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Abstract – Quantized CNNs, featured with different bit-
widths at different layers, have been widely deployed in mobile 
and embedded applications. The implementation of a quantized 
CNN may have multiple multipliers at different precisions with 
limited resource reuse or one multiplier at higher precision than 
needed causing area overhead. It is then highly desired to design 
a multiplier by accounting for the characteristics of quantized 
CNNs to ensure both flexibility and energy efficiency. In this 
work, we present a reconfigurable approximate multiplier to 
support multiplications at various precisions, i.e., bit-widths. 
Moreover, unlike prior works assuming uniform distribution 
with bit-wise independence, a quantized CNN may have 
centralized weight distribution and hence follow a Gaussian-like 
distribution with correlated adjacent bits. Thus, a new block-
based approximate adder is also proposed as part of the 
multiplier to ensure energy efficient operation with awareness of 
bit-wise correlation. Our experimental results show that the 
proposed adder significantly reduces the error rate by 76-98% 
over a state-of-the-art approximate adder for such scenarios. 
Moreover, with the deployment of the proposed multiplier, 
which is 17% faster and 22% more power saving than a Xilinx 
multiplier IP at the same precision, a quantized CNN 
implemented in FPGA achieves 17% latency reduction and 15% 
power saving compared with a full precision case. 

I. INTRODUCTION 

Deep learning has achieved enormous success in the past few 
years due to its accuracy, robustness, and efficiency in various 
tasks. Deep learning typically employs a convolutional neural 
network (CNN) architecture that may conduct millions to billions 
multiply-and-accumulate (MAC) operations per second [1, 2]. 
Compared with the conventional machine learning techniques, 
deep learning is more computationally intensive. Thus, energy 
efficiency, i.e., energy consumption per operation, has become a 
concern for deep learning implementation and deployment [3, 4]. 
This is especially true for mobile and embedded devices that are 
desired to satisfy the tight power constraints [5].  

The energy breakdown of a CNN indicates that with a huge 
number of concurrent convolution operations from time to time, 
the MAC operation appears to be the bottleneck to energy 
efficiency [1, 2]. Although multiplier is a common arithmetic 
component that has been widely studied for decades [6, 7], the 
past focus is mainly placed upon accuracy and performance. In 
order to improve its energy efficiency, parameter quantization 
has been investigated to reduce the precision, i.e., bit-width, of 
operands and achieve faster speed while maintaining similar 
accuracy. Such a strategy can be application specific and hence 
demand significant training and tuning overhead for different 
scenarios.  

On the other hand, due to its deep and multi-channel 
structure, CNN has been found with intrinsic error tolerance. 
This allows designers to step further from quantization and use 

approximate arithmetic to improve energy efficiency. The 
approximate arithmetic may consume less energy to compute an 
approximate solution, which, however, has a minimal impact on 
the ultimate accuracy of a CNN [8, 9]. Thus, approximate 
computing is considered as a promising alternative to explore 
trade-off between accuracy and efficiency in addition to 
parameter quantization [10-12]. As the most basic arithmetic 
operations, various approximate adders and multipliers have 
been studied under different assumptions. One common 
assumption is that the inputs are independent and uniformly 
distributed, thereby reducing the occurrence probability of a long 
carry chain [13, 14]. Researchers also come with various 
proposals on approximations in partial products [15] and 
reduction trees [16-18]. However, most designs have a fixed bit-
width and can hardly be adapted to different scenarios without 
additional design efforts. 

Recently, the concept of dynamic accuracy scaling (DAS) 
has been proposed for the multiplier to adapt to various scenarios 
without redesign [19]. The DAS multiplier employs an array 
architecture as shown in Fig. 1(a) to support up to 4-bit 
multiplication. When computing a multiplication with a shorter 
bit-width, e.g., 2-bit, as shown in Fig. 1(b), only part of the 
architecture is used to reduce its critical path length. However, 
due to its diagonal critical path, when under such a scenario, the 
majority of the multiplier is actually inactive, thereby causing 
resource waste and actually hurting energy efficiency. The 
inefficiency for such a reconfigurable array DAS multiplier is 
even worse for a quantized CNN, whose weights often have a 
smaller bit-width than the inputs, e.g., 8-bit weights for 16- or 
32-bit inputs. Such asymmetricity in the bit-width for operands 
makes a DAS multiplier unsuitable for quantized CNN 
applications.  

