4C-3

Security Threats and Countermeasures for Approximate
Arithmetic Computing

Pruthvy Yellu, Mezanur Rahman Monjur, Timothy Kammerer, Dongpeng Xu, and Qiaoyan Yu
University of New Hampshire
Durham 03824, USA
Email:qiaoyan.yu@unh.edu

ABSTRACT

Approximate computing (AC) emerges as a promising approach
for energy-accuracy trade-off in compute-intensive applications.
However, recent work reveals that AC techniques could lead to
new security vulnerabilities, which are presented in a format of
visionary view. There is a lack of in-depth research on concrete
attack models and estimation of the significance of the attacks on
approximate arithmetic computing systems. This work presents
several practical attack examples and then proposes two attack
models with quantitative analysis. Input integrity check and exclu-
sive logic based attack detection methods are proposed to address
the attacks on AC systems. The experimental results show that the
attack detection failure rate of our method is below 2.2 * 10~ and
the area and power overhead is less than 6.8% and 1.5%, respectively.

Keywords

Approximate computing (AC), hardware security, Discrete Co-
sine Transform (DCT), Artificial Neural Network (ANN).

1 INTRODUCTION

Improving energy efficiency has become a critical demand of
computation-intensive applications. Unfortunately, today’s com-
puting systems are built to perform precise computations at the
cost of high energy consumption. Since many applications (e.g. mul-
timedia and signal processing) are inherently error tolerant, exact
calculations are not necessary [3, 13]. Approximate computing (AC)
leverages the error resilience characteristics in applications to trade
accuracy for better energy efficiency [5].

Existing research efforts on AC are distributed at the software [2,
19], architecture [4, 14], storage [10, 12, 17] and circuit [1, 3] levels.
At the software level, the majority of approximations are achieved
by skipping computations in the algorithm. Approximations in
hardware are performed by redesigning the computational logic
at the circuit or gate level. In the work [3], the approximation of
an adder is obtained by changing the K-map logic such that the
sum and carry logic are implemented with minimal logic gates.
In the work [10], the authors introduced a scheme that improves
energy efficiency by reducing the refresh rate of DRAM blocks. The
previous work focuses on ensuring better output quality despite
the errors induced by approximate techniques. There is limited
literature available to analyze the new security threats and de-
velop specific countermeasures for AC systems. It is imperative to
have concrete attack models and numerical analysis for AC system
developers to foresee the potential risks of using approximation
techniques.

The rest of this work is organized as follows. In Section 2, we
survey the security threats available in literature, and highlight

978-1-7281-4123-7/20/$31.00 ©2020 IEEE

259

our contributions. Three motivation examples are presented in
Section 3. In Section 4, we introduce the attacks on interconnect
and approximate functional IPs. Two countermeasures are proposed
in Section 5. Experimental results are provided in Section 6. We
conclude this work in Section 7.

2 BACKGROUND
2.1 Security Threats in AC

Various approximation techniques at different software and hard-
ware levels are summarized in the surveys [9, 16]. In this work, we
are particularly interested in the security threats originating from
the use of hardware-level approximation techniques. The work [7]
indicates that their approximation technique could make chip re-
verse engineering easier. The over-scaled approximation technique
will lead to erroneous chip outputs, which vary from chip to chip
due to process variation. Reverse engineering the critical path of the
chips using approximate computing will reveal chip identification.
In the visionary work [11], the authors analyze the possibility of
different hardware security threats in AC. The authors also compare
the feasibility of security threats like reverse engineering, cloning
and counterfeiting, hardware Trojans and side-channel analysis for
the systems with approximate modules and precise modules. The
follow-up work [18] presents more security threats with detailed
examples, such as authentication failure due to the relaxed refresh
rate of DRAM, data corruption in phase change memory because
of insufficient writes, and an increased error rate in SRAM due to a
change in the supply voltage. The works mentioned above warn
us to be aware of the potential security threats on AC systems, but
they neither present clear attack models nor provide protection
methods for the new security vulnerabilities.

