
EFFORT: Enhancing Energy Efficiency and Error Resilience of a Near-Threshold

Tensor Processing Unit

Noel Daniel Gundi, Tahmoures Shabanian, Prabal Basu, Pramesh Pandey, Sanghamitra Roy,
Koushik Chakraborty, Zhen Zhang

BRIDGE Lab, Electrical and Computer Engineering, Utah State University
{noeldaniel, tahmoures, prabalb, pandey.pramesh1}@aggiemail.usu.edu,

{sanghamitra.roy, koushik.chakraborty, zhen.zhang}@usu.edu

Abstract— Modern deep neural network (DNN) applications

demand a remarkable processing throughput usually unmet by

traditional Von Neumann architectures. Consequently, hardware

accelerators, comprising a sea of multiplier and accumulate

(MAC) units, have recently gained prominence in accelerating

DNN inference engine. For example, Tensor Processing Units

(TPU) account for a lion’s share of Google’s datacenter inference

operations. The proliferation of real-time DNN predictions is

accompanied with a tremendous energy budget. In quest of

trimming the energy footprint of DNN accelerators, we propose

EFFORT—an energy optimized, yet high performance TPU

architecture, operating at the Near-Threshold Computing (NTC)

region. EFFORT promotes a better-than-worst-case design by

operating the NTC TPU at a substantially high frequency while

keeping the voltage at the NTC nominal value. In order to

tackle the timing errors due to such aggressive operation, we

employ an opportunistic error mitigation strategy. Additionally,

we implement an in-situ clock gating architecture, drastically

reducing the MACs’ dynamic power consumption. Compared to

a cutting-edge error mitigation technique for TPUs, EFFORT

enables up to 2.5× better performance at NTC with only 2%

average accuracy drop across 3 out of 4 DNN datasets.

I. INTRODUCTION

Advancements in artificial intelligence have entered a new

realm owing to the development of domain specific architec-

tures dedicated to neural networks (NN) processing. Tensor

Processing Unit (TPU), a custom application specific inte-

grated circuit (ASIC) built by Google, is one such accelerator,

which is exclusively built to handle most of the deep neural

networks (DNN) inference workloads in their servers.

The rapidly increasing workloads calls for an increase in

the processing speed and deployment volume [1]. It, however,

comes at a cost of a heavy power usage, thus affecting the

energy efficiency of the system. In order to preserve the

energy efficiency, we operate the TPU at the Near-Threshold

Computing (NTC) region, where we scale down the transistor

supply voltage to just above its threshold voltage [2].

Accelerators like TPUs are designed to offer a very high

throughput for DNN inference workloads. Although NTC

operating conditions can ensure a low energy consumption,

the throughput is heavily declined due to the slower transistors

and longer computational delays. Shabanian et al and Bal

et al, demonstrated that both NTC-GPU and NTC-CPU are

highly susceptible to process variation which cause timing

violation induced performance bottleneck [3], [4]. NTC-TPU

is not an exception, this sensitivity can impact the DNN

inference accuracy significantly [2], [5]. This paper underlines

the significance of the computational delays and order of

execution of the arithmetic units, to handle timing violations

in NTC TPUs. Additionally, by exploring the predictable data

flow pattern in the TPU systolic array, we further enhance

its energy efficiency, thereby promoting an error-resilient and

energy-efficient TPU design paradigm.

Several timing error resilient schemes have been explored

for CPUs and custom ASICs [6]–[8]. However, these schemes

are inefficient for combating timing violation in TPUs. Razor

is one such popular timing violation detection method which

uses a double sampling flip-flop to detect the errors [6]. Using

instruction replay, the erroneous data is recomputed and the

correct value is propagated to the next stage of the pipeline.

