
RRAM-VAC: A Variability-Aware Controller for
RRAM-based Memory Architectures

Shikhar Tuli, Marco Rios, Alexandre Levisse and David Atienza

ESL, Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland

alexandre.levisse@epfl.ch

Abstract—The growing need for connected, smart and energy
efficient devices requires them to provide both ultra-low standby
power and relatively high computing capabilities when awoken.
In this context, emerging resistive memory technologies (RRAM)
appear as a promising solution as they enable cheap fine grain
technology co-integration with CMOS, fast switching and non-
volatile storage. However, RRAM technologies suffer from funda-
mental flaws such as a strong device-to-device and cycle-to-cycle
variability which is worsened by aging, forcing the designers to
consider worst case design conditions. In this work, we propose,
for the first time, a circuit that can take advantage of recently
published Write Termination (WT) circuits from both the energy
and performances point of view. The proposed RRAM Variability
Aware Controller (RRAM-VAC) stores and then coalesces the
write requests from the processor before triggering the actual
write process. By doing so, it averages the RRAM variability
and enables the system to run at the memory programming time
distribution mean rather than the worst case tail. We explore
the design space of the proposed solution for various RRAM
variability specifications, benchmark the effect of the proposed
memory controller with real application memory traces and show
(for the considered RRAM technology specifications) 44% to
50% performances improvement and from 10% to 85% energy
gains depending on the application memory access patterns.

I. INTRODUCTION

The ever-increasing number of Internet of Things devices

present in our lives is forcing a shift in the computational

paradigm. Instead of centralizing the processing in big data

centers, modern applications are seeking to compute the data

locally on the edge in order to improve latency, energy

efficiency, privacy and security. From that perspective, the

market of connected health monitoring is a good candidate

as it features a large amount of critical data which must be

computed precisely, timely and efficiently. In that context,

Wireless Body Sensor Nodes (WBSNs) are expected to switch

from a zero-leakage idle deep-sleep mode (which can happen

more than 90% of the device lifetime) to a relatively high

performances computation phase during which, in order to

mitigate the leakage power, all the computation must be per-

formed timely. From that perspective, emerging Resistive Ran-

dom Access Memory (RRAM) technologies appear as a good

fit, thanks to, compared to eflash technologies, their cheap

and easy technology co-integration within CMOS process,

their fast switching capabilities and low voltage operation [1]–

[4]. However, their drawbacks can only be slightly mitigated

by device engineering and must be solved by design. For

instance, device-to-device and cycle-to-cycle temporal vari-

ability may lead to extremely dispersed programming times

(several decades [5]) and can only be managed by the use

of Write Termination (WT) circuits [5]–[7]. Although these

works focus on energy reduction, they do not propose any

solution for the performances improvements that could be

enabled by such circuits (i.e., these solution force the system to

run at the worst case memory frequency) and mainly focus on

circuit considerations. In this work, we propose the concept

of RRAM Variability-Aware Controller (RRAM-VAC). The

RRAM-VAC stores the write requests (i.e. data and addresses)
from the processor and coalesces them before writing them to

memory. By doing so, it averages the programming time and

can theoretically improve the performances from the worst

case programming time down to the average programming

time of the distribution. In this context, it could enable

substantial static energy gains. We validate the RRAM-VAC

functionality by implementing a behavioral model and explore

its functionality with realistic technology and circuit assump-

tions. Then we benchmark system-level gains by simulating it

with memory traces from WBSN applications and comparing

it to a reference case without WT and RRAM-VAC. The

contributions of the paper are as follows:

• We propose the concept of RRAM-VAC controller and
validate its functionality through a behavioral model

supported by accurate RRAM technology and circuit

assumptions.

• We explore the design space of the RRAM-VAC and pro-
pose a sizing methodology for various parameters such

as the operating frequency and the RRAM variability

parameters.

• We simulate the RRAM-VAC controller with realistic

memory traces from WBSN applications and show that

for the considered technology assumptions it enables up

to 50% performance improvement and from 10 to 85%

energy reduction depending on the application memory

access patterns.

