
978-1-7281-4123-7/20/$31.00 ©2020 IEEE

A Reconfigurable Approximate Multiplier
for Quantized CNN Applications

Chuliang Guo1 , Li Zhang1 , Xian Zhou1 , Weikang Qian2 , Cheng Zhuo1

1 College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, China
2 University of Michigan-Shanghai Jiao Tong University Joint Institute, Shanghai Jiao Tong University, Shanghai, China

Email: czhuo@zju.edu.cn

Abstract – Quantized CNNs, featured with different bit-
widths at different layers, have been widely deployed in mobile
and embedded applications. The implementation of a quantized
CNN may have multiple multipliers at different precisions with
limited resource reuse or one multiplier at higher precision than
needed causing area overhead. It is then highly desired to design
a multiplier by accounting for the characteristics of quantized
CNNs to ensure both flexibility and energy efficiency. In this
work, we present a reconfigurable approximate multiplier to
support multiplications at various precisions, i.e., bit-widths.
Moreover, unlike prior works assuming uniform distribution
with bit-wise independence, a quantized CNN may have
centralized weight distribution and hence follow a Gaussian-like
distribution with correlated adjacent bits. Thus, a new block-
based approximate adder is also proposed as part of the
multiplier to ensure energy efficient operation with awareness of
bit-wise correlation. Our experimental results show that the
proposed adder significantly reduces the error rate by 76-98%
over a state-of-the-art approximate adder for such scenarios.
Moreover, with the deployment of the proposed multiplier,
which is 17% faster and 22% more power saving than a Xilinx
multiplier IP at the same precision, a quantized CNN
implemented in FPGA achieves 17% latency reduction and 15%
power saving compared with a full precision case.

I. INTRODUCTION

Deep learning has achieved enormous success in the past few
years due to its accuracy, robustness, and efficiency in various
tasks. Deep learning typically employs a convolutional neural
network (CNN) architecture that may conduct millions to billions
multiply-and-accumulate (MAC) operations per second [1, 2].
Compared with the conventional machine learning techniques,
deep learning is more computationally intensive. Thus, energy
efficiency, i.e., energy consumption per operation, has become a
concern for deep learning implementation and deployment [3, 4].
This is especially true for mobile and embedded devices that are
desired to satisfy the tight power constraints [5].

The energy breakdown of a CNN indicates that with a huge
number of concurrent convolution operations from time to time,
the MAC operation appears to be the bottleneck to energy
efficiency [1, 2]. Although multiplier is a common arithmetic
component that has been widely studied for decades [6, 7], the
past focus is mainly placed upon accuracy and performance. In
order to improve its energy efficiency, parameter quantization
has been investigated to reduce the precision, i.e., bit-width, of
operands and achieve faster speed while maintaining similar
accuracy. Such a strategy can be application specific and hence
demand significant training and tuning overhead for different
scenarios.

On the other hand, due to its deep and multi-channel
structure, CNN has been found with intrinsic error tolerance.
This allows designers to step further from quantization and use

approximate arithmetic to improve energy efficiency. The
approximate arithmetic may consume less energy to compute an
approximate solution, which, however, has a minimal impact on
the ultimate accuracy of a CNN [8, 9]. Thus, approximate
computing is considered as a promising alternative to explore
trade-off between accuracy and efficiency in addition to
parameter quantization [10-12]. As the most basic arithmetic
operations, various approximate adders and multipliers have
been studied under different assumptions. One common
assumption is that the inputs are independent and uniformly
distributed, thereby reducing the occurrence probability of a long
carry chain [13, 14]. Researchers also come with various
proposals on approximations in partial products [15] and
reduction trees [16-18]. However, most designs have a fixed bit-
width and can hardly be adapted to different scenarios without
additional design efforts.

Recently, the concept of dynamic accuracy scaling (DAS)
has been proposed for the multiplier to adapt to various scenarios
without redesign [19]. The DAS multiplier employs an array
architecture as shown in Fig. 1(a) to support up to 4-bit
multiplication. When computing a multiplication with a shorter
bit-width, e.g., 2-bit, as shown in Fig. 1(b), only part of the
architecture is used to reduce its critical path length. However,
due to its diagonal critical path, when under such a scenario, the
majority of the multiplier is actually inactive, thereby causing
resource waste and actually hurting energy efficiency. The
inefficiency for such a reconfigurable array DAS multiplier is
even worse for a quantized CNN, whose weights often have a
smaller bit-width than the inputs, e.g., 8-bit weights for 16- or
32-bit inputs. Such asymmetricity in the bit-width for operands
makes a DAS multiplier unsuitable for quantized CNN
applications.