2.2 Our Contributions

The main contributions of this work are as follows:

e We propose detailed attack models for the compromised
interconnect and approximate functional modules.
This is the first work that uses quantitative examples to
analyze the impact of potential security attacks on AC sys-
tems on the system accuracy, area, power consumption, and
critical-path delay.
We propose two countermeasures against potential attacks
on AC systems, one for interconnect and one for approximate
arithmetic computing IPs.
The proposed attack models and countermeasures are eval-
uated on 64-bit adders, image compression and decompres-
sion, and artificial neural networks. Our experimental results
show that the proposed method is light weight and has a
high attack detection rate.

4C-3

End Point 1

. Inputs in range of [-1, 1] . Inputs in range of [0, 1] 100% . . i Temperature & Humidity
3" g -&-Tampering hidden layer weight coumiinator) Controller of Cleanroom
8 g 80% -8-Tampering hidden layer bias /. :—r
£ £ 3 " 5 (e) XBee — RV, -
F FR ° =%Tampering output layer weight R u :
5 | 3 E P — I High humidity |
s 8 s = 60% EREEE XBee I cause defects !
<10°g <108 k] R ER RN B2 X ——— \] 1during deposition!
0 0 600 800 1000 0 200 400 600 80 1000 = goccam sps p3m sy Temperature & | inwafer |
® i [
Number of additions (x10) Number of additions (x10) O 40% EEERmE / \ Humidity Sensor 1 ; .
o Inputs in range of [-100, 100] Inputs in range of [0, 100] = . n) ©9) ! :
3 z 7 > 5 Il
g g @ L : :
g g i
g g S 20% ol 717818 . o~ ! :
z i ° FRT anuns
2 H 0% L End Point n End Point 2 i
]]
3 §

48 49

o 200 400 80 1000 0

600 1000
Number of additions (x10)

400 600 800
Number of additions (x10)

Figure 1: Accumulated inaccuracy of a
64-bit approximate adder.

3 MOTIVATING EXAMPLES

Security vulnerabilities in AC systems are often overlooked be-
cause the applications that use AC (e.g. image processing) can toler-
ate errors. Existing literature has not considered the scenario that
the degraded accuracy could be accumulated to trigger a malicious
event. Moreover, the approximate techniques could be exploited to
implement stealthy attacks since the effect of those attacks could be
misinterpreted as the expected approximation effect. With the fol-
lowing examples, we advocate for researchers to be more cognizant
about the security threats on AC systems.

3.1 Approximate Floating-Point Adder

We implemented a 64-bit approximate adder for floating-point
numbers. One of the adder inputs is a random number and the other
input is fed from the adder output (so that the imprecise output will
be propagated to the next round of computation). We performed
approximate addition 1000 times and plotted the difference between
the outputs of the precise and approximate additions in Fig. 1. As
shown, the trend of accumulated inaccuracy increases with the
number of additions performed. The degraded output precision can
go beyond two orders of magnitude. If the adder inputs are in the
range of symmetric negative and positive numbers, the accumulated
calculation inaccuracy is slightly less than both inputs in a non-
negative range. Based on the cases of [-1, 1] and [-100, 100], we can
observe that the input data limited in a smaller range will lead to
more significant accumulated errors. This example indicates that
the inaccuracy due to approximation could result in a non-negligible
effect if accumulated.

3.2 Approximate Artificial Neural Network

Tremendous addition and multiplication operations are per-
formed in artificial neural networks (ANN), where AC can be uti-
lized to improve ANN energy efficiency [15]. Two types of attacks
could occur in ANN with AC: sabotage the weights and bias param-
eters for the trained neurons or manipulate approximate arithmetic
operations. In this example, we built an ANN that has one input
layer, one hidden layer with 100 neural nodes, and one output layer.
The ANN we built is used to learn the handwritten numbers pro-
vided by the MNIST data set [8]. We assume the mantissa bits for
the weights and bias bits in the hidden or output layer are overwrit-
ten by an attacker. The number of manipulated bits varies from 48
to 53 (counting from the least significant bit). As shown in Fig. 2,

50

Number of tampered bits

Figure 2: Impact of corrupted weights
and bias on classification error of ANN.

260

51 52 53)

Temperature &
Humidity Sensor n

-
Temperature &
Humidity Sensor 2

Figure 3: Approximation in a network of
temperature and humidity sensors.

Table 1: Proposed attack models.