The rest of the paper is organized as follows. Section II

includes a general background on RRAM technology, archi-

tecture and writing circuitry. Section III presents the proposed

RRAM-VAC architecture. Section IV presents the experimen-

tal setup used for the simulations. Section V presents a design

space exploration and shows performance and energy gains

enabled by the RRAM-VAC. Finally, Section VI concludes

the paper.

II. BACKGROUND

A. RRAM Technologies for Embedded Devices

With the widespread of Internet of Things connected Edge

devices, requirements in terms of price per device and energy

efficiency have been rising. In this context, new Resistive

Memory (RRAM) technologies have been proposed to replace

978-1-7281-4123-7/20/$31.00 © 2020 IEEE
181

3B-2

regular eflash technologies and are already at the product ma-

turity [8]–[10]. RRAM technologies rely on the non-volatile

variation of the resistivity of a thin insulating layer between

Low and High Resistance States (LRS, HRS). This effect is

achieved through various mechanisms such as (i) a conductive

ions migration inside an insulating layer (Resistive RRAM -

ReRAM) [1], [2], (ii) a phase change inside a chalcogenide

material (Phase Change Memories - PCM) [3] or (iii) a

spin modification in a magnetic tunnel junction (Magnetic

Memories - MRAM) [4]. Their cheap and easy technology

co-integration with CMOS, low programming voltages (1

to 3V) and fast switching capabilities (tens to hundred of

ns)) triggered the motivation to abandon eflash beyond the
28nm node technology. Embedded RRAM memory arrays are

usually constituted of 3-terminals 1 Transistor - 1 RRAM

bitcells, controlled by a WordLine (WL), and SourceLine

(SL) and and BitLine (BL). Read and write operations are
controlled from the BL and SL thanks to specialized circuits

named Sense Amplifier (SA) for read and Write Amplifier
(WrA) for write. Read and write operation in RRAM-based
array are highly asymmetric : one way of performing read is
by pre-charging the BL and discharging it through the RRAM

bitcell. Then the resulting BL voltage is amplified and read-out

by the SA. On the other hand, write operations are performed
by applying a high enough voltage programming pulse and

limiting the current. In that context, read operations are mainly
dynamic power plus the SA overhead while write operations
feature high static consumption leading to one operation being

more energy hungry than the other.

B. Write termination circuits

Due to the complex underlying physics, RRAM technolo-

gies, as a whole, suffer from a high device-to-device and cycle-

to-cycle variability [2], [4]. This effect is particularly true in

filamentary RRAM technologies due to the stochastic nature

of ions movement inside the insulator [5]. In this context,

usual write methods, simply consist in applying a long-

enough programming pulse to cover the complete distribution

of programming time [5]. To overcome this issue, Write

Termination (WT) WrA circuits have been proposed [5]–[7],

they consist of a dynamic detection of the current flowing

through the RRAM and feature a detection mechanism stop-

ping the write operation when the current crosses a given

threshold. These solutions come in addition to already widely

reported write-verify solutions that consists in checking the

state of the RRAM after a complete programming pulse and

restarting if needed [8], [9]. However, for all these solutions,

while the programming energy can be cut drastically, there

are no reported solutions taking advantage of the temporal

variability to enhance the performances of embedded systems.

In this work, we thereby propose a specific memory controller

which enables both energy and performance improvements for

RRAM-based embedded devices: the RRAM-VAC.

III. RRAM-VAC ARCHITECTURE

This section presents the RRAM-VAC architecture, de-

scribes its functionality and discusses area and energy con-

siderations.

