
Contention Minimized Bypassing in SMART NoC

Peng Chen1,2, Weichen Liu1, Mengquan Li1,2, Lei Yang3, Nan Guan4
1School of Computer Science and Engineering, Nanyang Technological University, Singapore.

2College of Computer Science, Chongqing University, Chongqing, China.
3Department of Electrical and Computer Engineering, University of Pittsburgh, Pittsburgh, USA.

4Department of Computing, The Hong Kong Polytechnic University, Hong Kong, China.

Abstract—SMART, a recently proposed dynamically reconfig-
urable NoC, enables single-cycle long-distance communication by
building single-bypass paths. However, such a single-cycle single-
bypass path will be broken when contention occurs. Thus, lower-
priority packets will be buffered at intermediate routers with
blocking latency from higher-priority packets, and extra router-
stage latency to rebuild remaining path, reducing the bypassing
benefits that SMART offers. In this paper, we for the first time
propose an effective routing strategy to achieve nearly contention-
free bypassing in SMART NoC. Specifically, we identify two
different routes for communication pairs: direct route, with which
data can reach the destination in a single bypass; and indirect
route, with which data can reach the destination in two bypasses
via an intermediate router. If a direct route is not found, we
would alternatively resort to an indirect route in advance to
eliminate the blocking latency, at the cost of only one router-
stage latency. Compared with the current routing, our new
approach can effectively isolate conflicting communication pairs,
greatly balance the traffic loads and fully utilize bypass paths.
Experiments show that our approach makes 22.6% performance
improvement on average in terms of communication latency.

I. INTRODUCTION

Network-on-chip (NoC) is a widely-used communication

backbone for multi-/many-core systems, in which the com-

munication latency is critical for system performance [1].

A higher latency also causes poorer throughput, especially

for latency-sensitive applications. There are two main factors

influencing the communication latency: the number of hops

(hop count) between source and destination, and contention

issues that introduce blocking latency from higher-priority

packets. The former factor is inherently restricted by the

distance of the source-destination communication pair, and the

latter one is related to task mapping and routing schemes.

To address the first factor influencing the communication

latency mentioned above, an advanced NoC using the single-

cycle multi-hop asynchronous repeated traversal (SMART)

design was proposed [1], [2], which can effectively reduce the

hop count by dynamically building a single-cycle multi-hop

path via bypass, and works especially well for long-distance

communication source-destination pairs. SMART employs by-

pass control and integrated clockless repeaters based on tradi-

tional routers. It mainly takes advantage of the following two

facts: (1) The electric signal can propagate multi-millimeters

in a single cycle; (2) Packets can bypass the intermediate

routers where no contention occurs. When packets encounter

contention at intermediate routers, SMART only builds the

single-cycle multi-hop path from source to the first conflicting

intermediate router. If the contention is not addressed, the

single-cycle single-bypass path from source to destination is

broken, thus reducing the bypassing benefits that SMART

offers. Especially, when packets frequently encounter con-

tention at intermediate routers (in the extreme case, at every

intermediate router), SMART performs the same as traditional

NoCs with hop-by-hop traversal. No more benefits can be

acquired than the traditional counterpart in such cases, but

incurring more control overhead (i.e., control link). Therefore,

to fully utilize the capability of SMART NoCs, the multi-hop

bypassing mechanism must be utilized in the way such that

contentions are minimized as much as possible.

In this paper, we for the first time address the contention

minimization problem for bypassing in SMART from the

perspective of the routing strategy. In current XY routing for

SMART, if contention occurs at intermediate routers, packets

will suffer blocking latency from higher-priority packets, and

extra router-stage latency to rebuild the remaining path. We

optimize the routing performance by identifying two different

source-destination routes: direct route that is a contention-free

single-bypass path, with which data can reach the destination

directly, and indirect route that is a contention-free double-

bypass path, with which data can reach the destination in-

directly via an intermediate router. We firstly try to exploit

a direct route from source to destination according to the

current network state. If a direct route is not found, we

instead turn to exploit an indirect route to eliminate blocking

latency from higher-priority packets, at the cost of only one

router-stage latency. Contrary to an intuitive approach, not

the routes with minimal distance but the indirect routes via

an arbitrary intermediate router (even if they may be non-

minimal) that result in contention minimization yield the

minimized communication latency. Experimental evaluation

shows averagely 22.6% improvement using our flexible rout-

ing strategy, compared with current routing for SMART NoCs.