TPU has a massive systolic array of 256 × 256 multiplier-

and-accumulate (MAC) units. So, using an instruction replay

in one MAC unit, results in stalling the operation of the entire

systolic array, leading to a massive drop of throughput and

increase in the energy consumption. TE-Drop is a recently

proposed technique to handle timing violations in TPU-like

systolic arrays. In this technique, the MAC unit encountering

a timing error, steals an execution cycle from its downstream

MAC, and recomputes the correct value [7]. In the process,

the downstream MAC’s computation is bypassed. However,

there will be multiple levels of bypassing, in case of timing

errors in consecutive rows of the same column of MACs, in

the same clock cycle. Bypassing multiple computations can

cause a severe drop in the inference accuracy. Additionally,

the timing errors encountered in the last row of MACs will

not be tackled by TE-Drop, also resulting in an accuracy

drop. A naive approach to tackle timing violations is to allow

the erroneous data to flow through the successive stages of

operations [8], [9]. This technique undermines the effects of

the erroneous data in DNN computations, as a large number

of timing errors causes a significant drop in the inference

accuracy [10].

In order to overcome the drawbacks of these error handling

schemes, we propose a unique timing error correction tech-

nique which handles timing errors in the same cycle of the

execution while enhancing the energy efficiency of the TPU.

We observe that in a MAC, multiplier takes relatively higher

execution time than accumulator (Section II-C). Additionally,

we observe a predictable data flow pattern in the TPU systolic

array (Section III-C). Analyzing these computational delays,

data flow patterns, and utilizing the computational order of the

arithmetic units, we propose EFFORT—an error resilient, low-

power, novel TPU design paradigm. Following are the specific

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE

241

4B-3

(a) CDF of multiplier delay distribution. (b) CDF of accumulator delay distribution. (c) Power consumption of a MAC unit.

Fig. 1: CDFs of the delay distributions for multiplier (Figure 1(a)) and accumulator (Figure 1(b)) show that the multiplier

has higher computational delay compared to the accumulator. Accumulator takes less than a half clock cycle for its
part of computation. Figure 1(c) portrays the increase of static power and decrease in dynamic power for decreasing

frequencies. Voltages are scaled accordingly to depict the shift from STC to NTC.

contributions in this work:

• We experimentally demonstrate that 8-bit multiplier takes

higher computation time than 24-bit accumulator (Section

II-C). We exploit the computational delays and operational

order of these arithmetic units to tackle timing errors.

• We also observe a predictable data flow pattern in the

TPU and utilize this data flow pattern to reduce the energy

consumption in the systolic array (Section III-C).

• We propose a low-overhead dynamic timing error detec-

tion/correction and a dynamic power management tech-

nique, called EFFORT (Section III-B). Our technique de-

tects the timing errors, obtains the corrected data and prop-

agates it to preserve the output accuracy. Additionally, we

employ a low-overhead clock gating technique to improve

the energy efficiency of the TPU (Section III-C).

• In comparison to TE-Drop [7] and the Baseline-TPU,

EFFORT delivers 2× better performance for 3 out of 4

DNN datasets, while incurring only 2% loss in inference

accuracy (Section V-B).

• We show that EFFORT consumes up to 6% and 27% less

power and gives up to 1.06× and 1.35× better performance

per unit power, than Baseline-TPU and TE-Drop (Section

V-C).

II. MOTIVATION

In this section, we illustrate the unseen opportunities that

can be availed to tackle timing errors in a TPU systolic array.

Section II-A sheds light on the background of the TPU systolic

array and inherent opportunities which can be exploited for an

improved performance. Using the cross-layer methodology in

Section II-B, we investigate the MAC units’ delay profiles.

Section II-C elaborates the significance of the results and

establishes the ground work for our timing error correction

and dynamic power management scheme.

A. Background

1) DNN Accelerators: DNN obtains inference using multi-

ple layers of computation. Outputs of neurons from each layers

are referred to as activation streams. An activation matrix is

multiplied with the weight matrix in each layer. To accelerate

the matrix multiplication, a systolic array of MAC units are

employed in DNN accelerators [11]. TPU–a DNN accelerator–

uses a 256×256 systolic array of MACs. The weight matrices

are pre-loaded into the MACs. The activation streams flow

from left to right in consecutive clock cycles. The activation

and weight matrices maintain an 8-bit integer precision, while

the accumulator maintains a 24-bit integer precision.