Read
Buffer

Memory
Controller

RRAM-VAC

μP RRAM

Wait
Buffer

finish

“Locked”
batch

Fig. 1. Proposed RRAM-VAC controller block diagram with detailed sub-
blocks

A. Functional Description

In this work, we propose the RRAM Variability-Aware

Controller (RRAM-VAC). Figure 1 shows a detailed block

diagram of the RRAM-VAC. It relies on the following blocks

: (i) a modified memory controller, (ii) a wait buffer and (iii)
a read buffer. The memory controller has two tasks: (i) it
routes the memory requests from the processor to the wait
Buffer, read buffer or to the RRAM macro. (ii) Schedule the

programming operations from the wait buffer to the RRAM
memory block. Memory request coming from the processor

(read or write) are stored in the wait buffer if they are write
requests and in the read buffer if they are read requests. The
RRAM-VAC relies on a concept named ”Write Coalescing”

that we extensively describe Section III-B.

1) Write operations: When the wait buffer contains enough
write requests, these requests are locked and considered as
what is called a batch. Then, the batch is written to the

RRAM whenever it is filled. The write requests from the

batch are written to the RRAM memory using the Write

Coalescing method. As several versions of the same data could

be present inside the RRAM-VAC, to satisfy data coherence,

we define the following data validity hierarchy: the wait buffer
contains the latest version of the data. Any request which is not

contained inside the wait buffer is transferred to the RRAM
memory. From a more detailed perspective, while both read
and write requests can be catched by the wait buffer, once
the batch is locked, it can only catch read requests. Write
requests to a locked batch have to be considered as new entries
inside the wait buffer. From that perspective, the RRAM-VAC
behaves as a small cache and can avoid sequential access to the

same address that would induce an early aging of the memory.

It also improves the performances and energy consumption of

such operations, as read and write operations to a buffer are
faster and less energy hungry than read and write operations
in RRAM. At the end of a computation phase, the batch is
written to the RRAM even when it is not full.

2) Read operations: An incoming read request is first

issued to the wait buffer. If the corresponding address is not
present, it is issued to the RRAM memory. While the batch is
written to the RRAM memory, the next read request is stored
inside the read buffer and is performed when the memory is
available. During that time, the processor execution is stalled

until the RRAM memory is available again. This effect is

182

3B-2

(a) (b)

finish status

finish status

Fig. 2. (a) Sequence of 8-bits words written to RRAM in a worst case
condition. (b) Same words programmed to RRAM using the proposed RRAM-
VAC circuit

discussed in Section V.

B. Write Coalescing

Figure 2-a shows the evolution of a sequence of 8-bit

words written in memory while considering a worst case

programming condition. Colored areas represent the time it

actually takes for each of the words to be written to memory

(each column represents a bit). Each word is written with

a constant programming time accounting for margins and

respecting a constant frequency to ensure that, at the next

processor cycle, the data is actually written, and the memory

is available for the next operation. In these conditions, the

hashed area represents the potential energy and performances

loss of such an approach. In this context, we propose to

coalesce the write operations as shown in Figure 2-b. Every

time a bitcell switches, it is detected by the WT circuit and

then, the controller issues the next bit write operation to be

performed. This way, the overall programming time for the

group of words (referred as the batch in section III-A) and
the hashed area are drastically reduced. In order to coalesce

the words together, several assumptions must be considered.

(i) We consider that the words written are interleaved between

several arrays, and so, from a sub-array point of view, only

one bit is written at a time (this is actually compatible with

constraints identified in high density RRAM memories [11]).

This way, each sub-array can manage the words independently

without having to wait for the entire word to be written. (ii)

We consider that the words coalesced are written inside the

same memory sub-arrays. In other words, we do not consider

parallel write in several sub-arrays that would actually enhance

the performances of the RRAM-VAC.

IV. EXPERIMENTAL SETUP

This section introduces the experimental setup considered

in this work. First, we present energy considerations regarding

the RRAM memory. Then, we present the application charac-

Vo
lta

ge
Cu

rr
en

t
Cu

rr
en

t

tprog

tprog

μ

μ

tdetect

tdetect

IHRS

ILRS

ILRS

IHRS

SET
0 1

RST
1 0

VPROG

time

timeμ

IHRS

timeμ

ILRS

0 0

1 1

tdetect

tdetect

Switch time

Co
un

t #

σ = 5 ns
σ = 10 ns
σ = 20 ns

(a)

(b)

1/fP

Gain

1/fM(WC)

Fig. 3. (a) Considered RRAM distributions. (b) Energy calculation in different
switching cases and detailed parameters.