Thus, for the implementation of a quantized CNN, it is 
highly desired to account for its unique characteristics to design 
a multiplier with both energy efficiency and flexibility. 
Apparently, this is not a trivial task. In this work, to address the 
aforementioned issues, we propose a reconfigurable approximate 
multiplier architecture to support multiplications at different bit-
widths. In particular, our main contributions include: 
1) Reconfigurable multiplier: Instead of partial use of array 

multipliers for shorter bit-width operation, we here propose 
to design a multiplier that can either partition a long bit-
width multiplication to short ones and merge the results 
later with a merging module, or conduct two short bit-width 
multiplications in parallel. Fig. 1(c) illustrates an example 
of the proposed design. Unlike the ones in Fig. 1(a) or 1(b), 
the proposed design supports multiple short bit-width 
multiplications in parallel without resource waste (plotted 
in red and blue in Fig. 1(c) for two parallel multiplications).  

2) Sign extension: An efficient sign extension scheme is key 
to long bit-width multiplication partitioning and merging in 
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a signed multiplication. Such a reconfigurable multiplier is 
then particularly beneficial to a quantized CNN that may 
carry different bit-widths at different layers and conduct 
multiplications with unequal operands. 

3) Energy efficient approximate adder: The ultimate result 
of long bit-width multiplication is merged by shifting and 
adding the shorter products. Due to the heavier usage of 
such adders in our multiplier, a block-based approximate 
adder is proposed as the merger to achieve energy 
efficiency, including a sign error correction scheme for 
quantized CNNs in signed digits. 

4) Theoretical analysis of correlated adjacent bits for 
inputs with Gaussian distribution: For a quantized CNN, 
the inputs to the approximate adder in the proposed 
multiplier are not necessarily uniformly distributed as 
assumed in many prior works. Instead, it is more like a 
Gaussian distribution, i.e., with correlation from bit to bit 
(as detailed in section II-A). We provide an in-depth 
analysis of the relationship between the correlation of 
adjacent bits and the underlying distribution. The findings 
then function as the guideline for our approximate adder 
design. 

Our experimental results show that the proposed approximate 
adder can significantly reduce the errors for the inputs following 
Gaussian distributions, with a 76-98% error reduction in 
comparison with a state-of-the-art approximate adder. Based on 
that, the proposed reconfigurable approximate multiplier can 
achieve 19% speed up with 22% power saving over the speed-
optimized Xilinx IP. Finally, we demonstrate the efficiency of the 
proposed design when deployed in a quantized VGG16 for image 
classification task on ImageNet [20]. The proposed design can 
obtain 17% latency reduction and 15% power saving with merely 
3% accuracy loss. 

 
Fig. 1 DAS multiplier examples for: (a) 4×4-bit multiplication; 
(b) 2×2-bit multiplication, where x’s and y’s are inputs and p’s 
are partial products; and (c) the proposed multiplier. 

II. PRELIMINARIES AND BACKGROUND 

A. Multiplication in Quantized CNN  

Quantization has been proved as an effective method to achieve 
energy efficiency [21-23]. Various strategies have been proposed 

