
FTT-NAS: Discovering Fault-Tolerant Neural Architecture

Wenshuo Li1,2∗, Xuefei Ning1,2∗, Guangjun Ge1,2, Xiaoming Chen3, Yu Wang1,2, Huazhong Yang1,2
1Department of Electronic Engineering, Tsinghua University, Beijing, China

2Beijing National Research Center for Information Science and Technology, Beijing, China
3State Key Laboratory of Computer Architecture, Institute of Computing Technology, CAS, Beijing, China

1e-mail: yu-wang@tsinghua.edu.cn

Abstract—With the fast evolvement of deep-learning specific
embedded computing systems, applications powered by deep
learning are moving from the cloud to the edge. When deploy-
ing NNs onto the edge devices under complex environments, there
are various types of possible faults: soft errors caused by atmo-
spheric neutrons and radioactive impurities, voltage instability,
aging, temperature variations, and malicious attackers. Thus
the safety risk of deploying neural networks at edge computing
devices in safety-critic applications is now drawing much atten-
tion. In this paper, we implement the random bit-flip, Gaussian,
and Salt-and-Pepper fault models and establish a multi-objective
fault-tolerant neural architecture search framework. On top of
the NAS framework, we propose Fault-Tolerant Neural Archi-
tecture Search (FT-NAS) to automatically discover convolutional
neural network (CNN) architectures that are reliable to various
faults in nowadays edge devices. Then we incorporate fault-
tolerant training (FTT) in the search process to achieve better
results, which we called FTT-NAS. Experiments show that the
discovered architecture FT-NAS-Net and FTT-NAS-Net outper-
form other hand-designed baseline architectures (58.1%/86.6%
VS. 10.0%/52.2%), with comparable FLOPs and less parameters.
What is more, the architectures trained under a single fault model
can also defend against other faults. By inspecting the discov-
ered architecture, we find that there are redundant connections
learned to protect the sensitive paths. This insight can guide fu-
ture fault-tolerant neural architecture design, and we verify it by
a modification on ResNet-20 — ResNet-M.

I. INTRODUCTION

Convolution Neural Networks (CNN) have achieved break-

throughs in various tasks, including classification [1], detec-

tion [2] and segmentation [3], etc. Due to its promising per-

formance, CNNs have been utilized in various safety-critic

applications, such as autonomous driving, intelligent surveil-

lance, and identification. In recent years, driven by academic

and industrial efforts, the embedded neural network accelera-

tors [4, 5] have been rapidly evolving. With the help of model

compression and quantization techniques [6, 7], CNNs are be-

coming more light-weighted, thus more suitable to be deployed

onto edge computing devices. For hardware-aware neural ar-

chitecture design, researchers have also designed neural archi-

∗Both authors contributed equally to this work.

tectures that are efficient on mobile phones [8].

Despite the promising performance, the safety and relia-

bility related characteristics of neural networks are widely

doubted, thus are attracting more efforts into addressing these

issues. In safety-critic applications, there are a lot of safety

risks: With the down-scaling of CMOS techniques, circuits be-

come more sensitive to soft errors, coming from atmospheric

neutrons and radioactive impurities [9]. Voltage instability, ag-

ing and temperature variations are also common problems for

edge computing devices, which could lead to an error. More-

over, malicious attackers may influence the results by embed-

ding hardware Trojans, manipulating back-doors, and do mem-

ory injection. As the decisions made by neural network lack

interpretability and accountability, it is difficult to conduct risk

aversion, especially in the complex edge computing scenarios.

Recently, some studies [10, 11] are devoted to analyzing the

sensitivity of the model. They proposed to predict whether a

neuron is sensitive to faults and then protected the sensitive

ones. For fault tolerance, a straightforward way is to intro-

duce redundancy in the hardware. Triple Modular Redundancy

(TMR) is a commonly used but expensive method to ensure

that the system works normally with a single fault. For in-

creasing the fault tolerance capability from the model perspec-

tive, fault-tolerant training (FTT) is usually used [12, 13, 14],

in which faults are injected in the training process.

Although redesigning the hardware for reliability is effec-

tive, it inevitably introduces large overhead. It would be bet-

ter if the issue could be mitigated as far as possible from the

algorithmic perspective. Existing methods mainly concerned

about designing training methods and analysing the sensitivity.