TABLE I
ENERGY CORNER CASES FOR THE CONSIDERED RRAM

Programming Conditions
With WT Without WT

Slow Fast Slow Fast
Set HRS (i) 0.515pJ 4.515pJ 1.175pJ 4.575pJ
Reset LRS (ii) 0.775pJ 0.17pJ 4.575pJ 1.175pJ
Reset HRS (iii) 0.015pJ 0.75pJ
Set LRS (iv) 0.1pJ 5pJ

terization methodology used to assess the performances and

energy gains provided by the proposed RRAM-VAC circuit.

A. RRAM Energy Characterization

In this work, we consider a RRAM technology providing a

50 ns cycle time for the programming operations. As shown
in [1], a few tens of ns programming time can be achieved
for both set (HRS to LRS) and reset (LRS to HRS) operations
while considering 1V to 1.5V programming voltage (Vprog).

We thereby assume that the programming operations can be

performed for the whole distribution at 1V with a 50 ns worst
case cycle time. In order to ensure such performances, specific

programming strategies such as adaptive programming volt-

age [5] can be considered. Finally, we consider a programming

current of 100 μA to achieve a sufficient HRS/LRS ratio, a low
variability in the LRS state and a several-years retention [1].

As introduced in Section II-A, cycle-to-cycle and device-to-

device temporal variability tends to be extreme (as a refer-

ence, in [5], variability may exceed 3 decades). In order to

model this effect, we consider a normal distribution on the

programming time. Also, we assume balanced programming

conditions between set (programming operation towards a
LRS) and reset (programming operation towards a HRS).
Figure 3-a shows the three distributions considered: σ = 5 ns,
10 ns and 20 ns. Following the 50 ns programming time, we
define a distribution mean (μ = 25 ns) and consider 5 ns
margin at the end and at the beginning of the programming

pulse, ensuring that all the switching events happen in this

183

3B-2

window (5 ns to 45 ns). That said, 4 cases may happen : (i)
program RRAM devices from one state to the other (HRS

to LRS or LRS to HRS). This case, shown in Figure 3-b

may induce a high energy consumption without a WT circuit

(saved energy, thanks to the WT circuit is represented in red

for all these graphs). (ii) program RRAM device in a state

where they already are (LRS to LRS or HRS to HRS). In that

case, a WT circuit is particularly important as it avoids non-

needed programming operations. WT circuit detection time

(tdetect) is considered 1 ns in the following experiments. As
a summary, Table I presents the corner programming energy

cases. Regarding the read performances, we assume that read
operations can be performed in one cycle. From the energy

standpoint, we take as a reference data from [8], [9] and

consider a 1 pJ per bit.

B. Application Characterization and Simulation Methodology

To assess the gains of the proposed solution, we simulate its

functionality with memory traces from real applications. To do

so, we tracked the read and write access to the variables that
are kept in memory (i.e. in RRAM) of C-Code applications

running on a PC. In this context, we simulated different real

applications that are widely used in WBSN Edge devices :

• Data compression algorithm : We considered the Compress
sensing (CS) algorithm [12], a 50% lossy compression

algorithm used on biosignals before storing them. This

application takes as input, a 3 seconds Electrocardiogram

(ECG) signal and compresses it.

• Machine learning algorithms : We consider the Epilepsy
Seizures detection algorithm from [13]. It contains a Feature

Extraction (FE) and a Decision Tree (DT). This application

processes a 4 seconds Electroencephalogram signal.

• Specific kernels : We considered two specific kernels widely
used in signal processing and machine learning : Matrix

Multiplication (MM) and Convolution (Conv) [14], [15].

MM multiplies random 30x30 arrays while Conv convolves

random 3x3 and 30x30 arrays.

We then feed the extracted memory traces inside a behavioral

model of the RRAM-VAC circuit presented in Section III.