Attack model Key features
(1) AC functional IP is a blackbox;
No. 1: tamper | Assumption | (2) Interconnect between AC and
interconnect non-AC IPs are accessible;
Attack (1) Swap MSB and LSB bits;
method (2) Force LSB to stuck-at-0/1;
Noiamper | Sssumpiion (1) AC functional IP is a whitebox;
AC function (2) Non-AC IPs are protected blackbox;
(1) Use hardware Trojan to trigger
Attack malicious approximate function;
method (2) Use external control to alter
ambient environment.

when we tamper the 52¢ h bit (the most significant mantissa bit) of
the hidden layer weight, hidden layer bias, and output layer weight,
the image classification error rate increases by 7.59x, 1.09%, and
3.94X%, respectively, over that of a healthy ANN. If the exponent bit
of those parameters is sabotaged, the classification error rate could
be over 21X higher than the baseline.

3.3 Approximate Sensor Network

A sensor network was implemented for the purpose of mon-
itoring the clean-room environment in the semiconductor man-
ufacturing industry. As shown in Fig. 3, the network consists of
microcontrollers (Raspberry Pi 3), XBee radio frequency modules,
and sensors that measure the temperature and humidity of the
surrounding environment. We assume that the sensed humidity
value was approximated to improve the communication throughput
between the end points and the coordinator. When we randomly
changed 5 of the 52 mantissa bits, 55% of the measured humidity
values were altered by the attack. Any malicious modification on
the approximated digital representation of the sensor output could
mislead the humidity controller in the clean-room and thus result
in manufacturing more defective chips [6].

4 PROPOSED ATTACK MODELS

We propose two attack models for a system that employs AC.
The key features for each attack model are listed in Table 1. In the
following subsections, we explain the attack models and provide the
numerical assessment for the case study designed for each model.
In the explanation, we use a hybrid (i.e. precise-approximate) adder
as a subject. The detailed attacks on the adder are depicted in Fig. 4.

> Logic and et for

In2[31:28] 7 Trojan insertion
1n1(31:28] ——» Logicand net for
= original adder

L0 e
1n1[3:0] + PA: precise adder

R4 o An’: tampered
HTil
n2t In2[27 ,ﬂn T2 indt |n1[27 24]
I 1[15 8] 1n2[47:40) In1[47Aﬂ] 1n2(63:56] In1[63:56]
P~ In2[15:8]

In1[7:4] o2t ‘1’ In2[23: 15& 17;.1[23 16] 1n2[39:32! 'l'ni[zs 32] ‘i' In2[55; ASd' i’nllﬁ :48] 1'

Cin C[o]] 1) (3] 16)

- AA AN PA PA PA

sum(63:56]
HTin

f Sum[3:ﬂ§ f Sum(15:8] Sum(23:16] sum[31:24] Sumtlﬁgl sum[i;mn] sum([55:48]

sum(7:4]

Sum t[3:0]
Figure 4: Hybrid adder with hardware Trojan payloads.

Table 2: Overhead induced by hardware Trojan that swaps
the outputs of the hybrid 64-bit adder.

. Area Dynamic Leakage Dela
ZSEER dBBiEN (um?) Pov}:ler(/,tW) Power(ﬁW) (ns)y
Baseline 610.56(100%) 205.54(100%) | 2.69(100%) | 7.88
Information leak 2b | 617.034(101.06%) | 206.83(100.63%) | 2.71(100.94%) | 7.88
Information leak 4b | 623.52(102.12%) | 208.51(100.45%) | 2.74(101.88%) | 7.88
Information leak 8b | 636.48(104.25%) | 211.91(103.10%) | 2.79(103.76%) | 7.88

4.1 Attack Model 1: Tamper Interconnect

4.1.1 Model Description The attack objective is to exploit the ex-
isting AC units to expand the degree of output inaccuracy beyond
the system tolerable error range, such that the attack will lead the
system to misbehave. Attackers will access the precise and approx-
imate function units as blackbox IPs, but they can swap a portion
of inputs or outputs for non-AC IPs (for MSBs) and AC IPs (for
LSBs), or shorten the interconnect. This type of attack is easy to
implement and is stealthy since no new hardware component is
needed to define the wrong functionality.