Intuitively, the neural architecture is also important for fault

tolerance [15], since it determines the “path” of fault propaga-

tion. To verify this intuition, we show the accuracy of baselines

under random bit-flip fault model1 with different fault proba-

bilities in Table I. This preliminary exploration showed that

the fault tolerance characteristics vary between neural architec-

tures, which motivates the employment of the NAS technique

into the designing of a fault-tolerant neural architecture.

In this paper, we employ Neural Architecture Search (NAS)

to discover a fault-tolerant neural network architecture, and

demonstrate the effectiveness by experiments. The main con-

tributions of this paper are as follows.

1The random bit-flip fault model is formalized in Sec III.

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE 211

3D-1

• We establish a multi-objective fault-tolerant neural ar-
chitecture search framework. On top of the framework,

we propose two methods to discover neural architec-

tures with better reliability: FT-NAS (NAS with a fault-
tolerant multi-objective), and FTT-NAS (NAS with a

fault-tolerant multi-objective and fault-tolerant training).

• The discovered architectures FT-NAS-Net and FTT-NAS-
Net achieve 58.1% and 86.6% accuracy on CIFAR-10 at

fault ratio 5%, which is much better than the baselines

without/with fault-tolerant training (10%/52.2%). The

abilities of our models to defense against different fault

models are also illustrated by experiments.

• Draw insights and verify them from the inspection of

discovered FTT-NAS-Net: There are redundant connec-

tions learned in the architecture to protect these sensitive

paths. This insight can guide future fault-tolerant neural

architecture design, and we verify it by a modification on

ResNet-20. The modified version ResNet-M outperforms

the original ResNet-20.

TABLE I

INFORMATION OF THE BASELINE MODELS ON CIFAR-10

Model Acc.(0/0.5%/1%) #Params #FLOPs

ResNet-20 93.2/84.0/65.4 11.2M 1110M

VGG-161 91.5/76.7/55.0 14.7M 626M

MobileNet-V22 92.5/34.1/15.3 8.06M 675M

II. RELATED WORK

A. Fault Resilience

There are some related studies on the hazard of faults in neu-

ral network computing systems. [9] revealed advanced nan-

otechnology might make circuits more sensitive to electronic

noise, which causes soft errors. [16, 15] explored how the Sin-

gle Event Upset (SEU) faults impact the FPGA-based CNN

computation system. SEU is a phenomenon in which a sin-

gle particle strikes an electronic device to cause a change in

state. [17, 18] provided possible attack methods to interfere

with the output of the neural network. SEUs and attacks could

be simulated with random bit-flips in the computation. [10, 11]

analyzed the robustness of neural networks from the view of

algorithms with Stuck-at-Fault (SaF) model.

The methods to improve the fault resilience ability of neu-

ral computation system mainly fall into two categories: fault

tolerance and fault detection. As for fault tolerance, [19, 20]

proposed to protect partial sensitive parameters or layers to

balance the overhead and effectiveness. [12, 13, 14] showed

that fault-tolerant training is useful to improve the reliability of

neural networks. For the fault detection regime, Error Correc-

tion Code (ECC) is a powerful method to detect faults. [21] de-

tected faults by checking the code after computation and then

tried to repair it. There are also platform-specific detection and

fault-tolerant methods proposed [12].

1For simplicity, we only keep one fully-connected layer of VGG-16.
2For fair comparison, we double the channels of MobileNet-v2.

B. Neural Architecture Search

Neural Architecture Search (NAS), as an automatic neural

network architecture design method, has been recently applied

to design model architectures for image classification and lan-

guage models [22, 23, 24]. The architectures found by the NAS

techniques have demonstrated surpassing performance than the

hand-designed ones. [22] proposed NASNet in 2017. They

used a recurrent neural network (RNN) controller to sample ar-

chitectures, trained them, and use the final validation accuracy

to instruct the learning of the controller. Instead of using RL-

learned RNN as the controller, [24, 25] used a relaxed differ-

entiable formulation of the neural architecture search problem,

and applied gradient-based optimizer for optimizing the archi-

tecture parameters; [26, 27] used evolutionary-based methods

for sampling new architectures. Although NASNet [22] is

powerful, the searching process is extremely slow and com-

putationally expensive. To address this pitfall, a lot of meth-

ods are proposed to speed up the performance estimation in

NAS. [28] incorporated learning curve extrapolation to predict

the performance after a few epochs of training; [26, 27] sam-

pled architectures using mutation on existing trained models

and initialized the weights of the sampled architectures by in-

heriting from the parent model; [23] shared the weights among

different sampled architectures, and using the shared weights

to evaluate every sampled architecture.