II. BACKGROUND

A. End-to-end Latency in Traditional NoCs

In traditional NoCs with hop-by-hop traversal [3], packets

traverse from source to destination hop by hop through on-chip

routers and links. In general, the end-to-end latency of a packet

covers the transmission latency of the head flit from source to

destination, serialization latency of the rest of flits, and block-

ing latency suffered from higher-priority packets. Therefore,

the end-to-end latency Le2e−T of a transmitted packet from

source Processing Element (PEs) to destination Processing

Element (PEd) in traditional NoCs can be formulated as:

Le2e−T = tr · (hsd − 1) + tw · hsd + tw · (Ni − 1) + Lb

(1)

where tr is the router-stage latency; tw is the link latency

between two adjacent routers; hsd refers to the hop count

between source PEs and destination PEd; Ni refers to the

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE
205

3C-3

v
1
=1

v
2
=2

v
4
=2 v

5
=2 v

6
=3 v

7
=1

v
3
=1

v
8
=1 v

6

00 1 2 3

4 7

8 9 10 11

12 13 14 15

v
5

v
2

bypass
1

bypass
2

v
4

v
8

v
3

v
7

v
1

2

2 2 1

2 1 2 2

2

1
v
1

P
9

P
14

P
1

P
12

P
15

P
4

P
0

P
10

v
8

→
v
3

→
v
2

v
7

v
3

→
v
6

→
v
7

→
v
5

→
v
4

→
v
8

→
v
8

v
2

v
4 →

v
8

v
5

R
5

v
6

→
v
8

0 2 3 4 5 7 8 9 11 13 14

（a） （b） （c）
Time

v
i

→
v
j

Task execution

Send data to vj

65

Fig. 1: Motivational example in a 2D-Mesh SMART (HPCmax = 6). (a). Directed acyclic graph (DAG) modeled application

including execution time and communication volume; (b). Our proposed routes to the destination router R10(v8), where the

dotted lines are original routes; (c). Timeline of the computation and communication tasks with our routing in SMART NoC.

number of transmission data units (i.e., flit) of a packet; and

Lb refers to the summation of blocking latency suffered from

higher-priority packets along the path to destination. For a

given NoC platform and an analyzed packet, tr, tw, andNi are

constants. As can be seen from Eq. 1, the end-to-end latency

is only related to the hop count hsd and blocking latency Lb.

As a result, there are mainly two ways to reduce end-to-end

latency in traditional NoCs: (1) reducing the hop count hsd,

and (2) reducing blocking latency Lb by contention avoidance.

For the first approach, high-radix technique [4], application-

specific long-range link [5] and skip-links [6] are proposed

to reduce hop count. As for the second approach, contention-

aware mapping [7], [8] are also proposed to avoid contention.

B. End-to-end Latency in SMART NoCs

Among the NoC architectures aiming to reduce hop count,

another NoC architecture, SMART [1], [2], enables single-

cycle long-distance communication by dynamically building

a single-bypass direct path from source to destination, which

in turn effectively reduces the end-to-end latency. Unlike the

above-mentioned ones [4]–[6], SMART NoC has advantages

on area, power and layout complexity.

SMART [1], [2] is proposed by embedding the low-

swing clockless repeated link and bypass control in tradi-

tional routers. It mainly bases on the following two facts:

(1) The electric signal can be transmitted multi-millimeters

in a single cycle; (2) The incoming data can bypass the

intermediate routers where no contention occurs. To realize

single-cycle long-distance transmission, SMART adds a set of

dedicated SMART-hop Setup Request (SSR) links spanning

up to HPCmax neighbors [1] for each possible dimension-

order routing path, which are used to forward bypass requests

to downstream intermediate routers. The working process of

SMART mainly consists of three steps: Step 1: Each start

router performs Local Switch Allocation (SA-L) to choose

a winner from buffered flits for each output port; Step 2:
SA-L winner broadcasts SSR to downstream routers towards

the destination to setup bypass path and continually conducts

Global Switch Allocation (SA-G) for competing SSRs. The

bypass path is built at the end of this step; Step 3: The packet

of the SA-G winner traverses the established single-bypass

path with multiple hops up to HPCmax in a single cycle.