4.1.2 Example Figure 4 shows two examples of interconnect tam-
pering in a 64-bit hybrid precise-approximate adder. The multiplex-
ers are utilized to swap the inputs for an approximate adder (i.e. AA)
and a precise adder (i.e. PA). The selection signal for the multiplex-
ers is a Trojan payload signal (HTIn). The tampering case (D will
change the computation accuracy for the critical and non-critical
bits, thus yielding the non-tolerable inaccuracy. The tampering
case (2) will leak critical information from the precise data channel
to the approximate one. We implemented the adder shown in Fig. 4
and synthesized it with a TSMC 65nm technology. Based on our
synthesis results shown in Table 2, no timing overhead is observed
because the tampering logic does not appear in the critical delay
path, and the increase on the area and total power is less than 4.25%.
In summary, the hardware Trojan aiming to enlarge the compu-
tational inaccuracy or leak the MSB in the hybrid computation
module is feasible and stealthy.

We applied the hardware Trojan described in attack model 1 to an
image compression and decompression application, discrete cosine
transform (DCT)-Inverse DCT. The inserted Trojan will exchange
a few exponent bits with the same number of mantissa bits of the
pixels on an image row. As shown in Fig. 5, the proposed attack
indeed causes a noticeable impact on the image. If the tampered
interconnect is located before the DCT inputs, the impact on the

261

4C-3

Figure 5: Images in DCT-IDCT. (a) Original image before
normal DCT, (b) image after normal IDCT, (c) image sab-
otaged before DCT, (d) image sabotaged after DCT (two
bits swapped), (e¢) image sabotaged after DCT (four bits
swapped).

image is minor. In contrast, if the interconnect tampering happens
after DCT, the decompressed image will be significantly affected.

4.2 Attack Model 2: Tamper Approximate
Computing Function

4.2.1 Model Description Approximation leaves attackers explo-
ration space to either alter the original approximation function or
add extra functions, which could be misinterpreted as a predefined
approximation. Due to the limited testing/verification typically per-
formed for AC systems, the tampered approximation function is
likely to be undetected. As the output of AC IPs will be inexact,
those IPs are often not protected and thus we assume they are
whiteboxes. The malicious changes made on AC IPs could be trig-
gered by functional hardware Trojans or environmental factor (e.g.
temperate or supply voltage fluctuation).

4.2.2 Example In a 1-bit full adder, the logic for the correct carry
is expressed in Eq. 1. The approximation function proposed in [3]
is shown in Eq. 2. We also created over-propagation (Eq. 3) and
under-propagation (Eq. 4) cases for the malicious modification on
the carry logic.

Coutorig = A&B + B&Cin + A& Cin; (1)
Coutgpprox = B + (A& Cin); (2
Coutop =B + A + Cin; (3)
Coutyp = B& A& Cin; (4)

If not tampered, the error yielded by the approximation logic is
acceptable. As shown in Table 3, the probability of logic error due to
the approximation is 12.50%, if thorough input patterns are applied
in the testing stage. Even if the inputs are biased, the error rate only
increases by about 3%. In contrast, malicious logic modification will
cause a higher error rate, 37.50%. Once the inputs are biased, the
carry bit will lean towards a higher probability of logic 1 or logic 0.

Next, we examine the impact of over-propagation and under-
propagation of the carry on the output accuracy in the adder. As

Table 3: Error rate of the carry logic for 1-bit full adders with
precise and approximated addition operations or tampered
approximate functions.

Biased Biased Uniform
Thorough | Inputs Inputs Inputs
C logi
ATY10BIC | Tegt prob0=0.7 | prob0=0.3 | prob0=0.5
prob1=0.3 | prob1=0.7 | prob0=0.5
Coutorig 0% 0% 0% 0%
Coutapprox | 12.50% 15.48% 6.29% 12.82%
Coutop 37.50% 44.12% 18.80% 37.59%
Coutup 37.50% 19.15% 44.01% 37.81%
1.8 . ,
> © Under propagation
16 > Over propagation
Normal AC
81al” o ° e > °
s) o B>
§>1'2 | >°§ B wo:;g"og:& >0 :>°° DZ%%ow%ng
2 . >og IS
g ! -mBD»: D%D " 090% % n, % > BB
fos iy . °
- -
o.e»".'.-"-"n Vot ~"als ’
- - . ‘. R o..