NAS is also used with various objectives other than accu-

racy. [25, 29] used multiple objectives to learn architectures

with better accuracy and lower latency simultaneously.

III. FAULT MODEL

Denoting the input, output, weights and bias of i-th layer as
xi, yi,Wi, bi, the computation of a convolution layer is:

yi = f(Wi � xi + bi) (1)

where f(·) represents the activation functions, for which ReLU
f(x) = max(x, 0) is the most-common choice.
Currently, fixed-point computations are used by most edge

devices, thus quantization is usually applied before the model

is deployed onto the edge devices [5]. Thus, our simulation

incorporates 8-bit quantization for the weights and activations,

to keep consistent with the actual deploying scenario.

Our fault model used in training and search is random bit-

flip, which is an approximation of SEUs. Denoting the di-

mension of the output feature map as (C,H,W) (channel,
height, and width, respectively), the computation of a convolu-

tion layer under this fault model could be written as

yi = f(Wi � xi + bi + θi · 2αi · (−1)βi)

θi ∼ Bernoulli(p)C×H×W

αi ∼ U{0, · · · , Q− 1}C×H×W

βi ∼ U{0, 1}C×H×W

(2)

where Q represents the fixed-point width, θi is the mask in-
dicating whether some fault is triggered at each position, αi

212

3D-1

represents which bit is flipped, βi represent the flip orientation

(positive or negative). Note that we implement bit-flip as a bias

added to the feature map for efficient simulation.

Besides random bit-flips, we implement other fault models

including Gaussian noise and Salt-and-Pepper noise. Gaussian

noise can simulate faults such as thermal noise [13]. Salt-and-

Pepper noise is a common noise model in the area of computer

vision. We test the defense ability of our models trained under

the random bit-flip fault model to all these fault models.

IV. FAULT-TOLERANT NAS

A. Framework Overview

There are multiple components in our Neural Architecture

Searching (NAS) framework: A controller that samples dif-
ferent architecture rollouts from the search space; A shared
weights based evaluator that evaluate the performance of dif-
ferent rollouts on the CIFAR10 dataset, using fault-tolerant
objectives. And the shared weights are trained using fault-
tolerant training in FTT-NAS. The overall NAS framework is

illustrated in Fig 1.

����
����	�

�	

�
�
����	

�������

���	
�

�
��
�
��

����
���	�����
�
����

�	����
����	����

�	
���	��
�����
�

�������

����
�
��

����
	�� �	��������
	
��
� !����"�

Fig. 1. Illustration of the NAS framework.

B. Search Space

The design of the search space is as follows: We use a cell-

based macro architecture, similar to the one used in [23, 24].

There are two types of cells: normal cell, and reduction cell

with stride 2. The layout and connections between cells are il-

lustrated in Fig 2. In every cell, there areB nodes, node 1 and 2
are treated as the cell’s inputs, which are the outputs of the two

previous cells. The following preprocess operations refer to a

ReLU-Conv-BN block used to adjust channels. For each of the

other B − 2 nodes, two in-coming connection will be selected
and element-wise added, and for each connection, the 7 pos-

sible operations are: none; skip connect; 3x3 average (avg.)

pool; 3x3 max pool; 1x1 Conv; 3x3 ReLU-Conv-BN block;

5x5 ReLU-Conv-BN block. We selected these operations ac-

cording to a simple evaluation of hand-designed models.

The complexity of the search space can be estimated. For

each cell type, there are (7(B−2)×(B−1)!)2 possible choices.
As there are two independent cell types, there are (7(B−2) ×
(B − 1)!)4 possible architecture in the search space, which is
roughly 6.9× 1021 with B = 6 in our experiments.

C. Sampling and Assembling Architectures

In our experiments, the controller is a recurrent neural net-

work (RNN), and the performance evaluation strategy is based

����

��
��������

����	�

��
��������

����	�

�"
�����#�
��

��
��������

��
��������

��
��������

��
��������

�
��
�	��� �
��
�	���

�
����
���

������
���

�������	
�����
�� ��
�
�� �����	�

�	�
�� $�$��"�
�
�������

�� $�$����������

�� ������
"
�� $�$��������
"�������	�
�� %�%��������
"�������	�

�

�

�

�

�

�
����
���

Fig. 2. Illustration of the search space design. Left: The layout and
connections between cells. Right: The possible connections in each cell, and

the possible operation types on every connection.