2) Opportunities in a Systolic Array: The asymmetric delay

distributions of the multiplier and accumulate blocks in a MAC

unit, open up an unique opportunity to tackle timing errors in

a systolic array. The accumulate operation in a MAC, adds

the output of the upstream MAC to the output of its own

multiplier block. Due to a relatively large computation time

of the multiplication operation, the output from the upstream

MAC has ample time to reach the current accumulate unit,

presuming the synchronization takes place at the primary

output of the MAC. Exploiting this available timing window,

correcting an erroneous operation at the upstream MAC can

be overlapped with the multiplication operation of the current

MAC, without paying any additional performance penalty.

The wavefront propagation of data in a systolic array leads

to a static pattern of busy and idle phases. Such a predictable

pattern creates an avenue to conserve power of the idle MAC

units. Next, we briefly discuss our experimental methodology,

used to demonstrate these opportunities in the systolic array

of an NTC TPU.

B. Methodology

We synthesize a multiplier and an accumulator unit at NTC,

using 15-nm FinFET library from NanGate [12]. To model the

PV at NTC for FinFET, we use VARIUS-NTV models [13].

For a conservative estimate, we consider PV-induced delays in

randomly chosen 2% of the gates in the circuit [14]. We use

our in-house statistical analysis tool to investigate the delay

distribution of the sensitized path for different inputs to the

multiplier and accumulator unit.

C. Results and Significance

Figures 1(a) and 1(b) show the delay distributions of the

multiplier unit and accumulate unit, respectively. The multi-

plier unit is tested for a set of all possible 8-bit activation

streams created against all possible 8-bit weight streams,

which results in a total of 65536, 16-bit output combinations.

Each one these 65536 outputs serve as one of the inputs for

the accumulator while, the other input of the accumulator is

fed with its own output from the previous cycle.

242

4B-3

Fig. 2: CostCo implemented inside the MAC unit to detect and correct and timing violations.

From Figure 1(a) and 1(b), it can be inferred that, even if

the output of multiplier unit is sensitized only to the activation

stream due to the preloaded weight, the multiplier unit still

induces a higher combinational delay to the MAC operation

in comparison to the accumulator, during a clock period of

operation. Figure 1(b) shows that the accumulation requires

less than half cycle of the clock period. This disparate timing

characteristics of the multiplier and accumulate operations

create an opportunistic timing window to correct any timing

violation in an upstream MAC, thereby preventing any erro-

neous value to be propagated down the column of the systolic

array.

Figure 1(c) depicts the decrease in dynamic power and

domination of static power in a MAC unit as the region of

operation is changed from super-threshold computing (STC) to

NTC. The X-axis is normalized to 1GHz. Operating voltage is

set at 0.85V and scaled linearly to depict the shift in operating

conditions. Static energy consumption can be reduced by

operating the systolic array at frequencies, above the nominal

NTC frequency. However, increasing the operating frequency

linearly increases the dynamic energy consumption of the

MAC units. In order to curb the increase in dynamic energy, an

in-situ clock gating technique can be employed in the systolic

array. With this opportunistic window in-sight, we explore our

performance enhancing TPU systolic array design–EFFORT.

III. EFFORT DESIGN

In this section, we discuss Energy eFFicient and errOr

Resilient TPU (EFFORT), a novel design paradigm to improve

the performance of an NTC TPU by enhancing the timing error

resilience of its MAC units and managing the dynamic energy

consumption of the systolic array. We describe the overview of

EFFORT in Section III-A, and explain its detailed components

in Section III-B and Section III-C.

A. Design Overview

Figure 2 demonstrates the high-level design of EFFORT.

We add two key modifications to the baseline NTC TPU.