Thus, for the implementation of a quantized CNN, it is
highly desired to account for its unique characteristics to design
a multiplier with both energy efficiency and flexibility.
Apparently, this is not a trivial task. In this work, to address the
aforementioned issues, we propose a reconfigurable approximate
multiplier architecture to support multiplications at different bit-
widths. In particular, our main contributions include:
1) Reconfigurable multiplier: Instead of partial use of array

multipliers for shorter bit-width operation, we here propose
to design a multiplier that can either partition a long bit-
width multiplication to short ones and merge the results
later with a merging module, or conduct two short bit-width
multiplications in parallel. Fig. 1(c) illustrates an example
of the proposed design. Unlike the ones in Fig. 1(a) or 1(b),
the proposed design supports multiple short bit-width
multiplications in parallel without resource waste (plotted
in red and blue in Fig. 1(c) for two parallel multiplications).

2) Sign extension: An efficient sign extension scheme is key
to long bit-width multiplication partitioning and merging in

235

4B-2

a signed multiplication. Such a reconfigurable multiplier is
then particularly beneficial to a quantized CNN that may
carry different bit-widths at different layers and conduct
multiplications with unequal operands.

3) Energy efficient approximate adder: The ultimate result
of long bit-width multiplication is merged by shifting and
adding the shorter products. Due to the heavier usage of
such adders in our multiplier, a block-based approximate
adder is proposed as the merger to achieve energy
efficiency, including a sign error correction scheme for
quantized CNNs in signed digits.

4) Theoretical analysis of correlated adjacent bits for
inputs with Gaussian distribution: For a quantized CNN,
the inputs to the approximate adder in the proposed
multiplier are not necessarily uniformly distributed as
assumed in many prior works. Instead, it is more like a
Gaussian distribution, i.e., with correlation from bit to bit
(as detailed in section II-A). We provide an in-depth
analysis of the relationship between the correlation of
adjacent bits and the underlying distribution. The findings
then function as the guideline for our approximate adder
design.

Our experimental results show that the proposed approximate
adder can significantly reduce the errors for the inputs following
Gaussian distributions, with a 76-98% error reduction in
comparison with a state-of-the-art approximate adder. Based on
that, the proposed reconfigurable approximate multiplier can
achieve 19% speed up with 22% power saving over the speed-
optimized Xilinx IP. Finally, we demonstrate the efficiency of the
proposed design when deployed in a quantized VGG16 for image
classification task on ImageNet [20]. The proposed design can
obtain 17% latency reduction and 15% power saving with merely
3% accuracy loss.

Fig. 1 DAS multiplier examples for: (a) 4×4-bit multiplication;
(b) 2×2-bit multiplication, where x’s and y’s are inputs and p’s
are partial products; and (c) the proposed multiplier.

II. PRELIMINARIES AND BACKGROUND

A. Multiplication in Quantized CNN

Quantization has been proved as an effective method to achieve
energy efficiency [21-23]. Various strategies have been proposed

to conduct different levels of quantization at different CNN
layers. For example, [24] employs 16-bit feature but different
weight bit precision from 1 bit to 16 bit to achieve 50.6TOPs/W
energy efficiency. Similarly, [25] employs more aggressive
quantization to achieve a model at KB level. Thus, it has been a
common practice in both algorithm and hardware
implementations to deploy variable quantization precisions, e.g.,
8- and 4-bit, at different layers [26]. However, since the input to
a CNN typically maintains at 32- or 16-bit, a multiplier in a
quantized CNN needs to repeatedly compute multiplications
with asymmetric operands, e.g., 16-bit vs. 8-bit, and with
different bit-widths at different layers, e.g., 32- by 8-bit for one
layer but 32- by 4-bit for another. A multiplier with a fixed bit-
width is then either incapable or inefficient for such scenarios.
 Moreover, even if the original weights before quantization
is uniformly distributed, the quantized weights tend to be more
centralized after training due to the sparsity driven nature and the
fact that many weights are small, i.e., close to 0. For example, by
employing the quantization methods as in [27], the weights in a
VGG16 network can be quantized to 8-bit and form a Gaussian-
like distribution, as shown in Fig. 2. Similar findings and more
theoretical analysis have been discussed in prior works [28, 29]
that the distributions of quantized weights are roughly Gaussian
rather than uniform distributions.