����������

���	
�����

�	
�	
�����

�

�

�

�

�

�

�
����� ���������
���������

����

���������

���
����

���������

����

���	
�����

����������

Fig. 3. An example of the sampled cell architecture.

on a super network with shared weights, as used by [23].

An example of the sampled cell architecture is illustrated in

Fig 3. Specifically, to sample a cell architecture, the controller

RNN samples B − 2 blocks of decisions, one for each node
3, · · · , B. In the decision block for node i,M = 2 input nodes
are sampled from 1, · · · , i − 1, to be connected with node i.
Then M operations are sampled from the 7 basic operation

primitives, one for each in the M connections. Note that the

two sampled input nodes can be the same node j, which will
result in two independent connections from node j to node i.
The architecture assembling process using the shared-

weights super network is straightforward [23]: Just take out

the weights from the super network corresponding to the con-

nections and operation types of the sampled architecture.

D. Searching for Fault-Tolerant Architecture

To search for a fault-tolerant architecture, a weighted sum

of the clean accuracy and the accuracy with fault injection is

used as the reward to instruct the training of the controller:

R = (1− αr) ∗ accc + αr ∗ accf (3)

For optimization of the controller, we employ the Adam op-

timizer [30] to optimize the REINFORCE [31] objective, to-

213

3D-1

gether with an entropy encouraging regularization.

In every epoch of the search process, we alternatively train

the shared weights in the super network and the controller on

separate data splits Dt and Dv , respectively. For the training

of the shared weights, we carried out experiments under two

different settings: without/with fault-tolerant training. When

training with fault-tolerant training, we use a weighted sum of

the clean cross entropy loss CEc and the cross entropy loss

with fault injection CEf to train the shared weights:

L = (1− αl) ∗ CEc + αl ∗ CEf (4)

For each step of training the shared weights, we sample ar-

chitecture a using the current controller parameterized by θ,
then use the loss objective (with/without fault injection) to up-

date the parameters.

a ∼ π(a; θ)

xt, yt ∼ Dt

w = w − ηw∇wL(xt, yt,Net(a;w))

(5)

For each step of training the controller, we sample architec-

ture from the controller, assemble this architecture using the

shared weights, get the reward R on one batch of data in the
validation data split. Finally, this reward is used to update the

controller by applying the REINFORCE technique.

xv, yv ∼ Dv

optimize Ea∼π(a;θ)[R(xv, yv,Net(a;w))]
(6)

The result algorithm without FTT is called FT-NAS, and the

one with FTT is called FTT-NAS.

V. EXPERIMENTS

A. Setup

Our experiments are carried out on CIFAR-10 [32] dataset.

CIFAR-10 is one of the most commonly used computer vision

datasets and contains 60000 32×32 RGB images. Three hand-
designed architecture VGG-16, ResNet-20 and MobileNet-V2

are chosen as the baselines. 8-bit quantization is used through-

out the search and training process.

For the neural architecture searching process, we split the

training dataset into two subsets. 80% of the training data

is used to train the shared weights and the remaining 20% is

used to train the controller. The super network is an 8-cell net-

work, with all the possible connections and operations. The

channel number of the first cell is set to 20 during the search

process, the channel number increases by 2 upon every reduc-

tion cell. The controller network is an RNN with one hidden

layer of size 100, the learning rate of training the controller

is 1e-3. The reward baseline is updated using moving aver-

age with momentum 0.99. To encourage exploration, we add

an entropy encouraging regularization to the controller’s RE-

INFORCE objective, with a coefficient 0.01. For training the
shared weights, we use an SGD optimizer with momentum 0.9

and weight decay 1e-4, the learning rate is scheduled by a co-

sine annealing scheduler [33], started from 0.01. Note that all
these settings are typical settings similar to [23].

B. Results of FT-NAS and FTT-NAS

As described in Sec IV, we conduct neural architecture

searching without/with fault-tolerant training (i.e. FT-NAS and

FTT-NAS, correspondingly). The injection probability p used
in the search process is 0.1. The reward coefficients αr in Eq 3

is set to 0.5. The loss coefficient αl in FTT-NAS is also 0.5.
As the baselines for FT-NAS and FTT-NAS, we train

ResNet-20, VGG-16, MobileNet-V2 with both normal train-

ing and fault-tolerant training. For each model trained

with FTT, we successively try fault injection probability in

{10%, 5%, 1%}, and use the largest injection probability with
which the model could achieve a clean accuracy above 60%.