to conduct different levels of quantization at different CNN 
layers. For example, [24] employs 16-bit feature but different 
weight bit precision from 1 bit to 16 bit to achieve 50.6TOPs/W 
energy efficiency. Similarly, [25] employs more aggressive 
quantization to achieve a model at KB level. Thus, it has been a 
common practice in both algorithm and hardware 
implementations to deploy variable quantization precisions, e.g., 
8- and 4-bit, at different layers [26]. However, since the input to 
a CNN typically maintains at 32- or 16-bit, a multiplier in a 
quantized CNN needs to repeatedly compute multiplications 
with asymmetric operands, e.g., 16-bit vs. 8-bit, and with 
different bit-widths at different layers, e.g., 32- by 8-bit for one 
layer but 32- by 4-bit for another. A multiplier with a fixed bit-
width is then either incapable or inefficient for such scenarios. 
 Moreover, even if the original weights before quantization 
is uniformly distributed, the quantized weights tend to be more 
centralized after training due to the sparsity driven nature and the 
fact that many weights are small, i.e., close to 0. For example, by 
employing the quantization methods as in [27], the weights in a 
VGG16 network can be quantized to 8-bit and form a Gaussian-
like distribution, as shown in Fig. 2. Similar findings and more 
theoretical analysis have been discussed in prior works [28, 29] 
that the distributions of quantized weights are roughly Gaussian 
rather than uniform distributions. 
  

 
Fig. 2 Distribution of quantized weights in a VGG that follows 
a Gaussian distribution. 

B. Error Metrics for Approximate Arithmetic 

There are four common error metrics used to evaluate the 
accuracy of an approximate arithmetic design: error rate (ER), 
mean error distance (MED), mean relative error distance 
(MRED), and mean square error (MSE). Error distance (ED) is 
defined as the absolute value of difference between accurate and 
approximate results � and ��: 

�� � �� � ��� (1) 
ER is defined as the percentage of inputs when their EDs are non-
zero: 

�	 � 
��� � � (2) 
MED, MRED, and MSE are computed from ED as: 

��� � ����� � � ���
����������
 (3) 

��� � ������ � � ����
����������
 (4) 

�	�� � � ���� � � � ���
�� 
����������

 (5) 

where � is the set of all EDs. ER is commonly used for error 
recovery in approximate computing. MED and MRED are 
criteria to measure the average closeness between the accurate 
and approximate results, while MSE is more associated with 
peak signal-to-noise ratio (PSNR) [30]. 
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C. Multiplier 

The hardware implementation of a multiplier for two digital 
inputs typically involves three steps: 1) Generate partial products; 
2) Reduce partial product array until 2 operands are left; 3) 
Propagate the carry of the addition of the remaining operands for 
the final result. There are two challenges in such a multiplier 
design. One is to reduce the size of a partial product reduction 
tree [31]. The other is to reduce the length of the carry 
propagation path [32]. In many prior approximate multiplier 
works, they either approximate the partial products or use 
approximate counters and compressors in the partial product 
reduction tree, thereby improving the critical path delay. 

III. PROPOSED RECONFIGURABLE APPROXIMATE MULTIPLIER 

A. Overview of the Design  

 
Fig. 3 Overview of the proposed multiplier with three key 
modules: sign-extension for partitioning, sub-multiplier and 
approximate adder-based merger. 
 
Fig. 3 presents an overview of the proposed reconfigurable 
approximate multiplier. The multiplier contains three key parts: 
(1) Sign extension module (detailed in section III-B) for 
operand partition; (2) Sub-multiplier module using Modified 
Booth Wallace multiplier; (3) Merger module (detailed in 
section III-C) using an approximate adder. The multiplier can 
function in two modes:  
� Long bit-width multiplication mode: This mode supports 

multiplication with two operands with unequal bit-widths, 
e.g., m bits and n bits. This can happen when one is for the 
input to a layer of CNN and the other is for the weight, i.e., 
� � � . The sign extension module partitions a signed 
multiplication into two shorter ones, which will be 
calculated in two sub-multipliers for the least significant 
part (LSP) and the most significant part (MSP). The two 
sub-multipliers conduct two accurate � � � !  signed 
multiplications in parallel. A logic shifter shifts the output 
of MSP sub-multiplier and send to the merger module for 
merging.  