First, we augment each MAC unit with a novel penalty-free

error detection and correction logic, thus preserving a high

performance. Second, a low-overhead clock gating technique

is implemented to conserve the dynamic power of the systolic

array. These two components are discussed next.

(a) No timing violation.

(b) Timing violation with no correction.

(c) Timing violation with correction.

Fig. 3: CostCo can diagnose timing violation and propa-

gate the corrected value within one clock cycle.

B. Costless Correction (CostCo)

In this section, we introduce Costless Correction (CostCo).

We augment the conventional Razor [6] with a multiplexer

(MUX) and an Exclusive-OR (XOR) gate, as demonstrated in

Figure 2. Since CostCo controls its output with the comparison

of the shadow latch and the main latch, it is capable of

propagating the correct value to the downstream logic within

the same clock cycle that timing error detection happens.

Figure 3 demonstrates the RTL simulation waveforms for two

consecutive MAC units within a column, in a systolic array,

both in absence and presence of a timing violation. Note that,

we synchronize only the primary output of the MAC units

with the system clock, to enable our proposed CostCo design.

Figure 3(a) demonstrates the normal output waveforms of

two consecutive column MACs in absence of any timing

violation. Figure 3(b) shows how a small additional delay

in the input of the first MAC, engenders timing violation

in its immediate downstream MAC, leading to an erroneous

result. Figure 3(c) exhibits how CostCo can detect the timing

violation and propagate the correct value to its succeeding

downstream MAC, within the same clock cycle. CostCo can

be employed as a competent method to tackle timing violation

if the downstream combinational logic has sufficient time-

243

4B-3

(a) Cycle 1 to 4. (b) Cycle 5. (c) Cycle 6.

(d) Cycle 7. (e) Cycle 8 to 11.

Fig. 4: Data flow pattern in a 4 × 4 systolic array for

11 consecutive cycles. Gray MACs are yet to receive

their inputs, black MACs have completed their operations,
while the rest of the MACs are presently computing their

respective outputs.

window before the next rising edge of the clock, to replay

its logical operations on the corrected data.

We consider 24 CostCo flip-flops at the output of each MAC

that provide the correct values to the downstream MACs, in

case of a timing error. The output of each MAC is utilized

in the accumulation operation in its succeeding MAC. As

accumulation in each MAC requires less than 50% of the clock

cycle (Section II), we decide a 50% shift in the system clock

to provision the CostCo flip-flop clock. This shift of clock

provides an opportunity to detect timing errors up to 50%

beyond the system clock, while it guarantees the succeeding

MACs to have adequate time to accomplish their accumulation

operations in the remaining time window. We discuss the

hardware overhead and performance gain of this design in

Section V.

C. Systolic Clock Gating

In EFFORT, we aim to increase the operating frequency,

while keeping the supply voltage at the nominal NTC value, in

order to provide a better performance compared to a baseline

NTC TPU. To reduce the power consumption due to a high-

frequency operation, we exploit the application independent

data-flow pattern within the TPU systolic array, and employ a

low-overhead clock gating technique.

1) Application Independent Data Flow: Figure 4 demon-

strates the pattern of data flow inside a 4×4 systolic array for

11 consecutive clock cycles. In this figure, the gray nodes

represent the MACs that have not received their data yet,

the nodes in black denote the MACs that completed their

operations, and other colored nodes demonstrate the MACs

which are doing their operations. Numbers on black nodes

show the cycle when they completed their operations, numbers

on other colored nodes represent the cycle in which they

received their first data, and numbers on each edge display

the cycle in which the preceding node attempts to activate or

deactivate its subsequent nodes either on the right-hand side

or down a row. As Figure 4(a) exhibits, considering the upper

left node as the start point from cycle 1 to 4, all the MACs

from start point down to the main diagonal, receive their data

respectively in a sequential fashion, while the rest of them are

yet to receive their data. After cycle 4 (Figure 4(b) through

Figure 4(d)), as a new set of MACs receive their data in each

cycle, another set of MACs accomplish their tasks. Figure

4(e) displays the systolic array after 11 clock cycles, when

the entire systolic array operation is completed. We observe

that all the MACs on the same diagonal of the systolic array,

are active or idle in the same cycles.