Table II shows that, basic fault-tolerant training could im-

prove the reliability of the baseline architectures, but will re-

sult in a large degradation in the normal accuracy. At various

fault ratios, variants of FT-NAS-Net and FTT-NAS-Net outper-

form the baselines significantly, while keeping the FLOPs and

parameter number at the same order of magnitude. Interest-

ingly, the FT-NAS-Net discovered by FT-NAS trained without

FTT is much more fault-tolerant than the baseline architectures

trained with FTT when the fault ratio ≤ 5%.
We apply model augmentation and reduction to the found ar-

chitectures, to explore the performance of the model at differ-

ent scales. We can see that, even with much smaller FLOPs and

parameter number, FTT-NAS-Net-10 (base of channel number

= 10) achieves much better accuracy than the baselines, e.g.
80.5% VS. 52.2% (ResNet-20) at fault ratio 5%.

C. Ability to Defense Other Fault Models

To investigate whether the model FTT-trained under the ran-

dom bit-flip fault model can tolerate other faults, we evaluate

the reliability of FTT-NAS-Net under the Gaussian Noise (e.g.

thermal noise) and the Salt-and-Pepper fault models (e.g. im-

pulse noise). As shown in Fig 4 (b)(c), models trained under

the random bit-flip fault model can defense against other fault

models, and FTT-NAS-Net still outperforms all the baseline

architectures consistently at all noise levels.

D. RNN Controller v.s. Random Sample

To demonstrate the effectiveness of the learned controller,

we random sampled 5 architectures from the search space, and
trained them with FTT for 50 epochs, using fault injection

probability of 10%.

As shown in Table III, the reliability performance of dif-

ferent architectures in the search space varies a lot, and the

architecture sampled by the learned controller FTT-NAS-Net

outperforms all the random sampled architectures.

E. Inspection of the Discovered Architecture

The discovered cell architectures are shown in Fig 5. The

controller chooses to establish double connections between

some pairs of nodes. It seems that the controller identifies

the sensitive connections in the neural architecture and then

add redundant paths to protect these nodes. Inspired by this

214

3D-1

TABLE II

COMPARISON OF DIFFERENT ARCHITECTURES

Arch Training∗ Clean

accuracy

Accuracy with random bit-flips (%)
#FLOPs #Params

0.5 1 3 5 8 10

ResNet-20 clean 93.2 84.0 65.4 13.6 10.0 10.0 10.0 1110M 11.16M

VGG-16 clean 91.5 76.7 55.0 18.0 11.2 10.0 10.0 616M 14.65M

MobileNet-V2 clean 92.5 34.1 15.3 10.0 10.0 10.0 10.0 675M 8.06M

FT-NAS-Net clean 93.3 91.7 90.4 78.2 58.1 27.2 19.2 750M 2.65M
ResNet-20 5% fault 69.0 69.2 70.3 65.0 52.2 29.8 23.4 1110M 11.16M

VGG-16 5% fault 76.4 75.3 74.3 66.3 52.8 32.0 23.7 616M 14.65M

MobileNet-V2 1% fault 91.4 89.0 84.5 10.1 10.2 10.0 10.0 675M 8.06M

ResNet-M† 5% fault 89.4 88.6 87.8 81.9 72.7 47.1 35.2 862M 8.65M

ResNet-M† 10% fault 67.4 66.8 66.5 66.6 65.2 57.2 50.9 862M 8.65M

FTT-NAS-Net-10‡ 10% fault 84.1 83.8 83.7 82.8 80.5 68.4 54.6 176M 0.63M
FTT-NAS-Net-20‡ 10% fault 90.4 90.0 89.7 88.6 86.6 81.0 73.3 704M 5.00M

FTT-NAS-Net-48‡ 10% fault 93.4 93.2 93.0 92.7 92.0 89.8 87.7 4054M 12.16M
∗: As also noted in the main text, for all the FTT trained models, we successively try fault injection probability in {10%, 5%, 1%},
and use the largest injection probability with which the model could achieve a clean accuracy above 60%.
†: Described in Sec E.
‡: The “-N” suffix represent the base of the channel number is N .