� Short bit-width multiplication mode: Under this mode, 
the multiplier conducts two multiplications in parallel. 
Instead of one n-bit weight, two shorter weights of � ! 
bits are prefetched and sent to the two sub-multipliers. Two 
m-bit operands are then simultaneously sent to the two sub-
multipliers for multiplications. The results are separately 
calculated with logic shifter and merger module both by-
passed under this mode. 

Apparently, compared with the DAS multipliers in Fig. 1, the 
proposed structure doubles the available multipliers when 
dealing with short bit-width multiplications, e.g., 16- by 4-bit 

multiplications. Or it can be used to conduct long bit-width 
multiplication without introducing a new multiplier, e.g., 16- by 
8-bit. Though the presented structure supports m- by n-bit and m- 
by � !-bit multiplications, the proposed idea is general and can 
be extended to more finer partitioning, e.g., � " or support a 
hybrid combination of different bit-widths. 

In the implementation, the sub-multiplier employs a 
modified Booth Wallace multiplier to provide better performance. 
They recode sign-extended � !-bit weight to generate fewer 
partial products, and multiply the � !-bit weight by the �-bit 
input to obtain an �� # � !)-bit output. Since � !-bit can be 
small, i.e., 4-bit, the computation is fast and hence employs full 
precision adders for the carry-propagation addition in the sub-
multipliers. Such a sub-multiplier design also helps avoid 
complex wiring commonly met in partial products reduction 
trees. For example, for 16- by 4-bit signed sub-multiplier, with 
radix-4 modified Booth encoding, 3 rows of partial products are 
generated, and only one carry save adder is needed, thereby 
preventing complex wiring to further improve performance.  

B. Sign-Extension Module 

Sign bit 0/1

Sign bit 0/1

Sign bit 0/1

Sign-extension bit 0/1
 

Fig. 4 Sign-extension for an $-bit operand when $ � %. 

The sign-extension module partitions a long bit-width operand to 
shorter ones to conduct two � � � !-bit signed multiplications 
instead of a direct � � �-bit multiplication. For a signed number, 
its most significant bit (MSB) is a sign bit (either 0 or 1). Since 
the two sub-multipliers both conduct signed multiplications, 
there is an accuracy and efficiency trade-off in the proposed sign-
extension scheme. Our proposed design works under the 
assumption that the n-bit operand ranges from �!&'�  to 
!&'� � (.  

When the �-bit operand is non-negative, i.e., MSB is 0, 
since the non-negative operand ranges from 0 to !&'� � (, then 
the first two bits are all 0. We then have the last � ! � ( bits 
from the original � bits as the LSP, and add a 0 at the beginning 
to avoid an input overflow for the LSP sub-multiplier. On the 
other hand, the MSP contains � ! bits with the bits from the 
position � ! to � � ! for the MSP sub-multiplier. When � �
), the achieved LSP and MSP are: 

**+**** � ***+*** , ***+-*** 
Similarly, when the number is negative, if the number is smaller 
than ��!&'. # (), we can have the last � ! � ( bits plus "0" 
as LSP and bits in the range of [� !/ � � !] as MSP. An example 
for � � ) is as below: 

((**+**** � (***+*** 
� (***+ # +*** , (***+-*** 

Otherwise, the first � ! # ( bits are all sign bits. We then have 
the last � ! � ( bits plus "1" at the beginning as LSP and all 
zero as MSP. A case of � � ) is as below: 

((((+(*** � ((((+*** � (*** , +0*** 
The concept of the proposed sign extension is briefly 
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demonstrated in Fig. 4. 

