
Security Threats and Countermeasures for Approximate
Arithmetic Computing

Pruthvy Yellu, Mezanur Rahman Monjur, Timothy Kammerer, Dongpeng Xu, and Qiaoyan Yu
University of New Hampshire

Durham 03824, USA

Email:qiaoyan.yu@unh.edu

ABSTRACT

Approximate computing (AC) emerges as a promising approach

for energy-accuracy trade-off in compute-intensive applications.

However, recent work reveals that AC techniques could lead to

new security vulnerabilities, which are presented in a format of

visionary view. There is a lack of in-depth research on concrete

attack models and estimation of the significance of the attacks on

approximate arithmetic computing systems. This work presents

several practical attack examples and then proposes two attack

models with quantitative analysis. Input integrity check and exclu-

sive logic based attack detection methods are proposed to address

the attacks on AC systems. The experimental results show that the

attack detection failure rate of our method is below 2.2 ∗ 10−3 and

the area and power overhead is less than 6.8% and 1.5%, respectively.

Keywords

Approximate computing (AC), hardware security, Discrete Co-

sine Transform (DCT), Artificial Neural Network (ANN).

1 INTRODUCTION

Improving energy efficiency has become a critical demand of

computation-intensive applications. Unfortunately, today’s com-

puting systems are built to perform precise computations at the

cost of high energy consumption. Since many applications (e.g. mul-

timedia and signal processing) are inherently error tolerant, exact

calculations are not necessary [3, 13]. Approximate computing (AC)

leverages the error resilience characteristics in applications to trade

accuracy for better energy efficiency [5].

Existing research efforts on AC are distributed at the software [2,

19], architecture [4, 14], storage [10, 12, 17] and circuit [1, 3] levels.

At the software level, the majority of approximations are achieved

by skipping computations in the algorithm. Approximations in

hardware are performed by redesigning the computational logic

at the circuit or gate level. In the work [3], the approximation of

an adder is obtained by changing the K-map logic such that the

sum and carry logic are implemented with minimal logic gates.

In the work [10], the authors introduced a scheme that improves

energy efficiency by reducing the refresh rate of DRAM blocks. The

previous work focuses on ensuring better output quality despite

the errors induced by approximate techniques. There is limited

literature available to analyze the new security threats and de-

velop specific countermeasures for AC systems. It is imperative to

have concrete attack models and numerical analysis for AC system

developers to foresee the potential risks of using approximation

techniques.

The rest of this work is organized as follows. In Section 2, we

survey the security threats available in literature, and highlight

our contributions. Three motivation examples are presented in

Section 3. In Section 4, we introduce the attacks on interconnect

and approximate functional IPs. Two countermeasures are proposed

in Section 5. Experimental results are provided in Section 6. We

conclude this work in Section 7.

2 BACKGROUND

2.1 Security Threats in AC

Various approximation techniques at different software and hard-

ware levels are summarized in the surveys [9, 16]. In this work, we

are particularly interested in the security threats originating from

the use of hardware-level approximation techniques. The work [7]

indicates that their approximation technique could make chip re-

verse engineering easier. The over-scaled approximation technique

will lead to erroneous chip outputs, which vary from chip to chip

due to process variation. Reverse engineering the critical path of the

chips using approximate computing will reveal chip identification.

In the visionary work [11], the authors analyze the possibility of

different hardware security threats in AC. The authors also compare

the feasibility of security threats like reverse engineering, cloning

and counterfeiting, hardware Trojans and side-channel analysis for

the systems with approximate modules and precise modules. The

follow-up work [18] presents more security threats with detailed

examples, such as authentication failure due to the relaxed refresh

rate of DRAM, data corruption in phase change memory because

of insufficient writes, and an increased error rate in SRAM due to a

change in the supply voltage. The works mentioned above warn

us to be aware of the potential security threats on AC systems, but

they neither present clear attack models nor provide protection

methods for the new security vulnerabilities.

2.2 Our Contributions

The main contributions of this work are as follows:

• We propose detailed attack models for the compromised

interconnect and approximate functional modules.

• This is the first work that uses quantitative examples to

analyze the impact of potential security attacks on AC sys-

tems on the system accuracy, area, power consumption, and

critical-path delay.

• We propose two countermeasures against potential attacks

onAC systems, one for interconnect and one for approximate

arithmetic computing IPs.