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Injection Ratio (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

FTT-NAS-Net
VGG-16
VGG-16 (5%)
ResNet-20
ResNet-20 (5%)

0 1 2 3 4 5 6 7 8 9 10
Injection Ratio (%)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Standard Deviation of Gaussian Noise

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

A
cc

ur
ac

y

(b) (c)(a)

Fig. 4. Accuracy curve under different fault models. Left: Random bit-flips. Medium: Gaussian noise. Right: Salt-and-Pepper noise.

TABLE III

RNN CONTROLLER V.S. RANDOM SAMPLE

clean acc 10% faults acc #FLOPs #Params

sample1 56.2 42.5 210M 0.75M

sample2 20.7 24.0 372M 1.29M

sample3 65.1 45.8 392M 1.40M

sample4 46.8 33.3 290M 1.08M

sample5 38.0 18.7 330M 1.01M

Ours 86.8 74.2 704M 2.53M

“double connection” structure, we design a modified version

of ResNet-20, called ResNet-Modified (abbr. ResNet-M). The

basic block of ResNet-M is shown in Fig 6. For keeping

roughly the same FLOPs and parameter number as the orig-

inal ResNet-20, the base of channels is reduced from 64 to 40.

After fault-tolerant training, ResNet-M achieved better per-

formance than ResNet-20, as shown in Table II. The improve-

ment is not only from the redundancy in the forwarding pro-

cess, but from the architecture too. To verify that, we con-

duct a simple experiment: For every convolution operation in

ResNet-20, we conduct the convolution operation twice, and

use the average of the results as the output. This naive “For-

warding Redundancy” trick achieved 57.4% accuracy under

5% random bit-flip, which is slightly better than ResNet-20

but worse than ResNet-M. Moreover, our FTT-NAS-Net is still

better than ResNet-M, indicating that FTT-NAS is effective in

identifying the sensitive connections in a neural network.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we propose the multi-objective Fault-Tolerant

NAS (FT-NAS) method and the multi-objective Fault-Tolerant

Training NAS (FTT-NAS) method, to search for the fault-

tolerant convolutional neural network architectures. In FTT-

NAS, the Neural Architecture Searching technique (NAS)

is employed in conjunction with the Fault-Tolerant Train-

ing (FTT). The discovered architectures FT-NAS-Net and

FTT-NAS-Net outperform multiple hand-designed architec-

ture baselines in reliability significantly. And the fault toler-

ance capability of FTT-NAS-Net, trained under the random

bit-flip fault model, can defense other fault models. Finally, we

draw insights from the discovered structure, which can be used

to guide future architecture design. Utilizing these insights, we

designed a modified version of the ResNet model, ResNet-M,

and verified that the modified ResNet-M can outperform the

original ResNet in unreliable settings.

For future work, the transferability of the discovered archi-

215

3D-1

normal cell

c_{k-2}
0

relu_conv_bn_5x5

relu_conv_bn_5x5

c_{k-1}

1relu_conv_bn_5x5

2
relu_conv_bn_3x3

3avg_pool_3x3

c_{k}relu_conv_bn_5x5

(a) Normal Cell
reduction cell

c_{k-2}

1

relu_conv_bn_3x3

c_{k-1}

0
relu_conv_bn_3x3

relu_conv_bn_5x5

relu_conv_bn_5x5

2avg_pool_3x3
3skip_connect c_{k}

max_pool_3x3

(b) Reduction Cell

Fig. 5. The discovered cell architectures.

� �
����
���	

�

����
���	

�

����
���	

�

����
���	

�

����
���	

�

����
���	

�

�����
������ �����
��������
Fig. 6. ResNet-M’s modification on ResNet blocks.

tecture FTT-NAS-Net to larger datasets (e.g. ImageNet) should

be evaluated. Also, taking the hardware implementation into

consideration, more realistic fault model for different types of

errors should be formalized. Another interesting direction is to

include other hardware-platform-aware objectives in the FTT-

NAS framework, to enable discovering fault-tolerant neural

network architecture with low latency or energy consumption.

ACKNOWLEDGMENTS

The work of Y. Wang and H. Yang was supported

in part by National Key R&D Program of China (No.

2016YFB0800900), a 973 project and the National Natu-

ral Science Foundation of China under Grant 61532017,

61621091. X. Chen’s work was supported by the

Beijing Academy of Artificial Intelligence under Grant

BAAI2019QN0402. The authors gratefully acknowledge the

support from TOYOTA.