Fig. 2 Distribution of quantized weights in a VGG that follows
a Gaussian distribution.

B. Error Metrics for Approximate Arithmetic

There are four common error metrics used to evaluate the
accuracy of an approximate arithmetic design: error rate (ER),
mean error distance (MED), mean relative error distance
(MRED), and mean square error (MSE). Error distance (ED) is
defined as the absolute value of difference between accurate and
approximate results � and ��:

�� � �� � ��� (1)
ER is defined as the percentage of inputs when their EDs are non-
zero:

�	 �
��� � � (2)
MED, MRED, and MSE are computed from ED as:

��� � ����� � � ���
����������
 (3)

��� � ������ � � ����
����������
 (4)

�	�� � � ���� � � � ���
��
����������

 (5)

where � is the set of all EDs. ER is commonly used for error
recovery in approximate computing. MED and MRED are
criteria to measure the average closeness between the accurate
and approximate results, while MSE is more associated with
peak signal-to-noise ratio (PSNR) [30].

y3 y2 y1 y0

x2

x3

p0

p1

p2

p3

p4p5p6p7 x0

x1 p0

p2p3p4p5

y3 y2 y1 y0

p1

x0

x1

p3

y1 y0

p2

x0

x1 p0

p1

Full Adder

Merger

(a) A complete 4×4
DAS multiplier

(b) Part of DAS multiplier

 (c) The proposed reconfigurable
multiplier for quantized CNNs Critical Path

236

4B-2

C. Multiplier

The hardware implementation of a multiplier for two digital
inputs typically involves three steps: 1) Generate partial products;
2) Reduce partial product array until 2 operands are left; 3)
Propagate the carry of the addition of the remaining operands for
the final result. There are two challenges in such a multiplier
design. One is to reduce the size of a partial product reduction
tree [31]. The other is to reduce the length of the carry
propagation path [32]. In many prior approximate multiplier
works, they either approximate the partial products or use
approximate counters and compressors in the partial product
reduction tree, thereby improving the critical path delay.

III. PROPOSED RECONFIGURABLE APPROXIMATE MULTIPLIER

A. Overview of the Design

Fig. 3 Overview of the proposed multiplier with three key
modules: sign-extension for partitioning, sub-multiplier and
approximate adder-based merger.

Fig. 3 presents an overview of the proposed reconfigurable
approximate multiplier. The multiplier contains three key parts:
(1) Sign extension module (detailed in section III-B) for
operand partition; (2) Sub-multiplier module using Modified
Booth Wallace multiplier; (3) Merger module (detailed in
section III-C) using an approximate adder. The multiplier can
function in two modes:
� Long bit-width multiplication mode: This mode supports

multiplication with two operands with unequal bit-widths,
e.g., m bits and n bits. This can happen when one is for the
input to a layer of CNN and the other is for the weight, i.e.,
� � � . The sign extension module partitions a signed
multiplication into two shorter ones, which will be
calculated in two sub-multipliers for the least significant
part (LSP) and the most significant part (MSP). The two
sub-multipliers conduct two accurate � � � ! signed
multiplications in parallel. A logic shifter shifts the output
of MSP sub-multiplier and send to the merger module for
merging.

� Short bit-width multiplication mode: Under this mode,
the multiplier conducts two multiplications in parallel.
Instead of one n-bit weight, two shorter weights of � !
bits are prefetched and sent to the two sub-multipliers. Two
m-bit operands are then simultaneously sent to the two sub-
multipliers for multiplications. The results are separately
calculated with logic shifter and merger module both by-
passed under this mode.