Distinct from traditional NoCs, the hop count hsd is elimi-

nated if the maximum bypass hop HPCmax [1] is greater than

or equal to 2× (K − 1) for the allocated region with K ×K
in 2D-Mesh SMART. Correspondingly, the end-to-end latency

Le2e−S over SMART NoCs can be formulated as:

Le2e−S = (tr + tw) · (Nc + 1) + tw · (Ni − 1) + Lb (2)

where Nc refers to the contention count along the path of

source-destination pair; note that if Nc = 0, the blocking

latency summation Lb = 0; in such case, a packet completely

bypasses the intermediate routers from source to destination.

It can be seen from the Eq. 2, the end-to-end latency Le2e−S

in SMART is only determined by the contention count Nc.

Based on SMART NoCs, many studies [8]–[13] have been

made to upgrade performance. However, there are few studies

considering contention minimization (i.e., Nc) in SMART

NoCs. To fully maximize the multi-hop bypassing benefits

that SMART offers, we firstly achieve a nearly contention-free

bypassing scheme from the perspective of routing strategy for

SMART NoCs in the following sections.

III. MOTIVATIONAL EXAMPLE

SMART NoCs show great communication advantage by

building a single-cycle bypass path; on top of that, packets

can completely/partially bypass intermediate routers up to

HPCmax hops towards the destination, provided that a bypass

path is built. However, the current XY routing cannot be

applicable for latency-sensitive applications since it cannot

reduce the number of contentions even under lightweight

traffics (i.e., collective traffic). We motivate the need for

flexible routing by presenting an example in Fig. 1.

As shown in Fig. 1(a), the given application is represented

as a directed acyclic graph (DAG) with execution time and

communication volume. The number inside the vertex is the

execution time, and the number between two vertexes is the

message size. Both kinds of these values are known before-

hand at design time. Compared with the current XY routing of

SMART, our proposed routing is flexible and performs better,

since all the potential contentions are avoided in the example

of Fig. 1(b). Specifically, the communication pairs (R15,

R10) and (R4, R10) alternatively choose YX route to avoid

contentions between R14 and R10, R4 and R5. Especially for

the communication pair (R0, R10), since the links R4 → R5

206

3C-3

and R2 → R6 have been occupied, it alternatively resorts to a

contention-free double-bypass path via an intermediate router

R5, and then eliminates 2 router-stage latency and blocking

latency from contending packets at R2 and R6, at the cost of

only one router-stage latency at R5. As shown in Fig. 1(c),

when using our proposed flexible routing, the schedule length

of the given application only requires 14 time units. While

for the current XY routing, similar to Fig. 1(c), the schedule

length of the given application at least requires 23 time units.

To increase bypass utilization and reduce the end-to-end la-

tency, the contention between source-destination pairs should

be minimized based on the whole platform (i.e., Fig. 1). Here

in this paper, on top of SMART [1], [2], we thus propose a

routing strategy to achieve contention minimized bypassing.

As a result, the bypass is fully and maximally utilized, and in

turn, the schedule length of applications is further reduced.

IV. CONTENTION MINIMIZED ROUTING

Since SMART is very sensitive to contentions, the single-

cycle single-bypass path from source to destination will be

broken when contention occurs under the current XY routing

even if alternative routes exist, thus degrading SMART perfor-

mance. It is natural to achieve contention minimized bypassing

from the perspective of flexible route selection.

A. Outline of the Routing Strategy

Algorithm 1: Outline of the Routing Strategy

Input: The set of unassigned source-destination pairs P;

Network state Π;

Output: Route γi for each pair pi ∈ P;

1 while (P �= φ) do
2 pi = SelectPair(P,Π);//Section IV-B;

3 γi = AssignRoute(pi,Π);//Section IV-C;

4 Update(γi,Π);

5 P = P − {pi};

Our route assignment is conducted by SMART scheduler

according to the current “network state” (actually the route

allocation state) at design time. For a given DAG-modeled ap-

plication (i.e., Fig. 1(a)), there are multiple source-destination

pairs remaining to be assigned route. Considering the relative

order of these pairs to be assigned and the way for route

selection from multiple route candidates, our route allocation

is split into two steps. The outline of our routing strategy

is listed in Algorithm 1. Before the scheduled application

begins execution, for its unassigned communication pairs, we

firstly select a pair that has the least number of possible idle

routes using the function SelectPair in Line 2. Then, for

all the idle route candidates of the selected pair, the route

that has minimal resource usage and minimum impact on

potential routes of unassigned pairs is chosen by the function

AssignRoute in Line 3. Finally, the “network state” is

updated, and the loop is repeated if P �= φ.