• The proposed attack models and countermeasures are eval-

uated on 64-bit adders, image compression and decompres-

sion, and artificial neural networks. Our experimental results

show that the proposed method is light weight and has a

high attack detection rate.

�����������������	�
	����

 �
�
 ����

259

4C-3

260

4C-3

261

4C-3

262

4C-3

Algorithm 2: Proposed Exclusive Logic based Attack (ELA)

Detection.

Data: Precise logic function Γ, approximate logic functionγ

Result: Find the optimal tampering alert logic

1 Exhaustive search for the list of input patterns Ξ that lead to

Γ(ξi)! = γ (ξi), ξi ∈ Ξ ;

2 Use randomly modified logic δ () to replace the approximate

logic γ () ;

3 Initialize detection rank deti (i ∈ [1, size(Ξ)] as 0;

4 while i ≤ size(Ξ) do

5 if δ (ξi) !=γ (ξi) then

6 Increase deti ;

7 else

8 deti remains same ;

9 end

10 Form the alert logic using ξi and expected output outp ;

11 Estimate hardware cost for the alert logic HWi ;

12 i++ ;

13 end

14 Choose the optimal ξi for alert logic generation;

of the attack. To trade off the hardware cost and detection success

rate, we search for the optimal combination of input pattern and

the outputs. More details of our method are shown in Algorithm 2.

We resume the example analyzed in Section 4.2.2 and use Al-

gorithm 2 to develop the alert logic for the malicious carry. After

an exhaustive search, we find that the input pattern of ’0 1 0’ (for

A, B, and Cin, respectively) will lead to different carry bits for the

precise and approximate adders. Thus, we form the Boolean logic

expressed in Eq. 5 to generate the alert signal.

Alert = A + B + Cin + Cout ; (5)

The proposed algorithm is able to detect the over-propagation and

under-propagation attacks mentioned in Section 4.2.2 with success

rates of 66.67% and 100%, respectively. To improve the detection

success rate, we can bring in Sum to the alert logic in Eq. 6.

Alert = A + B + Cin + Cout + Sum; (6)

6 EXPERIMENTAL RESULTS

6.1 Assessment on Proposed IIC

We implemented four 64-bit ripple carry adders, precise addition

with or without IIC and approximate addition with or without IIC,

in a TSMC 65nm technology. We used Synopsys Design Compiler to

report the area, power and critical-path delay shown in Table 4. The

approximate adder consumes less area and power and runs faster

than the precise adder due to simplified logic. The proposed IIC

does not increase the delay on the critical path since the integrity

detection runs in parallel with the normal addition logic. Compared

to the baseline adders, the area and power consumption for the

adders with IIC is almost doubled. This is because the IPs (i.e. 1-bit

adders) under protection use only a few logic gates. When the logic

complexity for PC and AC IPs increases, the overhead percentage

is expected to drop.

Table 4: Comparison of hardware cost for precise and ap-

proximate 64-bit adder with and without proposed IIC.

Adder design
Area

(μm2)

Dynamic

Power(μW)

Leakage

Power(μW)

Delay

(ns)

Precise Adder w/o IIC 622.08 224.62 2.76 8.52

Approx. Adder w/o IIC 610.56 205.61 2.69 7.88

Precise Adder w/ IIC 1354.68 346.24 6.28 8.52

Approx. Adder w/ IIC 1343.16 327.54 6.21 7.88

� �� ��� ��� ��� ���
����	
	� ���	
��

����

����

����

����

���

��
���
��
��
��
��
 �
�
�!
�"
�#
��
$�
��%
&'
�&
(

(a)

) *) +) ,) -) .) /)
01234546 72184 59:

);<

*

*;+

*;-

*;/

*;<

+

+;+

+;-

+;/

=>
?@A
BC
B>
DC
EF
GB
EG
EH
CI
?JD
CK
B?D
LM
NC
MO

P*)QR

STUVW XYZ[\]
STUVW XYZ[\ ^_

(b)

Figure 8: Attack detection failure rate of proposed IIC algo-

rithm. (a) Failure rate for all possible attack locations, and

(b) impact of DCT block size on the detection failure rate.