Apparently, compared with the DAS multipliers in Fig. 1, the
proposed structure doubles the available multipliers when
dealing with short bit-width multiplications, e.g., 16- by 4-bit

multiplications. Or it can be used to conduct long bit-width
multiplication without introducing a new multiplier, e.g., 16- by
8-bit. Though the presented structure supports m- by n-bit and m-
by � !-bit multiplications, the proposed idea is general and can
be extended to more finer partitioning, e.g., � " or support a
hybrid combination of different bit-widths.

In the implementation, the sub-multiplier employs a
modified Booth Wallace multiplier to provide better performance.
They recode sign-extended � !-bit weight to generate fewer
partial products, and multiply the � !-bit weight by the �-bit
input to obtain an �� # � !)-bit output. Since � !-bit can be
small, i.e., 4-bit, the computation is fast and hence employs full
precision adders for the carry-propagation addition in the sub-
multipliers. Such a sub-multiplier design also helps avoid
complex wiring commonly met in partial products reduction
trees. For example, for 16- by 4-bit signed sub-multiplier, with
radix-4 modified Booth encoding, 3 rows of partial products are
generated, and only one carry save adder is needed, thereby
preventing complex wiring to further improve performance.

B. Sign-Extension Module

Sign bit 0/1

Sign bit 0/1

Sign bit 0/1

Sign-extension bit 0/1

Fig. 4 Sign-extension for an $-bit operand when $ � %.

The sign-extension module partitions a long bit-width operand to
shorter ones to conduct two � � � !-bit signed multiplications
instead of a direct � � �-bit multiplication. For a signed number,
its most significant bit (MSB) is a sign bit (either 0 or 1). Since
the two sub-multipliers both conduct signed multiplications,
there is an accuracy and efficiency trade-off in the proposed sign-
extension scheme. Our proposed design works under the
assumption that the n-bit operand ranges from �!&'� to
!&'� � (.

When the �-bit operand is non-negative, i.e., MSB is 0,
since the non-negative operand ranges from 0 to !&'� � (, then
the first two bits are all 0. We then have the last � ! � (bits
from the original � bits as the LSP, and add a 0 at the beginning
to avoid an input overflow for the LSP sub-multiplier. On the
other hand, the MSP contains � ! bits with the bits from the
position � ! to � � ! for the MSP sub-multiplier. When � �
), the achieved LSP and MSP are:

+** � ***+*** , ***+-***
Similarly, when the number is negative, if the number is smaller
than ��!&'. # (), we can have the last � ! � (bits plus "0"
as LSP and bits in the range of [� !/ � � !] as MSP. An example
for � �) is as below:

((**+**** � (***+***
� (***+ # +*** , (***+-***

Otherwise, the first � ! # (bits are all sign bits. We then have
the last � ! � (bits plus "1" at the beginning as LSP and all
zero as MSP. A case of � �) is as below:

((((+(*** � ((((+*** � (*** , +0***
The concept of the proposed sign extension is briefly

Sub-Multiplier #2

Sub-Multiplier #1

Sign-Extension

m-bit Input

n-bit W
eight

Weight2
(n/2 bit)

Weight1
(n/2 bit)

Shift

Sum2
(m+n/2 bit)

Sum1
(m+n/2 bit)

Sum3
(m+n bit)

Sum2
(m+n bit)

A
pproxim

ate A
dder

237

4B-2

demonstrated in Fig. 4.

C. Approximate Adder-Based Merger

Block-based approximate adders have been widely studied [33,
34]. One state-of-the-art approximate adder is Generic Accuracy
Configurable Adders (GeAr) [35], it has 1 sub-adders, 2 bits
for carry prediction and 3 bits for sum. The error occurs when
any sub-adder cannot obtain the generated carry-in signal from
its current precedent. Then the error probability for a sub-adder
(excluding the first one) is:

45565 � 7�
�89�
5':

�;<
7 =
�
>�
5?@':

>;�?:
� (

!@?: �
(

!@?5?: (6)

Since the first sub-adder is always correct, the ER of GeAr can
be approximately computed as:

�5565 A (� �(�
45565�B':
 7� (� �(� :

�CDE # :
�CDFDE�B': (7)

A key assumption for the aforementioned analysis is
independence of bits from the uniformly distributed inputs,
thereby resulting in little probability of a long carry chain.