B. Possible Routes for Unassigned Pairs

In this section, we aim to select a pair to be assigned

from P . The way to select pair is to choose the one that

has the least number of possible routes, since other remaining

pairs with a larger number of possible routes can tolerate

more potential contentions. Thus, we firstly search for the

number of potential routes for each pair. If the single-bypass

paths through dimension-order routing (i.e., XY, YX) are

not available, to avoid contention, we instead turn to find a

contention-free double-bypass path via an intermediate router

to eliminate blocking latency. That is, select an appropriate

intermediate router first, route to that intermediate router, and

then route from the intermediate router to destination. Due to

only one turn permission within each HPCmax quadrant to

reduce SSR overhead in 2D-Mesh SMART [1], an available

dimension-order route [3] is employed in each bypass phase.

Why we did not choose a contention-free path via multiple

intermediate routers? The reasons are twofold. On the one

hand, due to the limitation of the single directed link between

PE and its attached router, a tile (binding a PE and a router to-

gether) can at most simultaneously send and receive a packet,

respectively. The number of source-destination pairs is upper-

bounded by K2 in K×K 2D-Mesh SMART. Besides, due to

the phenomenon of dark silicon [13]–[15], a large portion of

cores cannot be utilized to guarantee safe chip temperature.

The communication resources are redundant since they are

not fully utilized, thus we can find a contention-free double-

bypass path via an intermediate router in most cases. On the

other hand, adopting multiple intermediate routers will bring

significant router-stage latency that may be higher than its

blocking latency when using the original conflicting route.

Hence, considering multiple intermediate routers might not be

helpful, and in this paper, we only consider the routing path

via at most an intermediate router. To facilitate analysis, for

a given source-destination pair pi, we identify its contention-

free possible routes as direct route and indirect route:

(0,3) (1,3) (2,3) (3,3)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

(b) Double-bypass Indirect route

d

s

(a) Single-bypass Direct route

(0,3) (1,3) (3,3)

(0,2) (2,2) (3,2)

(0,1) (2,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

d

s

bypass
1single bypass

bypass
2

(2,1)

(2,3)

(1,1)

(1,2)

Fig. 2: Direct and indirect routes illustration for a source-

destination communication pair from s = (0,0) to d = (2,2).

• If there exists a contention-free single-bypass route using

dimension-order routing from source to destination ac-

cording to the current network state, such route is denoted

as direct route, highlighted in gray of Fig. 2(a).

• If there exists a contention-free double-bypass route via

an intermediate router (i.e., R(1,3)) from source to desti-

nation, such route is denoted as indirect route, highlighted

in gray of Fig. 2(b).

If we choose the source or destination itself as the interme-

diate router, the derived indirect route is essentially a direct

route. To obtain the number of possible idle routes according

207

3C-3

to the current network state, we search for the possible routes

by choosing all of the routers in the allocated region as

the intermediate router in turn, where the destination can be

reached with the same latency through any double-bypass

indirect route. In Algorithm 2, the function GetDiPaths
returns the direct routes by choosing the source or desti-

nation router as the intermediate router; while the function

GetIdPaths returns the indirect routes by choosing other

routers as the intermediate router. Then, summarize all the

distinct routes as the contention-free route candidate set Si

for each pair pi in Line 4. Finally, we select a pair that has

the least number of possible routes to be assigned route, since

other remaining unassigned pairs that have a larger number of

possible routes can tolerate more potential contentions. Note

that, when “|Si| == 0” meaning that it cannot find a(n) direct

or indirect route, we let it be assigned later.

Algorithm 2: SelectPair(P,Π)

Input: The set of unassigned pairs P; Network state Π;

Output: A selected pair pi to assign route;

1 S1 = GetDiPaths(p1,Π) ∪GetIdPaths(p1,Π);
2 min = |S1|, min pair = p1;

3 for (pi ∈ P/{p1}) do
4 Si = GetDiPaths(pi,Π) ∪GetIdPaths(pi,Π);
5 if (|Si| > 0 and |Si| < min) then
6 min = |Si|;
7 min pair = pi;

8 Return min pair;

C. Route Allocation for Selected Pair

In this section, we aim to assign an optimal route from

the route candidates to the selected pair of Section IV-B.