` a` b`` ba` c`` ca`

defghihj kfelh imn

oa

p`

pa

a`

aa

q`

qa

r`

ra

s
t
u
v
w
xy
z
u
{|
}~
|z
~
xw
t
�u
}x
~

�������� ��������
�������� ��������
�������� �������� ���� ��� ���

Figure 9: PSNR between original and decompressed images.

We used DCT-IDCT to process the cameraman picture shown in

Fig. 5 as a case study. A triggered hardware Trojan (attack model 1)

will swap the LSB of the exponent and the MSB on the mantissa

of the floating-point number representing the pixel content. The

image row under attack was swept from 1 to 256 (last row) to

examine whether our IIC is data-dependent. As shown in Fig. 8(a),

our attack detection failure rate is in the range of 2.2 ∗ 10−3 and

8.087 ∗ 10−4 and it is data independent. We further changed the

block size in the DCT algorithm. Figure 8(b) shows that the range

of our attack detection failure rate remains nearly consistent for

the block size of 8 and 32. Next, we analyzed the peak signal-to-

noise ratio (PSNR) between the original and decompressed images.

As shown in Fig. 9, our approach successfully maintains the same

PSNR as the DCT-IDCT without interconnect tampering. Our worst

PSNR is 2.03× higher than the PSNR of the tampered DCT-IDCT

without protection.

6.2 Assessment on Proposed ELA Detection
We continue to use the same adder in Section 6.1 to evaluate

our ELA detection method. Hamming distance was adopted to

263

4C-3

� �� �� ��

�� �� 	
���� ����	
���

�

���

���

���

���

�

���

���

�
�
�
�
��
�
�
��
��
�

!

"#$%&'(&)(*+*,-)# *,,*./

01 23456
73456 896: ;255<
73456 896: ;255< 2=> ?@A

� �� �� ��

�� �� 	
���� ����	
���

�

���

���

���

���

�

���

���

�
�
�
�
��
�
�
��
��
�

!

BC%&'(&)(*+*,-)# *,,*./

01 23456
73456 896: ;255<
73456 896: ;255< 2=> ?@A

Figure 10: Hamming distance improved by proposed ELA de-

tection method in a 64-bit adder.

Table 5: Hardware cost of the 64-bit approximate adder with

and without proposed ELA detection method.

Alert logic and location
Area

(μm2)

Dynamic

Power(μW)

Leakage

Power(μW)

Delay

(ns)

Baseline w/o any alert logic 610.56 205.61 2.69 7.88

Submodule w/ alert in Eq. 5 627.84 205.61 2.71 7.88

Submodule w/ alert in Eq. 6 640.08 206.66 2.80 7.88

Top module w/ alert in Eq. 5 641.16 207.52 2.77 7.93

Top module w/ alert in Eq. 6 652.32 208.69 2.80 7.95

compare the number of different output bits between the precise

and approximate adders (w/o our protection method) experiencing

under-propagation (up) and over-propagation (op) tampering at-

tacks. Hamming distance for all test cases are shown in Fig. 10. For

the under-propagation case, the proposed alert logic will reduce the

Hamming distance by 74.6%. If we use both sum and carry (Eq. 6) to

detect attacks, our method successfully reduces Hamming distance

to zero (i.e. 100% attack detection rate).

Table 5 shows the hardware cost for different alert logic designs.

The baseline is the 64-bit approximate adder implemented with a

TSMC 65nm technology. The ELA detection unit was applied at

the top module or each 1-bit full adder (i.e. submodule). The alert

logic applied in the submodule does not incur delay overhead since

the attack detection logic is not on the critical path. If applied in

the submodules, our detection logic expressed in Eq. 5 consumes

2.8% and 0.55% more area and power, respectively, than the baseline.

More complicated alert logic in Eq. 6 increases the area and power

overhead to 4.8% and 0.95%, respectively.Whenwemoved the attack

detection logic to the top module of the 64-bit adder, the delay, area,

and power overhead goes up by 0.88%, 6.8%, and 1.5%, respectively.

In summary, our ELA method is a light-weight solution against

approximate function tampering.