However, for a quantized CNN, we have observed that the
inputs for multipliers roughly follow a Gaussian distribution
instead of a uniform distribution. This simply indicates that the
input bits are correlated and may result in a long carry chain
propagating errors. If we still follow a similar design strategy
as GeAr, it may cause error increase from such an approximate
addition. In order to resolve that, we need to answer the following
question: How can we redesign the approximate adder for such
a scenario?

Without loss of generality, we assume to have an �-bit
signed number G�� � (H � that follows a Gaussian distribution
N(I/ J). We would like to focus on the correlations of the
adjacent bits to understand the chance of propagating errors
through a long carry chain and its dependence on the underlying
distribution.

We denote the correlation coefficient between the two
adjacent bits K and L as MNO, where K and L can either be 0
or 1. With X and Y representing the random variables for K and
L, the correlation coefficient is:

MNO � ��PQ� � ��P� � ��Q�
R��P�R��Q� (8)

where ��K� is the probability of K being 1 in this case and
��K� � ��K�� � ��K�� . Due to the sparsity driven nature of
CNN training, we can assume I � for the weight distribution,
as observed in Fig. 2. Then the probability for a bit being 1 is 0.5,
i.e., ��P� � ��Q� � ST.

For a binary sequence of 0/1 where ��P�� � ��P�,
��P� � ��P� � ��P��=0.25 (9)

Thus, we can rewrite

MNO � ��PQ� � S!T
S!T (10)

The value of ��PQ� depends on the underlying Gaussian
distribution, or J in this case. With analysis of the following
three scenarios, we can reach the findings as below:
� When J A , it indicates that most numbers are very close

to 0. For signed numbers, this simply indicates that is
the only non-negative number and �(is the only negative
number. Thus, there are equal probabilities for PQ � or
1, i.e., ��PQ� � ST.

� When J , , this is basically a uniform distribution. In
uniform distribution, the adjacent bits can be considered
independent, i.e., ��PQ� � ��P� � ��Q� � S!T.

� Now we consider the case that the standard deviation J
can be approximately expressed by powers of two. For an
� -bit signed digit G�� � (H � following a Gaussian
distribution, most of its possible values reside in the range
of ��!J/ !J� and hence can be effectively expressed
using the lower UVW�J7 # 7(bits. Meanwhile the higher
bits are all 1 or 0 for signed numbers showing high
correlation. Thus, the adjacent bits within the index range
�/ UVW�J� can be considered weakly correlated or
uncorrelated as in the uniform distribution, while the higher
bits within the index range of �UVW�J # (/ � � (� are
strongly correlated.

The relationship between the correlation coefficient MNO (for
two adjacent bits) and J7is plotted in Fig. 5 for the bit width � �
) , where we explore MNO for the adjacent bits at different
locations and different J. As can be seen from the figure, the bits
within the index range of �/ UVW�J� for inputs with Gaussian
distribution are weakly correlated, similar to uniform distributed
ones, while the bits within the range of �UVW�J # (/ � � (� are
more strongly correlated. This simply indicates that, for Gaussian
distributed inputs, there may exist a longer carry chain for the
bits at higher positions (which are highly correlated and can
result in the sign error for carry propagation). In other words, for
prior block-based approximate adders that assume bit-wise
independence and hence a shorter carry chain, such a scenario
may induce an increased ER.

Fig. 5 Correlation coefficient XYZ for the adjacent bits at
different locations and different J.

In a block-based approximate adder, ER depends on the
carry prediction bit-width 2 rather than the total bit-width �
[14]. Then, for a block-based approximate adder with fixed bit-
width, the required area for the adder linearly correlates to 2, i.e.,
a larger 2 will significantly increase the area overhead. Based
on the findings above, for inputs following a Gaussian
distribution, the bits at lower positions are close to a uniform
distribution while the bits at higher positions are more correlated.
Then, unlike GeAr that employ blocks with equal size, we
propose to have blocks with unequal sizes for the proposed
approximate adder and hence keep a small 2 to reduce ER. Fig.
6 presents an example for the proposed approximate adder when
� � !". We have three sub-adders with size of 8, 8, and 16. Sub-
adder #1 overlaps with the other two sub-adders, resulting in a
small 2 � ". After each sub-adder operation, 3� bits are added
to the result, reducing carry chain length but inducing errors.
However, as is discussed for bits at lower positions that are
almost uncorrelated, the probability that a carry needs to be
propagated to the next stage is very limited. On the other hand,