C. Approximate Adder-Based Merger 

Block-based approximate adders have been widely studied [33, 
34]. One state-of-the-art approximate adder is Generic Accuracy 
Configurable Adders (GeAr) [35], it has 1 sub-adders, 2 bits 
for carry prediction and 3 bits for sum. The error occurs when 
any sub-adder cannot obtain the generated carry-in signal from 
its current precedent. Then the error probability for a sub-adder 
(excluding the first one) is: 


45565 � 7�
�89�
5':

�;<
7 = 
�
>�
5?@':

>;�?:
� (

!@?: �
(

!@?5?: (6) 

Since the first sub-adder is always correct, the ER of GeAr can 
be approximately computed as: 


�5565 A ( � �( � 
45565�B':  
           7� ( � �( � :

�CDE # :
�CDFDE�B': (7) 

A key assumption for the aforementioned analysis is 
independence of bits from the uniformly distributed inputs, 
thereby resulting in little probability of a long carry chain.  

However, for a quantized CNN, we have observed that the 
inputs for multipliers roughly follow a Gaussian distribution 
instead of a uniform distribution. This simply indicates that the 
input bits are correlated and may result in a long carry chain 
propagating errors. If we still follow a similar design strategy 
as GeAr, it may cause error increase from such an approximate 
addition. In order to resolve that, we need to answer the following 
question: How can we redesign the approximate adder for such 
a scenario? 

Without loss of generality, we assume to have an �-bit 
signed number G�� � (H � that follows a Gaussian distribution 
N(I/ J ). We would like to focus on the correlations of the 
adjacent bits to understand the chance of propagating errors 
through a long carry chain and its dependence on the underlying 
distribution.  

We denote the correlation coefficient between the two 
adjacent bits K and L as MNO, where K and L can either be 0 
or 1. With X and Y representing the random variables for K and 
L, the correlation coefficient is: 

MNO � ��PQ� � ��P� � ��Q�
R��P�R��Q�  (8) 

where ��K� is the probability of K  being 1 in this case and 
��K� � ��K�� � ��K�� . Due to the sparsity driven nature of 
CNN training, we can assume I �  for the weight distribution, 
as observed in Fig. 2. Then the probability for a bit being 1 is 0.5, 
i.e., ��P� � ��Q� � ST.  

For a binary sequence of 0/1 where ��P�� � ��P�,  
��P� � ��P� � ��P��=0.25  (9) 

Thus, we can rewrite 

MNO � ��PQ� � S!T
S!T  (10) 

The value of ��PQ�  depends on the underlying Gaussian 
distribution, or J in this case. With analysis of the following 
three scenarios, we can reach the findings as below: 
� When J A , it indicates that most numbers are very close 

to 0. For signed numbers, this simply indicates that  is 
the only non-negative number and �( is the only negative 
number. Thus, there are equal probabilities for PQ �  or 
1, i.e., ��PQ� � ST. 

� When J , , this is basically a uniform distribution. In 
uniform distribution, the adjacent bits can be considered 
independent, i.e., ��PQ� � ��P� � ��Q� � S!T. 

� Now we consider the case that the standard deviation J 
can be approximately expressed by powers of two. For an 
� -bit signed digit G�� � (H �  following a Gaussian 
distribution, most of its possible values reside in the range 
of ��!J/ !J�  and hence can be effectively expressed 
using the lower UVW�J7 # 7( bits. Meanwhile the higher 
bits are all 1 or 0 for signed numbers showing high 
correlation. Thus, the adjacent bits within the index range 
�/ UVW�J�  can be considered weakly correlated or 
uncorrelated as in the uniform distribution, while the higher 
bits within the index range of �UVW�J # (/ � � (�  are 
strongly correlated. 

The relationship between the correlation coefficient MNO  (for 
two adjacent bits) and J7is plotted in Fig. 5 for the bit width � �
) , where we explore MNO  for the adjacent bits at different 
locations and different J. As can be seen from the figure, the bits 
within the index range of �/ UVW�J� for inputs with Gaussian 
distribution are weakly correlated, similar to uniform distributed 
ones, while the bits within the range of �UVW�J # (/ � � (� are 
more strongly correlated. This simply indicates that, for Gaussian 
distributed inputs, there may exist a longer carry chain for the 
bits at higher positions (which are highly correlated and can 
result in the sign error for carry propagation). In other words, for 
prior block-based approximate adders that assume bit-wise 
independence and hence a shorter carry chain, such a scenario 
may induce an increased ER. 
 