To find such a route, there are two influence factors to be

considered when making a decision. Firstly, since communica-

tion resources (i.e., router, link) are limited, the long-distance

route holding more resources will consume more energy and

cause more potential contentions on unassigned pairs. Thus,

the distance of the desired route should be as short as possible.

Secondly, if there are multiple route candidates with the same

distance, the impact of the desired route, caused to potential

direct routes of these pairs that will be assigned route in the

near future, should be also minimized. Depending on whether

the two types of route sets (i.e., direct route set SD
i , indirect

route set SI
i) are empty, our route selection is divided into

three cases to deal specifically with in Algorithm 3.

Case 1: Direct route set is not empty. For the selected

pair pi, we firstly derive the direct route set SD
i by using

the function GetDiPaths in Line 3. There are at most two

contention-free direct dimension-order routes (i.e., XY, YX

route). The route that causes less impact to unassigned pairs

is selected if both of direct routes exist in Line 5, where the

impact is estimated using the method of Case 2.

Case 2: Indirect route set is not empty. In this case, since

direct routes are occupied by other pairs, we thus turn to find

an optimal indirect route for the selected pair. The principle

behind indirect route selection is to minimize resource usage

(manhattan distance) and impacts caused to potential direct

routes of unassigned pairs. The source-destination pair from

s = (1,1) to d = (3,4) in Fig. 3 illustrates how to select

intermediate router. The candidates of the intermediate router

are classified as multiple layers (i.e., L0, L1) based on

manhattan distance. The indirect route via these intermediate

routers belonging to L0 has a minimum distance from the

source to destination, and its distance is added by 2 via the in-

termediate routers in the adjacent outer layer. To reduce energy

consumption and potential contention with unassigned pairs,

the indirect route via intermediate routers of the innermost

layer is chosen first, since the minimal route occupies minimal

resources. If not found in the inner layer, the intermediate

router candidates of the outer layer would be checked.

For each of indirect route candidates of each layer, to

estimate the impact caused to unassigned pairs, two variables

are defined in Line 1: min factor recording the minimum

impact of route candidates, and impact factor recording the

impact of the current candidate. The variable D in Line 7

is initialized as the manhattan distance between source and

destination. Define Simd as the set of intermediate routers

that pi transfers towards the destination. For the router set

Simd of each layer, all of the possible indirect routes via

Ri ∈ Simd are collected into SI
i according to the current

network state in Line 9. To choose the route that minimizes

the impacts caused to potential direct routes (derived by

GetDorPaths) of unassigned pairs, the impact of each pathi

in SI
i is estimated from Line 11 to 16. Let Sunassigned denote

the set of pairs remaining to be assigned. Then, if pathi

shares links with any of direct route of pj ∈ Sunassigned,

the variable impact factor will be added by 1. This is

because, when the potential direct route of pj is occupied

in advance, the packets generated by pj may turn to find

indirect routes via an intermediate router, thus leading to extra

router-stage latency. But for pi, picking any of the indirect

route of SI
i up can be accepted, due to the same distance

of these indirect routes. Thus, an existing indirect route with

minimum impact is selected via an intermediate router of the

inner layer. However, there is a chance that indirect routes

are not found via an intermediate router of the inner layer. In

this case, the function AssignRoute in turn tries to find an

(0,3) (1,3) (2,3) (3,3)

(0,2) (1,2) (2,2) (3,2)

(0,1) (1,1) (2,1) (3,1)

(0,0) (1,0) (2,0) (3,0)

s

d

Layer Number

(4,3) (5,3)

(4,2) (5,2)

(4,1) (5,1)

(4,0) (5,0)

(0,4) (1,4) (2,4) (3,4) (4,4) (5,4)

(0,5) (1,5) (2,5) (3,5) (4,5) (5,5)

L1

L1

L1

L1

L1

L1L1

L1

L1

L1

L1

L1 L1 L1

L2

L3

L3L2

L2

L2

L2L0L0

L0

L0

L0

L0

L0 L0

L0

L0

L2

L2

L2

Innermost Layer

Coordinate

Fig. 3: Illustration of intermediate router selection for the

communication pair from s = (1,1) to d = (3,4).