2) Clock Gating Components: Based on the activity pattern

of a systolic array, we propose a low overhead clock gating

technique to shutdown the clock of idle MACs, improving

the dynamic energy consumption of the TPU. Since all of the

MACs on the same diagonal of the systolic array are active or

idle in the same clock cycle, instead of endowing a separate

clock gating unit for each MAC, we provide one for each set of

MACs on each diagonal. Since an n× n matrix has (2n− 1)
diagonals, we thus reduce the total on number of required

clock gating units from n
2 to (2n− 1). Figure 2 shows that

each clock gating unit consists of one flip-flop to register the

enable signal for the downstream clock gating unit, and an

AND gate to control the clock for its corresponding group of

MACs.

3) MAC Activity Analysis: Generalizing from Figure 4, an

n × n systolic array needs (3n − 2) cycles to complete its

operation. However, not all MACs are active during each clock

cycle. For an n× n systolic array, at each clock cycle in the

range [Cycle 1, Cycle n] and [Cycle (2n - 1), Cycle (3n - 2)],

the total number of active MACs is
n×(n+1)

2 . Furthermore, in

the interval [Cycle (n+ 1), Cycle (2n)], at each cycle i, the

number of active MACs change by (n − (2 × i)), where a

positive (negative) value indicates an increase (decrease) in

the number of MACs. Applying our proposed clock gating

technique by summing the number of active MACs during the

(3n−2) clock cycles, we reduce the order of active sequential

logic from (3n3) to (n3). We discuss the experimental results

and hardware overhead of this technique in Section V.

IV. METHODOLOGY

In this section, we expound our comprehensive cross-layer

methodology, used to implement our proposed design and

evaluate its capabilities across DNN applications.

A. Device Layer

We measure the delay distributions of basic logic gates

(e.g., NOR, NAND and Inverter) by performing HSPICE

simulations with 16-nm Predictive Technology Model [15].

We consider the impact of with-in die process variation at NTC

by using VARIUS-NTV model [16]. In addition, we employ

VARIUS-TC model to integrate the FinFET attributes [17].

The delay values are used in the circuit layer (Section IV-B)

to analyze the delays in a MAC unit.

B. Circuit Layer

We implement a TPU systolic array, as well as, the compo-

nents of our proposed design in Verilog RTL. We synthesize

the developed RTLs using Synopsys Design Compiler. We

use the synthesized netlists in our in-house statistical timing

244

4B-3

Fig. 5: Normalized inference accuracies of the 4 DNN datasets for different comparative schemes.

analysis (STA) tool. The STA tool employs libraries of delay

distributions for basic logic gates from HSPICE simulations

(Section IV-A), to provide the delays of the sensitized paths in

the MAC circuit. We utilize the sensitized delays for further

evaluations of our proposed technique.

C. Architecture Layer

We use our in-house TPU Systolic array simulator de-

veloped using C++, based on the detailed architecture of a

TPU [11]. The delays from the STA tool (Section IV-B) are

incorporated into the TPU Simulator to simulate timing errors

in the MAC units. We interface Keras [18] with our TPU

simulator to replicate a real-life inference engine. The DNN

applications (viz., Reuters [19], IMDB [20], MNIST [21],

CIFAR-10 [22]) are trained using Keras. Activation inputs and

trained weights from each layers are extracted and separated

into 256×256 matrices. Inference accuracy is obtained by

combining the output matrices from the simulator.

V. EXPERIMENTAL RESULTS

In this section, we compare the efficacy of different schemes

for NTC TPU operation. The baseline frequency for our

scheme is (0.45V, 67.5MHz), which offers an error-free execu-

tion of the systolic array. Section V-A introduces the compar-

ative schemes. Section V-B presents the inference accuracies.