The behavioral model has been implemented using Matlab

and simulates the operation of RRAM-VAC while taking as

input the memory traces. Energy and area characterization of

the RRAM-VAC block are performed based on the proposed

implementation from Figure 1. It must be noted, that here, we

only ensure that we have pessimistic enough considerations

to assess the profitability of the solution. More detailed area

and energy considerations are outside the scope of this work

and are left for future contributions. From the energy point

of view, we assume that for each memory request, a search
operation is performed in the wait buffer address bank. We
thereby, took the pessimistic assumption that it is performed

inside a BCAM memory [16]. In that context, considering a

0.3fJ/bit/search, would lead from 159 to 192fJ (respectively

64x8-bits and 80x8-bits wait buffer address space) per ac-
cess (it must be noted that values from [16] are extracted

from a 128x128array). Conservatively, to ensure worst case

estimation, and to account for read operations and leakage,
we considered 400fJ per access to the RRAM-VAC in our

simulations. From the area point of view, assuming a small

(a) (b) (c)

Fig. 4. Normalised dispersion in parallel write with different batch sizes

BCAM and registers would lead to a few thousand μm square.
Such area, considering last RRAM published chips [8], [9],

corresponds to less than a few equivalent kbits of RRAM and

represents less than a percent of area overhead.

V. EXPERIMENTAL RESULTS

In this section, we present (i) a design space exploration

of the RRAM-VAC sizing, considering random addresses and

data inputs and (ii) a benchmark of the RRAM-VAC while

considering various WBSN real application workloads.

A. RRAM-VAC Design Space Exploration

Figure 4 presents the normalised dispersion time per word
versus the batch size for a given RRAM-VAC operation

frequency situated at the memory programming time average.

As introduced in Section III-B-Figure 2-a, by coalescing the

bits, the programming time at word level is averaged. The

more bits are written together, the more the variability is

averaged. Considering a wider memory time distribution as

described Figure 4-a,b and c (that could be explained by a

less controlled process, a worn out RRAM device or simply

the natural variability of a given technology), leads to higher

distributions as more and more occurrences of slow bits may

happen in the batch. In that context, considering larger batch
sizes may help reducing the variability. Alternatively, Figure 5

shows the required wait buffer size versus the frequency gain
ratio for a batch size of 5. In the considered case (introduced
in Section IV), the RRAM programming distribution average

value is half of the worst case memory frequency (fM(WC)),

leading to a maximum gain of 2 (beyond that, the wait buffer
fills faster than it can be flushed to RRAM). As the processor

frequency (fP) increases, the probability of having a series of
slow batches (compared to fP) increases, transiently filling the
wait buffer. This effect if amplified by the memory variability,
as visible for σ = 10 ns and 20 ns. Overall, the sizing of the
RRAM-VAC block depends on 3 parameters:

• Memory variability (σ) : high memory variability requires
bigger batch size.

184

3B-2

Fig. 5. Maximum buffer size requirement with relative processor frequency
(in terms of worst case memory frequency) for a batch size of 5

(a) (b)

Fig. 6. Contour plots showing the optimal sizing of the RRAM-VAC circuit
for (a) various fP and (b) memory temporal variability.

• Processor Frequency (fP) : higher fP requires bigger wait
buffer.

• batch size/wait buffer size ratio : A too small wait buffer
does not average enough the variability and wastes time

when the batch write finishes in-between two clock ticks.
A too big batch size forces the system to wait for it to be

flushed when the wait buffer is full.

Figure 6 summarizes the RRAM-VAC sizing trade-offs.

Each contour line corresponds to a sizing for which the

processor is never forced to wait while writing random data

to random addresses. Figure 6-a shows that for the considered

RRAM technology, optimal performances can be achieved

with a 75words wait buffer and 15words batch. Reducing fP
by 10% moves the optimum to the couple 20words/10words,

relaxing the area and energy constraints on the RRAM-VAC.