208

3C-3

Algorithm 3: AssignRoute(pi,Π)

Input: The selected pair pi; Network state Π for

allocated K ×K 2D-Mesh SMART region;

Output: Route γi for the selected pair pi;
1 γi = null,min factor = 0, impact factor = 0;

2 //Case 1: contention-free direct route exists;

3 SD
i = GetDiPaths(pi,Π);

4 if (|SD
i | �= 0) then

5 γi = MinImpactPath(SD
i);

6 //Case 2: contention-free indirect route exists;
7 D = ManD(Rs, Rd);//manhattan distance;
8 while (Simd = {Ri|ManD(Rs, Ri) +ManD(Ri, Rd) = D, 0 ≤
Ri.x < K, 0 ≤ Ri.y < K}, D + = 2) do

9 SI
i = GetIdPathsByImd(pi, Simd,Π);

10 if (SI
i �= φ) then

11 for (pathi ∈ SI
i) do

12 for (pj ∈ Sunassigned) do
13 SD

j = GetDorPaths(pj);

14 for (pathj ∈ SD
j) do

15 if (pathi ∩ pathj �= φ) then
16 impact factor ++; break;

17 if (min factor == 0) then
18 min factor = impact factor;

19 if (impact factor < min factor) then
20 min factor = impact factor;
21 γi = pathi;

22 impact factor = 0;

23 //Case 3: both direct and indirect route sets are empty;
24 if (γi == null) then
25 γi = GetXY Path(pi);

26 Return γi;

alternative indirect route from the adjacent outer layer, without

performance degradation of any found indirect route. We can

finally find the optimal route (from SI
i) that has minimum

distance and minimizes the impact caused to these pairs that

will be assigned route later.

Case 3: Direct and indirect route sets are empty. When

increasing the traffic in SMART NoCs, the indirect route

still may be not found although this event occurs with low

probability. In such a case, the XY route is returned by default

in Line 24, and the packets generated by the selected pair will

transmit as far as they can towards the destination.

D. Analysis of Time Complexity and Feasibility

Combining algorithms 1 - 3, the time complexity is

O(|P|2 · K2), where |P| is the number of communication

pairs and K is the mesh size of the allocated region. Thus,

our proposed algorithm can be solved in polynomial time. To

achieve flexible route selection, such a proposed algorithm can

be integrated into the SMART scheduler that conducts task

mapping and route calculation. We can calculate the routing

path based on the given vertex-to-core mapping of DAG task

(i.e., Fig. 1(a)) at design time according to the remaining link

utilization in the allocated region. In this way, the derived

route information is delivered to the source of communication

pairs through the control network in advance before they

demand [1], thus the running time of the proposed routing

algorithm is not the main concern. After that, the multi-

hop path setup process follows the original SMART after

obtaining the route information at runtime. The deadlock-free

transmission is guaranteed by additional efforts. For example,

the virtual channels are classified 2 classes, one for XY routing

and another for YX routing. Therefore, the proposed routing

which takes negligible time is feasible for SMART without

hardware modification, and can be also applicable for evolved

SMART NoCs (i.e., [16]–[18]). The bypass is fully utilized

by employing nearly contention-free routing, and thus the

performance of SMART is greatly enhanced.

V. EXPERIMENTAL EVALUATION

A. Experimental Settings

In this section, we conduct a set of experiments to verify

the performance of our proposed routing in SMART NoCs.

The platform we considered in this paper adopts 4× 4, 6× 6
and 8×8 2D-Mesh SMART NoCs. Based on these platforms,

assume the maximum bypass hop count HPCmax = 9 within a

1GHz cycle [1]. We conduct experiments with C++ program-

ming environment, on which we achieve our proposed routing

algorithm based on four classic synthetic traffic patterns [3].

For a given source coordinate (sx, sy) with radix-k, the des-

tination coordinate (dx, dy) of UniformRandom = random

node, BitComplement = (k−1−sx, k−1−sy), Transpose =

(sy, sx) and Tornado = (sx+�k2 �−1 mod k, sy). To compare

the performance of our proposed routing algorithm, we divide

our algorithm into two slightly different schemes. Let RA1

denote the basic routing scheme which only considers resource

usage minimization; while a more advanced routing scheme

RA2 considers both resource usage and potential impact min-

imization. Besides, these results obtained from applicable XY

routing in traditional and SMART NoCs are also compared.

All of the final results are averaged and normalized to the

results obtained with XY routing in SMART NoCs.

B. Evaluation Results

Fig. 4 shows results of our experiments. Since our routing

always considers to select a contention-free single-bypass

direct route or double-bypass indirect route, conflicting pairs

are isolated due to flexible routing. Thus, our routing algorithm

can improve the performance significantly, compared with

the current XY routing in SMART. Specifically, through the

shown results in Fig. 4, there are some derived observations.