 
Fig. 5 Correlation coefficient XYZ  for the adjacent bits at 
different locations and different J. 

In a block-based approximate adder, ER depends on the 
carry prediction bit-width 2 rather than the total bit-width � 
[14]. Then, for a block-based approximate adder with fixed bit-
width, the required area for the adder linearly correlates to 2, i.e., 
a larger 2 will significantly increase the area overhead. Based 
on the findings above, for inputs following a Gaussian 
distribution, the bits at lower positions are close to a uniform 
distribution while the bits at higher positions are more correlated. 
Then, unlike GeAr that employ blocks with equal size, we 
propose to have blocks with unequal sizes for the proposed 
approximate adder and hence keep a small 2 to reduce ER. Fig. 
6 presents an example for the proposed approximate adder when 
� � !". We have three sub-adders with size of 8, 8, and 16. Sub-
adder #1 overlaps with the other two sub-adders, resulting in a 
small 2 � ". After each sub-adder operation, 3� bits are added 
to the result, reducing carry chain length but inducing errors. 
However, as is discussed for bits at lower positions that are 
almost uncorrelated, the probability that a carry needs to be 
propagated to the next stage is very limited. On the other hand, 
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with sub-adder of larger size for bits at higher positions, which 
are correlated, the increased size actually decreases the 
computational error. Aware of the correlation of the bits for 
Gaussian distributed inputs, we design such an unequally sized 
block structure to trade-off between accuracy and circuit delay. 

a23  a22  a21  a20  a19  a18  a17  a16  a15  a14  a13  a12  a11  a10  a9  a8  a7  a6  a5  a4  a3  a2  a1  a0

b23  b22  b21  b20  b19  b18  b17  b16  b15  b14  b13  b12  b11  b10  b9  b8  b7  b6  b5  b4  b3  b2  b1  b0

s23   s22   s21  s20   s19   s18   s17   s16   s15  s14   s13   s12   s11  s10  s9  s8   s7   s6   s5  s4   s3  s2   s1  s0

p2=4 p1=4

r2=12 r1=4

Sub-adder #2 Sub-adder #1 Sub-adder #0

 
Fig. 6 Proposed approximate adder with a long MSP sub-adder. 

Moreover, unlike prior works that treat the sign bits equally 
important as the other bits, we consider the impact of sign bit 
error more significant for a quantized CNN and hence provide a 
simple yet effective sign error correct (SEC) scheme to correct 
the sign bit error [36]. Take the approximate adder in Fig. 6 for 
example. The carry-out signal of a sub-adder is erroneous only 
when the carry-in is 1 and G� [ \� � ( for any bit pair G�7and 
\�7of the underlying sub-adder. Apparently, the sub-adder #0 
always generates correct result. In order the correct the sign bit 
error for the next few sub-adders, we can define two flag signals 
as shown in Fig. 7, which conducts “AND” operation of the all 
the partial sum ]�  When only ^UGW�  is 1, it indicates that the 
erroneous signal can be propagated to the sign bit. When 
^UGW� � ( and ^UGW: � , the accurate carry-in signal for sub-
adder #2 is the carry-out of sub-adder #1, _6`a7b:. If _6`a7b: �
(, due to the approximation principle for the approximate adder, 
it will not propagate to the next sub-adder and therefore introduce 
and error to the sub-adder #2. Thus, we need to simply inverse 
all bits of ]�!cH (!� for correction. Similarly, when both ^UGW: 
and ^UGW� are 1, if the carry-out of the sub-adder #0 _6`a7b< �
(, we need to inverse all the bits of ]�!cH )�.  

  
Fig. 7 Circuits to obtain flag signals for sign error 
correction. 

IV. EVALUATION 

To evaluate the presented architectures in the previous section, 
we implement the proposed multiplier and adder in Verilog and 
then conduct the verification on a Xilinx ZCU102 FPGA board.  