Section V-C discusses the power savings and Section V-C

presents the overheads of EFFORT.

A. Comparative Schemes

• Baseline-TPU : This scheme operates an NTC TPU

without any error detection and correction. It allows the

erroneous data to propagate throgh all the computation

stages in the systolic array [8].

• TE-Drop : This technique handles the timing errors by

dropping the subsequent downstream MAC operation [7].

The erroneous MAC recomputes the output by stealing the

clock cycle from its downstream MAC.

• EFFORT : This is our proposed technique which uses

the opportunistic timing window in the MAC operation to

detect and correct timing errors (Section III). However, if a

computational delay falls beyond that opportunistic timing

window, an erroneous value will be propagated.

B. Inference Accuracy

Figure 5 shows the normalized accuracies for different

comparative schemes at various operating frequencies. The

operating voltage is set to 0.45V for all frequencies. Y-axis is

normalized to the error free accuracy for the baseline operation

and X-axis is normalized to the baseline frequency. Error

Fig. 6: Power Consumption (Lower is better).

free accuracy for datasets are REUTERS: 0.80, IMDB: 0.89,

MNIST: 0.98 and CIFAR-10: 0.77, respectively.

A modest timing error resilience can be observed in all

the schemes up to 1.25× the baseline frequency of operation.

Accuracy begins to decline as the number of errors drastically

increases at higher frequencies. EFFORT outperforms other

schemes by detecting and correcting most of the timing

errors. However, for CIFAR-10, the computational delay at

the highest frequency is relatively higher than other datasets,

which increases the number of undetected errors in EFFORT

and consequently, causes more reduction in inference accu-

racy. Baseline-TPU has a relatively sudden fall in inference

accuracy as propagating errors in successive stages massively

deteriorates the quality of the output matrices [10]. Inference

accuracy for TE-Drop, however, falls at a slower pace, com-

pared to the baseline-TPU. At higher frequencies, due to a

large number of timing errors, TE-Drop bypasses a higher

number of MAC computations, resulting in inferior accuracies

compared to EFFORT. Hence, an NTC TPU, enhanced with

EFFORT, results in only 2% average accuracy loss, when

operated up to 2.5× the baseline frequency, for 3 out of 4

DNN datasets.

C. Energy Efficiency

Figure 6 shows the average power consumption for the

4 DNN datasets for different comparative schemes. Power

consumption for the comparative schemes are normalized to

the power consumption of the Baseline-TPU at the baseline

frequency. With the increasing operational frequency, power

consumption steadily increases for all the schemes. However,

EFFORT has lower power consumption compared to other

schemes. The clock gating scheme implemented in EFFORT

yields lower dynamic power in MAC units which are idle.

Hence, the overall power consumption for the systolic opera-

tion is reduced. Thus, EFFORT consumes up to 6% and 27%
less power when compared to Baseline TPU and TE-Drop.

245

4B-3

Fig. 7: TOPS/Watt (Higher is better).

TE-Drop, due to its Razor flip-flops, has the highest power

consumption.

Figure 7 depicts the average of the energy-efficiency, mea-

sured in Tera Operations Per Second (TOPS)/Watt, for 4 DNN

datasets with the normalized frequencies. TOPS/Watt for all

the scheme are normalized to that of the Baseline-TPU at

the baseline frequency. All the schemes have the same TOPS

measure. However, TE-Drop has the lowest energy-efficiency

due to its relatively high power footprint compared to both

EFFORT and the Baseline-TPU. Owing to the clocking gating,

EFFORT boasts the highest energy-efficiency. EFFORT deliv-

ers up to 1.06× and 1.35× better performance per unit power

consumption, relative to other schemes. Hence, EFFORT is a

superior NTC TPU design paradigm, offering a high energy-

efficiency while providing a high timing error resilience.

D. Implementation Overhead

EFFORT incurs hardware overheads due to the clock gating

circuit, and the CostCo logic added to each MAC. As the

systolic array takes almost 24% of the TPU die area [11],

EFFORT incurs an area overhead of only 5%.