7 CONCLUSION

Approximate computing has emerged as a promising strategy to

improve systems’ energy efficiency at the cost of reduced precision

or accuracy. The majority of approximate computing research fo-

cuses on the algorithms for approximation and the applications of

approximate arithmetic units and storage, rather than the poten-

tial security threats brought by approximate computing. Following

up the most recent visionary literature on security threats in ap-

proximate computing systems, this work numerically demonstrates

the impact of two security threats on a floating-point adder and

the image classification error of an ANN. We propose two attack

models to characterize the attacks that affect interconnect and func-

tion modules in approximate arithmetic units. Furthermore, we

suggest a general framework to strengthen the attack resilience

of approximate computing systems. An input integrity check algo-

rithm is proposed to secure the interconnect between precise and

approximate computational IPs. The approximate arithmetic func-

tion is protected with an exclusive logic based detection method.

Our experimental results show that the attack detection failure rate

is below 2.2 ∗ 10−3. The application of our input integrity check

algorithm improves the peak signal-to-noise of image processed

in a DCT-IDCT by over 2× that of the baseline. Our case study

shows that the proposed exclusive logic alert method reduces the

Hamming distance between precision and approximate addition

output by up to 74.6%, while the delay, area and power overhead is

less than 0.88%, 6.8% and 1.5%, respectively.

Acknowledgments
This research is partially supported by the NSF CAREER grant

(No. CNS-1652474).

REFERENCES
[1] V. Camus, J. Schlachter, C. Enz, M. Gautschi, and F. K. Gurkaynak. 2016. Approx-

imate 32-bit floating-point unit design with 53% power-area product reduction.
In Proc. ESSCIRC’16. 465–468.

[2] Z. Du, K. Palem, A. Lingamneni, O. Temam, Y. Chen, and C. Wu. 2014. Leveraging
the error resilience of machine-learning applications for designing highly energy
efficient accelerators. In Proc. ASP-DAC’14. 201–206.

[3] V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. 2013. Low-Power Digital
Signal Processing Using Approximate Adders. TCAD’13 32, 1 (Jan 2013), 124–137.

[4] L. Ceze D. Burger H. Esmaeilzadeh, A. Sampson. 2012. Architecture Support for
Disciplined Approximate Programming. In Proc. ASPLOS’12. 301–312.

[5] J. Han. 2016. Introduction to approximate computing. In Proc. VTS’16. 1–1.
[6] Q. Huang, D. Zeng, S. Tian, and C. S. Xie. 2012. Synthesis of defect graphene

and its application for room temperature humidity sensing. Materials Letters’12,
76–79.

[7] S. Keshavarz and D. Holcomb. 2017. Privacy leakages in approximate adders. In
Proc. ISCAS’17. 1–4.

[8] Y. LeCun and C. Cortes. 2010. MNIST handwritten digit database. http://yann.
lecun.com/exdb/mnist/

[9] S. Mittal. 2016. A Survey of Techniques for Approximate Computing. Proc.
CSUR’16 48 (2016), 62:1–62:33.

[10] A. Raha, S. Sutar, H. Jayakumar, and V. Raghunathan. 2017. Quality Configurable
Approximate DRAM. TC’17 7 (July 2017), 1172–1187.

[11] F. Regazzoni, C. Alippi, and I. Polian. 2018. Security: The Dark Side of Approxi-
mate Computing?. In Proc. ICCAD’18. 1–6.

[12] A. Sampson, J. Nelson, K. Strauss, and L. Ceze. 2013. Approximate storage in
solid-state memories. In Proc. MICRO’13. 25–36.

[13] D. Shin and S. K. Gupta. 2008. A Re-design Technique for Datapath Modules in
Error Tolerant Applications. In Proc. ATS’08. 431–437.

[14] S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan.
2013. Quality programmable vector processors for approximate computing. In
Proc. MICRO’13. 1–12.

[15] S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan. 2014. AxNN: Energy-
efficient neuromorphic systems using approximate computing. In Proc. ISLPED’14.
27–32.

[16] Q. Xu, T. Mytkowicz, and N. S. Kim. 2016. Approximate Computing: A Survey.
D&T’16 33, 1 (Feb 2016), 8–22.

[17] L. Yang and B. Murmann. 2017. SRAM voltage scaling for energy-efficient
convolutional neural networks. In Proc. ISQED’17. 7–12.

[18] P. Yellu, N. Boskov, M. Kinsy, and Q. Yu. 2019. Security Threats on Approximate
Computing Systems. In Proc. GLSVLSI’19. 387–392.

[19] Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu. 2015. ApproxANN: An ap-
proximate computing framework for artificial neural network. In Proc. DATE’15.
701–706.

264

4C-3