Firstly, due to the increase of single-cycle bypass utilization,

the performance of SMART can obtain averagely 40.7%
improvement, compared with traditional counterpart. More

specifically, in SMART NoCs, packets always bypass the

intermediate routers where no contention occurs along the path

to the destination. In the best case, packets are transmitted to

the destination via a single-cycle single-bypass path.

Secondly, in SMART NoCs, both our routing schemes

RA1 and RA2 perform better than the current XY routing.

Specifically, RA1 and RA2 achieve averagely 19.7% and 22.6%
improvement. This is because, our routing strategy always al-

ternatively selects a contention-free single-bypass direct route

or double-bypass indirect route when potential contention

occurs, and then eliminates blocking latency from higher-

priority packets. Note that, although packets utilizing a double-

bypass indirect route will be buffered at intermediate routers

209

3C-3

UniformRandom BitComplement Transpose Tornado
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

N
or

m
al

iz
ed

 A
ve

ra
g

e
La

te
nc

y

4*4 2D-Mesh NoC

XY-Traditional NoC
XY-SMART NoC
RA1-SMART NoC
RA2-SMART NoC

UniformRandom BitComplement Transpose Tornado
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

N
or

m
al

iz
ed

 A
ve

ra
g

e
La

te
nc

y

6*6 2D-Mesh NoC

UniformRandom BitComplement Transpose Tornado
0

0.5

1

1.5

2

2.5

N
or

m
al

iz
ed

 A
ve

ra
g

e
La

te
nc

y

8*8 2D-Mesh NoC

XY-Traditional NoC
XY-SMART NoC
RA1-SMART NoC
RA2-SMART NoC

XY-Traditional NoC
XY-SMART NoC
RA1-SMART NoC
RA2-SMART NoC

Fig. 4: Performance comparison in terms of normalized average latency (in cycles) of XY routing in traditional NoC, XY

routing, a proposed basic routing RA1 and a proposed more advanced routing RA2 in SMART NoCs under synthetic traffics.

with a router-stage latency, such latency is almost negligible

compared with blocking latency of original conflicting route.

Finally, although RA1 and RA2 both consider to flexibly se-

lect a contention-free route with minimum manhattan distance,

they are slightly different in routing performance. Specifically,

the results obtained by the more advanced routing RA2 demon-

strates 2.9% improvement than RA1. This is because, when

there are multiple contention-free indirect route candidates

with the same distance, RA2 tends to select the one that causes

minimum impact to potential direct routes of unassigned pairs,

such that these unassigned pairs have more probability to find

a single-bypass direct route successfully, thus in turn further

reducing communication latency.

VI. CONCLUSION AND FUTURE WORK

Although SMART is promising for NoC-based many-core

systems, the contention issue cannot be efficiently solved, and

then bypass cannot be fully utilized, which in turn reduces

the benefits that SMART offers. In this paper, we propose a

system-level contention minimized routing strategy at design

time: when potential contention is detected with original route,

we alternatively select a contention-free single-bypass direct

route or double-bypass indirect route. The contention-induced

communications are isolated by using alternative routes, which

in turn improves SMART performance due to the improve-

ment of bypass utilization. In future work, to increase resource

utilization, we are planning to extend the design-time route

decision to a runtime one, and hide its path calculation time.

ACKNOWLEDGMENTS

This work is partially supported by MoE AcRF Tier 2

MOE2019-T2-1-071 and Tier 1 MOE2019-T1-001-072, NTU

NAP M4082282 and SUG M4082087, Singapore. Thanks to

Dr. Jun Zhou, Hui Chen and the others from NTU of Singapore

for their efforts to improve the equality on this paper.

REFERENCES

[1] T. Krishna, C.-H. O. Chen, W. C. Kwon, and L.-S. Peh, “Breaking
the On-chip Latency Barrier Using SMART,” in 2013 IEEE 19th
International Symposium on High Performance Computer Architecture
(HPCA). IEEE, 2013, pp. 378–389.

[2] C.-H. O. Chen, S. Park, T. Krishna, S. Subramanian, A. P. Chandrakasan,
and L.-S. Peh, “SMART: A Single-cycle Reconfigurable NoC for SoC
Applications,” in Design, Automation & Test in Europe Conference &
Exhibition (DATE), 2013. IEEE, 2013, pp. 338–343.

