Computers, vol. C-33, no. 6,
pp. 518–528, 1984.

[11] E. Ozen and A. Orailoglu, “Sanity-Check: Boosting the reliability of
safety-critical deep neural network applications,” in Proceedings of IEEE
Asian Test Symposium (ATS), 2019.

[12] L. Bottou, “Large-scale machine learning with stochastic gradient de-
scent,” in COMPSTAT’2010, pp. 177–186, Springer, 2010.

[13] J. Stallkamp, M. Schlipsing, J. Salmen, and C. Igel, “Man vs. computer:
Benchmarking machine learning algorithms for traffic sign recognition,”
Neural Networks, vol. 32, pp. 323–332, 2012.

[14] F. Chollet et al., “Keras.” https://keras.io, 2015.
[15] M. Abadi et al., “TensorFlow: A system for large-scale machine

learning,” in 12th USENIX Symposium on Operating Systems Design
and Implementation, pp. 265–283, 2016.

[16] J. Shlens, “A tutorial on principal component analysis,” arXiv preprint
arXiv:1404.1100, 2014.

[17] N. Srivastava et al., “Dropout: a simple way to prevent neural networks
from overfitting,” The Journal of Machine Learning Research, vol. 15,
no. 1, pp. 1929–1958, 2014.

[18] G. Li et al., “Understanding error propagation in deep learning neural
network (DNN) accelerators and applications,” in International Con-
ference for High Performance Computing, Networking, Storage and
Analysis, p. 8, ACM, 2017.

[19] X. Yuan, P. He, Q. Zhu, and X. Li, “Adversarial examples: Attacks and
defenses for deep learning,” IEEE Transactions on Neural Networks and
Learning Systems, 2019.

[20] B. Reagen et al., “Ares: A framework for quantifying the resilience of
deep neural networks,” in 55th ACM/ESDA/IEEE Design Automation
Conference (DAC), 2018.

[21] M. A. Neggaz, I. Alouani, P. R. Lorenzo, and S. Niar, “A reliability
study on CNNs for critical embedded systems,” in 36th International
Conference on Computer Design (ICCD), pp. 476–479, IEEE, 2018.

[22] C. Schorn, A. Guntoro, and G. Ascheid, “Efficient on-line error detection
and mitigation for deep neural network accelerators,” in International
Conference on Computer Safety, Reliability, and Security, pp. 205–219,
Springer, 2018.

[23] C. Schorn, A. Guntoro, and G. Ascheid, “Accurate neuron resilience
prediction for a flexible reliability management in neural network
accelerators,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), pp. 979–984, IEEE, 2018.

[24] W. Choi, D. Shin, J. Park, and S. Ghosh, “Sensitivity based error resilient
techniques for energy efficient deep neural network accelerators,” in 56th
Annual Design Automation Conference, ACM, 2019.

[25] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “Thundervolt: Enabling
aggressive voltage underscaling and timing error resilience for energy
efficient deep learning accelerators,” in 55th Annual Design Automation
Conference, ACM, 2018.

[26] D. Ernst et al., “Razor: circuit-level correction of timing errors for low-
power operation,” IEEE Micro, vol. 24, no. 6, pp. 10–20, 2004.

[27] R. Balestriero et al., “A spline theory of deep networks,” in International
Conference on Machine Learning, pp. 383–392, 2018.

174

3A-3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