238

4B-2

with sub-adder of larger size for bits at higher positions, which
are correlated, the increased size actually decreases the
computational error. Aware of the correlation of the bits for
Gaussian distributed inputs, we design such an unequally sized
block structure to trade-off between accuracy and circuit delay.

a23 a22 a21 a20 a19 a18 a17 a16 a15 a14 a13 a12 a11 a10 a9 a8 a7 a6 a5 a4 a3 a2 a1 a0

b23 b22 b21 b20 b19 b18 b17 b16 b15 b14 b13 b12 b11 b10 b9 b8 b7 b6 b5 b4 b3 b2 b1 b0

s23 s22 s21 s20 s19 s18 s17 s16 s15 s14 s13 s12 s11 s10 s9 s8 s7 s6 s5 s4 s3 s2 s1 s0

p2=4 p1=4

r2=12 r1=4

Sub-adder #2 Sub-adder #1 Sub-adder #0

Fig. 6 Proposed approximate adder with a long MSP sub-adder.

Moreover, unlike prior works that treat the sign bits equally
important as the other bits, we consider the impact of sign bit
error more significant for a quantized CNN and hence provide a
simple yet effective sign error correct (SEC) scheme to correct
the sign bit error [36]. Take the approximate adder in Fig. 6 for
example. The carry-out signal of a sub-adder is erroneous only
when the carry-in is 1 and G� [\� � (for any bit pair G�7and
\�7of the underlying sub-adder. Apparently, the sub-adder #0
always generates correct result. In order the correct the sign bit
error for the next few sub-adders, we can define two flag signals
as shown in Fig. 7, which conducts “AND” operation of the all
the partial sum]� When only ^UGW� is 1, it indicates that the
erroneous signal can be propagated to the sign bit. When
^UGW� � (and ^UGW: � , the accurate carry-in signal for sub-
adder #2 is the carry-out of sub-adder #1, _6`a7b:. If _6`a7b: �
(, due to the approximation principle for the approximate adder,
it will not propagate to the next sub-adder and therefore introduce
and error to the sub-adder #2. Thus, we need to simply inverse
all bits of]�!cH (!� for correction. Similarly, when both ^UGW:
and ^UGW� are 1, if the carry-out of the sub-adder #0 _6`a7b< �
(, we need to inverse all the bits of]�!cH)�.

Fig. 7 Circuits to obtain flag signals for sign error
correction.

IV. EVALUATION

To evaluate the presented architectures in the previous section,
we implement the proposed multiplier and adder in Verilog and
then conduct the verification on a Xilinx ZCU102 FPGA board.

A. Proposed Block-based Approximate Adder

We first study the behavior of the proposed approximate adder
(for 24-bit) when the inputs follow a Gaussian distribution, and
then compare the results with the state-of-the-art GeAr design.
We investigate the scenarios of the proposed block-based
approximate adder with and without the sign error correct (SEC)
scheme for various J and study the metrics for approximate
adder, including ER, MED, MRED and MSE.

Fig. 8 shows that, when J is small, the proposed block-
based approximate adder without SEC has a similar ER as GeAr
(when � � !"/ 3 � "/ 2 � "). However, as J grows, the
performance is significantly improved to achieve up to 76% error

reduction. This is because GeAr adder assumes the independence
of bits and hence a shorter carry chain. As J increases, the
correlation also grows and results in larger error for GeAr. On the
other hand, when with SEC, the proposed adder shows very
consistent improvement over GeAr with up to 98% error
reduction. As for smaller J, the sign bit error is dominant for the
correlated input bits. Similar observations can be found when
calculating the other metrics of MED, MRED and MSE.

Fig. 8 ER comparison of the proposed approximate adders (with
and without SEC) vs. GeAr.

Fig. 9 MED comparison of the proposed approximate adders
(with and without SEC) vs. GeAr.

Fig. 10 MRED comparison of the proposed approximate adders
(with and without SEC) vs. GeAr.

Fig. 11 MSE comparison of the proposed approximate adders
(with and without SEC) vs. GeAr.