On the other hand, Figure 6-b shows that for a constant

fP , a more dispersed memory technology strengthens the
constraints and moves the optimum toward bigger wait buffer
and batch. In a looking forward perspective, these trade-
offs may open run-time adaptive frequency strategies to take

advantage the wait buffer and compensate for the RRAM
temporal variations.

2000 6000 10000 14000
Instructions

0.1

0.2

0.3

0.4

0.5

0.6
Proposed
Moving Average
Reference

2000 6000 10000 14000
Instructions

0
0.625

1.25
1.875

2.5
3.125

3.75
4.375

5
5.625

6.25

W
rit

e
En

er
gy

 (n
J)

(a) (b)

Proposed
Moving Average
Reference

Fig. 7. Transient simulations of the RRAM-VAC running the CS application.
(a) Performances gains and (b) energy gains per batch.

CS FE DT DT_C FE+DT MM Conv
Applications

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

is
ed

 P
ro

ce
ss

 E
ne

rg
y

0

10

20

30

40

50

60

70

80

90

100

Pe
rfo

rm
an

ce
 G

ai
n

(%
)

Read Energy (Proposed) Write Energy (Proposed)
Read Energy (Reference) Write Energy (Reference)

Fig. 8. Energy and performances gains of the RRAM-VAC for different
applications

B. Real Workload Exploration

In this subsection, we explore the energy and performances

gains provided by the proposed RRAM-VAC concept while

running realistic WBSN workloads. The RRAM-VAC is sized

accordingly to the explorations performed in Section V: wait
buffer of 80 and batch of 10 while the frequency gain is set
to 2× fM(WC).

Figure 7 shows the energy consumption and performance

gains of a RRAM memory connected to a processor running

the CS application and using the RRAM-VAC (in blue)

compared to reference case not using the RRAM-VAC and

considering worst case programming conditions (in orange).

In these graphs, each dot corresponds to 10 words written

(batch size). Figure 7-a shows the performances gains en-
abled by the RRAM-VAC. It shows that compared to the

reference system, for the considered memory specifications,

the processor frequency can be increased by 2×. On the other
hand, Figure 7-b shows a transient simulation of the energy

consumed. Thanks to the RRAM-VAC, the energy consumed

is reduced compared to the reference case, while running a CS

application. Figure 8 shows the energy and performances gains

185

3B-2

1 2 8 3216
Read/Write ����� Size

42

44

46

48

50
Pe

rfo
rm

an
ce

 G
ai

n
(%

)

Fig. 9. Performance gains of the RRAM-VAC while alternating reads and
writes with bursts of different lengths for random inputs (addresses and data)
versus burst size.

provided by the RRAM-VAC for the applications presented

in Section IV. In terms of energy gains, we separated write
and read energies to ease the understanding. Energy gains

provided by the RRAM-VAC appear to be highly dependant

on the application memory patterns. Gains on CS, FE and MM

applications are highly dependent on the read/write ratio. On
the other hand, DT application shows a 10% performances

gain mainly due to the high locality of the read operations
(i.e., reading a word from the wait buffer is less expensive
than accessing the RRAM array) and a really low write/read
ratio (less than 1 per 300). As a reference, we compared it

to the DT C application (DT application memory traces post-

processed with a L1 cache of 16 words and least-used eviction

policy) and it shows a balanced read/write ratio (as CS, FE and

MM) providing stronger gains with the RRAM-VAC. Finally,

Conv application shows an even higher amount of read and
write access on recently written words than DT application
and exhibits the highest energy gain of all the considered

applications, thanks to its high read and write locality.
In terms of performances, all the considered applications

show around 50% of performances improvement compared

to the reference case. While the gains are substantial, slight

fluctuations can be observed. This is due to the fact that while

the write buffer is being written to memory, the next read
request that cannot be processed inside the wait buffer is stored
inside the read buffer and the processor is stalled. This request
is finally performed once the memory is available again. In this

context, the gains provided by the RRAM-VAC are slightly

reduced as the computation is delayed. Figure 9 shows the

gains achieved for a random inputs and random addresses

application (to avoid any bias provided by the cache effect

of the wait buffer) versus the read and write pattern. It shows
that longer bursts are less likely to stall the processor than

shorter ones. At the worst case, the performance gains are

reduced to 44%.