[3] W. J. Dally and B. P. Towles, Principles and Practices of Interconnection
Networks. Elsevier, 2004.

[4] J. Kim, W. J. Dally, and D. Abts, “Flattened Butterfly: A Cost-efficient
Topology for High-radix Networks,” in ACM SIGARCH Computer
Architecture News, vol. 35, no. 2. ACM, 2007, pp. 126–137.

[5] U. Y. Ogras and R. Marculescu, “It’s a Small World After All:
NoC Performance Optimization Via Long-Range Link Insertion,” IEEE
Transactions on very large scale integration (VLSI) systems, vol. 14,
no. 7, pp. 693–706, 2006.

[6] C. Jackson and S. J. Hollis, “Skip-links: A Dynamically Reconfiguring
Topology for Energy-efficient NoCs,” in 2010 International Symposium
on System on Chip. IEEE, 2010, pp. 49–54.

[7] C.-L. Chou and R. Marculescu, “Contention-aware Application Mapping
for Network-on-Chip Communication Architectures,” in 2008 IEEE
International Conference on Computer Design. IEEE, 2008, pp. 164–
169.

[8] L. Yang, W. Liu, P. Chen, N. Guan, and M. Li, “Task Mapping on
SMART NoC: Contention Matters, not the Distance,” in 2017 54th
ACM/EDAC/IEEE Design Automation Conference (DAC). IEEE, 2017,
pp. 1–6.

[9] B. K. Daya, L.-S. Peh, and A. P. Chandrakasan, “Quest for High-
performance Bufferless NoCs with Single-cycle Express Paths and Self-
learning Throttling,” in 2016 53nd ACM/EDAC/IEEE Design Automa-
tion Conference (DAC). IEEE, 2016, pp. 1–6.

[10] K. Duraisamy and P. P. Pande, “Performance Evaluation and Design
Trade-offs for Wireless-enabled SMART NoC,” in 2017 Design, Au-
tomation & Test in Europe Conference & Exhibition (DATE). IEEE,
2017, pp. 1360–1365.

[11] W. Liu, P. Chen, L. Yang, M. Li, and N. Guan, “Work-in-Progress:
Fixed Priority Scheduling of Real-time Flows with Arbitrary Deadlines
on SMART NoCs,” in 2017 International Conference on Embedded
Software (EMSOFT). IEEE, 2017, pp. 1–2.

[12] B. K. Joardar, K. Duraisamy, and P. P. Pande, “High performance
collective communication-aware 3D Network-on-Chip architectures,” in
Design, Automation & Test in Europe Conference & Exhibition (DATE),
2018. IEEE, 2018, pp. 1351–1356.

[13] W. Liu, L. Yang, W. Jiang, L. Feng, N. Guan, W. Zhang, and
N. Dutt, “Thermal-Aware Task Mapping on Dynamically Reconfigurable
Network-on-Chip Based Multiprocessor System-on-Chip,” IEEE Trans-
actions on Computers, vol. 67, no. 12, pp. 1818–1834, 2018.

[14] M. Li, W. Liu, L. Yang, P. Chen, and C. Chen, “Chip Temperature
Optimization for Dark Silicon Many-core Systems,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 37,
no. 5, pp. 941–953, 2017.

[15] L. Yang, W. Liu, N. Guan, M. Li, P. Chen, and H. Edwin, “Dark
Silicon-aware Hardware-software Collaborated Design for Heteroge-
neous Many-core Systems,” in 2017 22nd Asia and South Pacific Design
Automation Conference (ASP-DAC). IEEE, 2017, pp. 494–499.

[16] X. Chen and N. K. Jha, “Reducing Wire and Energy Overheads of the
SMART NoC Using a Setup Request Network,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 24, no. 10, pp. 3013–
3026, 2016.

[17] Y. Asgarieh and B. Lin, “Smart-Hop Arbitration Request Propagation:
Avoiding Quadratic Arbitration Complexity and False Negatives in
SMART NoCs,” ACM Transactions on Design Automation of Electronic
Systems (TODAES), vol. 24, no. 6, p. 64, 2019.

[18] I. Pérez, E. Vallejo, and R. Beivide, “SMART++: Reducing Cost and
Improving Efficiency of Multi-hop Bypass in NoC Routers,” in Pro-
ceedings of the 13th IEEE/ACM International Symposium on Networks-
on-Chip. ACM, 2019, p. 5.

210

3C-3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