REFERENCES

[1] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image

recognition,” in CVPR, 2016.

[2] W. Liu et al., “Ssd: Single shot multibox detector,” in ECCV, 2016.

[3] J. Long et al., “Fully convolutional networks for semantic segmentation,”
in CVPR, 2015.

[4] T. Chen et al., “Diannao: A small-footprint high-throughput accelerator
for ubiquitous machine-learning,” in ACM Sigplan Notices, 2014.

[5] J. Qiu et al., “Going deeper with embedded fpga platform for convolu-
tional neural network,” in FPGA. ACM, 2016, pp. 26–35.

[6] S. Han et al., “Learning both weights and connections for efficient neural
network,” in NIPS, 2015, pp. 1135–1143.

[7] I. Hubara et al., “Quantized neural networks: Training neural networks
with low precision weights and activations,” JMLR, 2017.

[8] M. Sandler et al., “Mobilenetv2: Inverted residuals and linear bottle-
necks,” in CVPR, 2018, pp. 4510–4520.

[9] J. Henkel et al., “Reliable on-chip systems in the nano-era: Lessons
learnt and future trends,” in DAC, 2013.

[10] J.-C. Vialatte and F. Leduc-Primeau, “A study of deep learning robust-

ness against computation failures,” arXiv:1704.05396, 2017.

[11] A. Bosio, P. Bernardi, A. Ruospo, and E. Sanchez, “A reliability analysis

of a deep neural network,” in LATS, 2019.

[12] L. Xia et al., “Fault-tolerant training with on-line fault detection for
rram-based neural computing systems,” in DAC, 2017.

[13] Z. He et al., “Noise injection adaption: End-to-end reram crossbar non-
ideal effect adaption for neural network mapping,” in DAC, 2019.

[14] G. B. Hacene et al., “Training modern deep neural networks for memory-
fault robustness,” in ISCAS. IEEE, 2019.

[15] A. P. Arechiga and A. J. Michaels, “The robustness of modern deep

learning architectures against single event upset errors,” in HPEC, 2018.

[16] F. Libano et al., “Selective hardening for neural networks in fpgas,” IEEE
Transactions on Nuclear Science, 2018.

[17] J. Breier et al., “Practical fault attack on deep neural networks,” in CCS,
2018.

[18] Y. Zhao et al., “Memory trojan attack on neural network accelerators,”
in DATE, 2019.

[19] X. She and N. Li, “Reducing critical configuration bits via partial tmr for

seu mitigation in fpgas,” IEEE Transactions on Nuclear Science, 2017.

[20] A. G. Christoph Schorn and G. Ascheid, “Accurate neuron resilience

prediction for a flexible reliability management in neural network accel-

erators,” in DATE, 2018.

[21] T. Liu et al., “A fault-tolerant neural network architecture,” in DAC,
2019, pp. 55:1–55:6.

[22] B. Zoph and Q. Le, “Neural architecture search with reinforcement learn-

ing,” ICLR, 2017.

[23] H. Pham et al., “Efficient neural architecture search via parameter shar-
ing,” in ICML, 2018.

[24] H. Liu, K. Simonyan, and Y. Yang, “Darts: Differentiable architecture

search,” arXiv preprint arXiv:1806.09055, 2018.

[25] B. Wu et al., “Fbnet: Hardware-aware efficient convnet design via differ-
entiable neural architecture search,” arXiv preprint arXiv:1812.03443,
2018.

[26] E. Real, A. Aggarwal, Y. Huang, and Q. Le, “Aging evolution for image

classifier architecture search,” in AAAI, 2019.

[27] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective neural

architecture search via lamarckian evolution,” ICLR, 2019.

[28] B. Baker et al., “Accelerating neural architecture search using perfor-
mance prediction,” arXiv preprint arXiv:1705.10823, 2017.

[29] M. Tan et al., “Mnasnet: Platform-aware neural architecture search for
mobile,” in CVPR, 2019, pp. 2820–2828.

[30] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”

ICLR, 2015.

[31] R. J. Williams, “Simple statistical gradient-following algorithms for con-

nectionist reinforcement learning,”Machine learning, 1992.

[32] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from

tiny images,” 2009.

[33] I. Loshchilov and F. Hutter, “Sgdr: Stochastic gradient descent with

warm restarts,” ICLR, 2017.

216

3D-1

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