239

4B-2

B. Proposed Reconfigurable Approximate Multiplier

We verify functionality of the proposed reconfigurable
approximate multiplier with FPGA implementation and then
investigate its performance in comparison with the multiplier IP
that Xilinx provides. The case of � � (d and � �)7is studied
to support 16- by 8-bit multiplication and 16- by 4-bit
multiplication. Under the same timing constraints of 200MHz
frequency, Table I compares the logic delays, LUT and power
consumption. It is found that the proposed design can achieve 19%
delay reduction over a speed-optimized Xilinx IP multiplier,
while achieving a lower LUT overhead, with 22% power saving.

C. Deployment in a Quantized CNN

Finally, we deploy the proposed design in a quantized CNN. The
CNN employs an Eyeriss-like [37] structure that has 168
processing elements and can be configured to different neural
networks. Each processing element contains one proposed
multiplier to support one 16- by 8-bit multiplication or two 16-
by 4-bit multiplications. A quantized VGG16 network is
implemented with different precisions at differ layers, i.e., 8-bit
and 4-bit, to conduct the image classification task using
ImageNet. Compared with the same network employing full-
precision of 16-bit, the quantized network is able to achieve 17%
latency reduction and 15% power saving at the cost of 3%
accuracy loss for top-1 classification task.

Table I Comparison of logic delay, LUT overhead and power
consumption of the proposed multiplier with a speed-optimized
Xilinx multiplier IP.

 Logic Delay (ns) #LUTs Power (mW)
Proposed 0.715 129 0.21
Xilinx IP 0.886 131 0.27

V. CONCLUSION

This paper proposes a reconfigurable approximate multiplier for
quantized CNN applications. With awareness of different
precisions at different layers in a quantized CNN, a
reconfigurable multiplier is proposed to enable resource reuse for
multiplications at different precisions. Then, a block-based
approximate adder with sign error correction is designed to
facilitate the scenario of Gaussian distributed inputs with
correlations between the bits. The proposed design is 19% faster
and 22% more power saving than a Xilinx IP at the same
precision. When deployed in VGG16 network on FPGA for
image classification, the proposal can achieve 17% latency
reduction and 15% power saving with merely 3% accuracy loss.

ACKNOWLEGEMENT

This work was partially supported by NSFC with Grant No.
61974133, 61601406, and Guangdong Province with Grant No.
2018B030338001.

REFERENCE

[1] H. Lu, et al. "Tetris: Re-architecting Convolutional Neural Network
Computation for Machine Learning Accelerators." Proc. ICCAD, 2018.

[2] Z. Liu, et al. "A Multi-Level Optimization Framework for FPGA-Based
Cellular Neural Network Implementation." ACM JETCS, 14(4):1-47, 2018.

[3] C. Zhuo, et al. "From Layout to System: Early Stage Power Delivery and
Architecture Co-Exploration." IEEE TCAD, 38(7):1291-1304, 2019.

[4] C. Zhuo, et al. "Noise-Aware DVFS for Efficient Transitions on Battery-

Powered IoT Devices." IEEE TCAD, DoI:10.1109/TCAD.2019.2917844,
2019.

[5] S. Luo, et al. "Noise-Aware DVFS Transition Sequence Optimization for
Battery-Powered IoT Devices." Proc. DAC, 2018.

[6] H. D. Tiwari, et al. "Multiplier Design Based on Ancient Indian Vedic
Mathematics. " Proc. SoCDC, 2008.

[7] M. Bansal, et al. "High performance pipelined signed 64x64-bit multiplier
using radix-32 modified Booth algorithm and Wallace structure." Proc.
CICN, 2011.

[8] S. Hashemi, et al. "Understanding the Impact of Precision Quantization on
the Accuracy and Energy of Neural Networks." Proc. DATE, 2017.

[9] J. H. Ko, et al. "Adaptive Weight Compression for Memory-Efficient
Neural Networks." Proc. DATE, 2017.

[10] J. Han and M. Orshansky. "Approximate Computing: An Emerging
Paradigm for Energy-Efficient Design." Proc. ETS, 2013.

[11] V. Gupta, et al. "IMPACT: Imprecise Adders for Low-Power Approximate
Computing." Proc. ISLPED, 2011.