VI. CONCLUSION

In this work, we proposed the RRAM Variability Aware

Controller (RRAM-VAC), a new controller for RRAM-based

memories that takes advantage of the family of Write Termi-

nation (WT) circuits to mitigate device-to-device and cycle-

to-cycle variability of RRAM technologies. By coalescing

the write requests and performing them together, it averages

the variability and enables strong energy and performances

gains. We explored the design space of the RRAM-VAC

circuit and estimated its gains by simulating it with memory

traces from WBSN applications. With the considered RRAM

technology, we show from 44 to 50% performances and 10

to 85% of energy gain depending on the application memory

access patterns. Such performance and energy gains makes the

RRAM-VAC an extremely promising solution for normally-off

Edge devices.

ACKNOWLEDGEMENTS

This work has been partially supported by the ERC Consol-

idator Grant COMPUSAPIEN (GA No. 725657) and by the

ThinkSwiss research scholarship by swissnex India.

REFERENCES

[1] E. Vianello et al. Back-End 3D Integration of HfO2-Based RRAMs
for Low-Voltage Advanced IC Digital Design. In IEEE International
Conference on IC Design and Technology (ICICDT), 2013.

[2] H-S Philip Wong et al. Metal–oxide rram. In Proceedings of the IEEE,
2012.

[3] H-S Philip Wong et al. Phase change memory. In Proceedings of the
IEEE, 2010.

[4] D. Apalkov et al. Magnetoresistive random access memory. In
Proceedings of the IEEE, 2016.

[5] G. Sassine et al. Sub-pj consumption and short latency time in rram
arrays for high endurance applications. In IEEE International Reliability
Physics Symposium (IRPS), 2018.

[6] M. Alayan et al. Switching event detection and self-termination
programming circuit for energy efficient reram memory arrays. In IEEE
Transactions on Circuits and Systems II (TCASII), 2019.

[7] A. Lee et al. A reram-based nvff with self-write-termination scheme
for frequent-off fast-wake-up nonvolatile processors. In IEEE Journal
of Solid-State Circuits (JSSC), 2017.

[8] L. Wei et al. 13.3 a 7mb stt-mram in 22ffl finfet technology with
4ns read sensing time at 0.9v using write-verify-write scheme and
offset-cancellation sensing technique. In IEEE International Solid- State
Circuits Conference (ISSCC), 2019.

[9] P. Jain et al. 13.2 a 3.6mb 10.1mb/mm2 embedded non-volatile
reram macro in 22nm finfet technology with adaptive forming/set/reset
schemes yielding down to 0.5v with sensing time of 5ns at 0.7v. In
IEEE International Solid- State Circuits Conference (ISSCC), 2019.

[10] Reram-based mcu mn101l, 2018.
[11] A. Levisse et al. Architecture, design and technology guidelines

for crosspoint memories. In IEEE/ACM International Symposium on
Nanoscale Architectures (NANOARCH), 2017.

[12] J. Constantin et al. Tamarisc-cs: An ultra-low-power application-
specific processor for compressed sensing. In IEEE/IFIPInternational
Conference on Very Large Scale Integration (VLSI-SoC), 2012.

[13] D. Sopic et al. e-glass: A wearable system for real-time detection of
epileptic seizures. In IEEE International Symposium on Circuit And
Systems (ISCAS), 2018.

[14] A. Vasudevan et al. Parallel multi channel convolution using general ma-
trix multiplication. In IEEE International Conference on. Application-
specific Systems, Architectures and Processors (ASAP), 2017.

[15] A. Krizhevsky et al. Imagenet classification with deep convolutional
neural networks. In Advances in Neural Information Processing Systems
25, 2012.

[16] A. Agarwal et al. A 128x128b high-speed wide-and match-line content
addressable memory in 32nm cmos. In IEEE European Solid-State
Device Research Conference (ESSCIRC), 2011.

186

3B-2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