A. Proposed Block-based Approximate Adder 

We first study the behavior of the proposed approximate adder 
(for 24-bit) when the inputs follow a Gaussian distribution, and 
then compare the results with the state-of-the-art GeAr design. 
We investigate the scenarios of the proposed block-based 
approximate adder with and without the sign error correct (SEC) 
scheme for various J  and study the metrics for approximate 
adder, including ER, MED, MRED and MSE.  

Fig. 8 shows that, when J is small, the proposed block-
based approximate adder without SEC has a similar ER as GeAr 
(when � � !"/ 3 � "/ 2 � " ). However, as J  grows, the 
performance is significantly improved to achieve up to 76% error 

reduction. This is because GeAr adder assumes the independence 
of bits and hence a shorter carry chain. As J  increases, the 
correlation also grows and results in larger error for GeAr. On the 
other hand, when with SEC, the proposed adder shows very 
consistent improvement over GeAr with up to 98% error 
reduction. As for smaller J, the sign bit error is dominant for the 
correlated input bits. Similar observations can be found when 
calculating the other metrics of MED, MRED and MSE. 

 

 
Fig. 8 ER comparison of the proposed approximate adders (with 
and without SEC) vs. GeAr. 
 

 
Fig. 9 MED comparison of the proposed approximate adders 
(with and without SEC) vs. GeAr. 
 

 
Fig. 10 MRED comparison of the proposed approximate adders 
(with and without SEC) vs. GeAr. 
 

 
Fig. 11 MSE comparison of the proposed approximate adders 
(with and without SEC) vs. GeAr. 
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B. Proposed Reconfigurable Approximate Multiplier 

We verify functionality of the proposed reconfigurable 
approximate multiplier with FPGA implementation and then 
investigate its performance in comparison with the multiplier IP 
that Xilinx provides. The case of � � (d and � � )7is studied 
to support 16- by 8-bit multiplication and 16- by 4-bit 
multiplication. Under the same timing constraints of 200MHz 
frequency, Table I compares the logic delays, LUT and power 
consumption. It is found that the proposed design can achieve 19% 
delay reduction over a speed-optimized Xilinx IP multiplier, 
while achieving a lower LUT overhead, with 22% power saving. 

C. Deployment in a Quantized CNN 

Finally, we deploy the proposed design in a quantized CNN. The 
CNN employs an Eyeriss-like [37] structure that has 168 
processing elements and can be configured to different neural 
networks. Each processing element contains one proposed 
multiplier to support one 16- by 8-bit multiplication or two 16- 
by 4-bit multiplications. A quantized VGG16 network is 
implemented with different precisions at differ layers, i.e., 8-bit 
and 4-bit, to conduct the image classification task using 
ImageNet. Compared with the same network employing full-
precision of 16-bit, the quantized network is able to achieve 17% 
latency reduction and 15% power saving at the cost of 3% 
accuracy loss for top-1 classification task. 
 
Table I Comparison of logic delay, LUT overhead and power 
consumption of the proposed multiplier with a speed-optimized 
Xilinx multiplier IP. 

 Logic Delay (ns) #LUTs Power (mW) 
Proposed 0.715 129 0.21 
Xilinx IP 0.886 131 0.27 

V. CONCLUSION 

This paper proposes a reconfigurable approximate multiplier for 
quantized CNN applications. With awareness of different 
precisions at different layers in a quantized CNN, a 
reconfigurable multiplier is proposed to enable resource reuse for 
multiplications at different precisions. Then, a block-based 
approximate adder with sign error correction is designed to 
facilitate the scenario of Gaussian distributed inputs with 
correlations between the bits. The proposed design is 19% faster 
and 22% more power saving than a Xilinx IP at the same 
precision. When deployed in VGG16 network on FPGA for 
image classification, the proposal can achieve 17% latency 
reduction and 15% power saving with merely 3% accuracy loss. 
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