[12] V. K. Chippa, et al. "Analysis and Characterization of Inherent Application
Resilience for Approximate Computing." Proc. DAC, 2013.

[13] A. K. Verma, et al. "Variable Latency Speculative Addition: A New
Paradigm for Arithmetic Circuit Design." Proc. DATE, 2008.

[14] S. Mazahir, et al. "Probabilistic Error Modeling for Approximate Adders. "
IEEE TC, 66(3):515-530, 2017.

[15] P. Kulkarni, et al. "Trading Accuracy for Power with an Underdesigned
Multiplier Architecture. " Proc. VLSID, 2011.

[16] H. R. Mahdiani, et al. "Bio-Inspired Imprecise Computational Blocks for
Efficient VLSI Implementation of Soft-Computing Applications." IEEE
TCAS-I, 57(4):850-862, 2010.

[17] K. Y. Kyaw, et al. "Low-power high-speed multiplier for error-tolerant
application." Proc. EDSSC, 2010.

[18] K. Bhardwaj, et al. "Power- and area-efficient Approximate Wallace Tree
Multiplier for error-resilient systems." Proc. ISQED, 2014.

[19] B. Moons and M. Verhelst. "DVAS: Dynamic Voltage Accuracy Scaling for
increased energy-efficiency in approximate computing." Proc. ISLPED,
2015.

[20] J. Deng, et al. "ImageNet: A Large-Scale Hierarchical Image Database."
Proc. CVPR, 2009.

[21] Z. Liu, et al. "An Efficient Segmentation Method Using Quantized and
Non-linear CeNN for Breast Tumor Classification." IET EL, 54(12):737-
738, 2018.

[22] D. Kim, et al. "Convolutional Neural Network Quantization using
Generalized Gamma Distribution." arXiv preprint arXiv:1810.13329, 2018.

[23] J. Cheng, et al. "Quantized CNN: A Unified Approach to Accelerate and
Compress Convolutional Networks." IEEE TNNLS, DoI:
10.1109/TNNLS.2017.2774288, 2017.

[24] J. Lee, et al. "UNPU: An Energy-Efficient Deep Neural Network
Accelerator with Fully Variable Weight Bit Precision." Proc. JSSC, 2019.

[25] I. Chakraborty, et al. "Efficient Hybrid Network Architectures for
Extremely Quantized Neural Networks Enabling Intelligence at the Edge."
Proc. ACM, 2019.

[26] R. Krishnamoorthi, "Quantizing deep convolutional networks for efficient
inference: A whitepaper." arXiv preprint arXiv:1806.08324, 2018.

[27] R. Banner, et al. "Scalable Methods for 8-bit Training of Neural Networks."
Proc. NIPS, 2018.

[28] D. D. Lin, et al. "Fixed Point Quantization of Deep Convolutional
Networks." Proc. ICML, 2016.

[29] Z. Cai, et al. "Deep Learning with Low Precision by Half-Wave Gaussian
Quantization." Proc. CVPR, 2014.

[30] L. Li, and H. Zhou. "On error modeling and analysis of approximate
adders." Proc. ICCAD, 2014.

[31] E. Antelo, et al. "Improved 64-bit Radix-16 Booth Multiplier Based on
Partial Product Array Height Reduction." IEEE TCAS-I, 64(2): 409-418,
2017.

[32] W. Liu, et al. "Design of Approximate Radix-4 Booth Multipliers for Error-
Tolerant Computing." IEEE TC, 66(8): 1435-1441, 2017.

[33] N. Zhu, et al. “An enhanced low-power high-speed Adder for Error-
Tolerant application.” Proc. Proceedings of ISIC, 2009.

[34] A. B. Kahng, et al. “Accuracy-configurable adder for approximate
arithmetic designs.” Proc. DAC, 2012.

[35] M. Shafique, et al. "A low latency generic accuracy configurable adder."
Proc. DAC, 2015.

[36] R. Zhou, et al. "A general sign bit error correction scheme for approximate
adders." Proc. GLSVLSI, 2016.

[37] Y. H. Chen, et al. "Eyeriss: A Spatial Architecture for Energy-Efficient
Dataflow for Convolutional Neural Networks." Proc. ISCA, 2016.

240

4B-2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