VI. RELATED WORK

Recent studies explore timing error resilience as well as

energy efficiency improvement in DNN accelerators. Reagen

et al. presented a co-design technique across the algorithm, ar-

chitecture and circuit level to improve the energy efficiency of

DNN by applying selective pruning through lowering SRAM

voltages without compromising the accuracy [23]. Chen et al.

proposed a run-time pruning technique, called row stationary,

that enhances the efficiency of a convolutional neural network

by re-configuring the spatial architecture, in order to map its

computations [24]. Zhang et al. introduced an aggressive volt-

age underscaling method to improve the energy efficiency of

DNN accelerators while keeping accuracy drop less than 1%

[7]. Yu et al. presented a hardware pruning technique which

applies SIMD-aware weight and node pruning synergistically

at the design time to improve the energy efficiency of the DNN

by reducing the size of the underlying hardware [25].

VII. CONCLUSION

Increase in the processing workloads in real-time DNN

applications calls for a DNN accelerator capable of deliver-

ing high classification accuracy while efficiently meeting the

energy requirements of the system. This paper demonstrates

EFFORT—a high-performance energy-efficient novel design

paradigm for a TPU, operating at NTC. EFFORT efficiently

detects and tackles timing errors while reducing the power

consupmtion of the TPU. EFFORT delivers upto 2.5× in-

crease in performance with a minimum drop in accuracy and

consumes in between 6% - 27% less power in comparision

to recently proposed schemes. Additionally, EFFORT gives

between 1.06× and 1.35× superior performance per unit

power against representative timing error resilient schemes.

ACKNOWLEDGEMENTS

This work was supported in part by National Science

Foundation grants (CAREER-1253024, and CNS-1421022).

Any opinions, findings, and conclusions or recommendations

expressed in this material are those of the authors and do

not necessarily reflect the views of the National Science

Foundation.
REFERENCES

[1] N. P. Jouppi, C. Young, N. Patil, D. Patterson, G. Agrawal, R. Bajwa, S. Bates,
S. Bhatia, N. Boden, A. Borchers et al., “In-datacenter performance analysis of a
tensor processing unit,” in Computer Architecture (ISCA), 2017 ACM/IEEE 44th

Annual International Symposium on. IEEE, 2017, pp. 1–12.
[2] R. G. Dreslinski, M. Wieckowski, D. Blaauw, D. Sylvester, and T. N. Mudge,

“Near-threshold computing: Reclaiming moore’s law through energy efficient
integrated circuits,” Proc. of the IEEE, vol. 98, no. 2, pp. 253–266, 2010.

[3] T. Shabanian, A. Bal, P. Basu, K. Chakraborty, and S. Roy, “Ace-gpu: Tackling
choke point induced performance bottlenecks in a near-threshold computing gpu,”
in ISLPED, 2018.

[4] A. Bal, S. Saha, S. Roy, and K. Chakraborty, “Revamping timing error resilience
to tackle choke points at ntc systems,” in Proc. of DATE, 2017, pp. 1020–1025.

[5] U. Karpuzcu, N. S. Kim, and J. Torrellas, “Coping with parametric variation at
near-threshold voltages,” IEEE Micro, vol. 33, no. 4, pp. 6–14, July 2013.

[6] D. Ernst, N. S. Kim, S. Das, S. Pant, R. R. Rao, T. Pham, C. H. Ziesler, D. Blaauw,
T. M. Austin, K. Flautner, and T. N. Mudge, “Razor: A low-power pipeline based
on circuit-level timing speculation,” in Proc. of MICRO, 2003, pp. 7–18.

[7] J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “Thundervolt: Enabling aggressive
voltage underscaling and timing error resilience for energy efficient deep neural
network accelerators,” arXiv preprint arXiv:1802.03806, 2018.

[8] P. N. Whatmough, S. Das, D. M. Bull, and I. Darwazeh, “Circuit-level timing
error tolerance for low-power dsp filters and transforms,” IEEE Transactions on

Very Large Scale Integration (VLSI) Systems, vol. 21, no. 6, pp. 989–999, 2012.
[9] F. Nakhaee, M. Kamal, A. Afzali-Kusha, M. Pedram, S. M. Fakhraie, and

H. Dorosti, “Lifetime improvement by exploiting aggressive voltage scaling during
runtime of error-resilient applications,” Integration, vol. 61, pp. 29–38, 2018.

[10] X. Jiao, M. Luo, J.-H. Lin, and R. K. Gupta, “An assessment of vulnerability
of hardware neural networks to dynamic voltage and temperature variations,” in
Proceedings of the 36th International Conference on Computer-Aided Design.
IEEE Press, 2017, pp. 945–950.

[11] N. Jouppi, C. Young, N. Patil, and D. Patterson, “Motivation for and evaluation of
the first tensor processing unit,” IEEE Micro, vol. 38, no. 3, pp. 10–19, 2018.

[12] NanGate, http://www.nangate.com/?page id=2328.
[13] S. Sarangi, B. Greskamp, R. Teodorescu, J. Nakano, A. Tiwari, and J. Torrellas,

“Varius:a model of process variation and resulting timing errors for microarchi-
tects,” IEEE Tran. on Semicond. Manufac., vol. 21, pp. 3 –13, 2008.

[14] P. Pandey, P. Basu, K. Chakraborty, and S. Roy, “Greentpu: Improving timing error
resilience of a near-threshold tensor processing unit,” in Proc. of DAC, 2019, pp.
173:1–173:6.

[15] W. Zhao and Y. Cao, “New generation of predictive technology model for sub-
45nm early design exploration,” T. Electron Devices, vol. 53, no. 11, pp. 2816
–2823, 2006.

[16] U. R. Karpuzcu, K. B. Kolluru, N. S. Kim, and J. Torrellas, “Varius-ntv: A
microarchitectural model to capture the increased sensitivity of manycores to
process variations at near-threshold voltages,” in DSN, 2012, pp. 1–11.

[17] S. K. Khatamifard, M. Resch, N. S. Kim, and U. R. Karpuzcu, “Varius-tc: A
modular architecture-level model of parametric variation for thin-channel switches,”
in ICCD, 2016, pp. 654–661.

[18] F. Chollet et al., “Keras,” https://keras.io, 2015.
[19] “Reuters-21578 dataset.” [Online]. Available: http://kdd.ics.uci.edu/databases/

reuters21578/reuters21578.html
[20] A. L. Maas, R. E. Daly, P. T. Pham, D. Huang, A. Y. Ng, and C. Potts, “Learning

word vectors for sentiment analysis.” Association for Computational Linguistics,
2011, pp. 142–150.

[21] Y. LeCun and C. Cortes, “MNIST handwritten digit database,” 2010. [Online].
Available: http://yann.lecun.com/exdb/mnist/

[22] A. Krizhevsky, “Learning multiple layers of features from tiny images,” 2009.
[23] B. Reagen, P. Whatmough, R. Adolf, S. Rama, H. Lee, S. K. Lee, J. M. Hernández-

Lobato, G.-Y. Wei, and D. Brooks, “Minerva: Enabling low-power, highly-accurate
deep neural network accelerators,” in ACM SIGARCH Computer Architecture News,
vol. 44, no. 3. IEEE Press, 2016, pp. 267–278.

[24] Y.-H. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE Journal

of Solid-State Circuits, vol. 52, no. 1, pp. 127–138, 2016.
[25] J. Yu, A. Lukefahr, D. Palframan, G. Dasika, R. Das, and S. Mahlke, “Scalpel: Cus-

tomizing dnn pruning to the underlying hardware parallelism,” in ACM SIGARCH

Computer Architecture News, vol. 45, no. 2. ACM, 2017, pp. 548–560.

246

4B-3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