I
~

30 40
Trojan location

50

Figure 6: Hamming distance (with precise) due to Trojan
tampering the logic for approximate carry bit.

shown in Fig. 6, in general, the malicious modification on the ap-
proximate logic increases the difference (i.e. Hamming distance)
between the outputs of the precise adder and logic-tampered adder.

5 PROPOSED COUNTERMEASURES

In Section 4, we identified two security attacks on AC systems.
Now, we propose countermeasures to protect approximate arith-
metic computing systems from those attacks. Figure 7 depicts the
overview of our proposed methods. To avoid the increase in the
critical path delay, our countermeasure always runs in parallel with
the arithmetic unit. The Input Integrity Check (IIC) module exam-
ines whether the interconnect between the inputs from other IPs to
the precise and approximate arithmetic modules are compromised.
The Output Integrity Check module serves the same purpose as the
IIC module does. More details on IIC are provided in Section 5.1. In
the exclusive logic based attack detection module (ELA Detection),
the outputs of the approximate function is selectively examined to
generate an alert signal to indicate hardware attacks on AC IPs. An
example of alert logic is presented in Section 5.2. Note that the coun-
termeasure against the attack on the global operation environment
is beyond the scope for this work.

5.1 Securing Interconnect between Precise and
Approximate Computing IPs

We propose an IIC algorithm to detect the interconnect tam-
pering attack defined in attack model 1. The inputs for the arith-
metic computation IPs are divided into subgroups, followed by
key-controlled interleaving. The user key will determine how to
interleave the inputs. Even parity check code is adopted to generate
a check bit for each group of interleaved inputs. Next, the check
bits will be fed to the arithmetic computation IPs. In the IIC unit,
the check bits will be calculated again after the inputs from each

262

4C-3

Inputs from other IPs

Key-controlled Interleave OOt (e eeTity ChEck

ENC || ENC — ENC | | ENC el
Key- DEC
controlled 2 1
Arithmetic Deinterleave (» DEC
computationfl pc PC AC ELA detection
18 ~ Output Integrity |
Check)

| Outputs to other IPs |

@@) Key controlled shuffling PC: precise computation module
GYEIED Key controlled shuffling AC: approximate computation module

Encoder Decoder — Alert for function mismatch

Figure 7: Overview diagram of proposed countermeasure
against interconnect and approximate function tampering,.

Algorithm 1: Proposed Input Integrity Check (IIC).

Data: Inputs for PC and AC IPs, user key (Ukey)
Result: Alert logic for interconnection tampering
1 Interleave inputs from other IPs with Ukey ;

Generate parity check bits, @;p, j, for a group of inputs:
®;,j € (1, N), where N is the number of IPs ;

Shuffle a group of inputs in each submodule:
{®j(Ukey),0;} — {II);.(Ukey), G)j’} ;

Deshuffle inputs {®’,0"} — ¥ ;

while j < N do

Recalcuate parity check bits ©(¥;);

if ®P’j L= ®in,j then
| Discard current output and alert warning system;

else
| No alert;

1 end

12 J++s

13 end

module are deshuffled. If the check bits transferred from the PC
and AC IPs do not match the newly calculated ones, the intercon-
nect tampering attack is detected and an alert signal turns on the
warning system. We use even parity check code as a test case. In
practical applications, the error detection code for ENC and DEC
units in Fig. 7 can be other type of codes. The detailed IIC method
is further presented in Algorithm 1.

5.2 Securing Approximate Function

To address the security threats defined in attack model 2, we
propose an exclusive logic based attack (ELA) detection method.
Recall that the AC IP is a whitebox in this attack model. Thus, our
countermeasure will NOT be located in the AC IP. We scan the
input patterns that will result in different outputs from the PC and
AC IPs. Next, we choose one input pattern (if there are multiple
input patterns leading to different outputs) and the expected precise
output to generate the alert logic. If attackers modify the logic
defined in the AC IP, the alert logic is set to notify the occurrence

Algorithm 2: Proposed Exclusive Logic based Attack (ELA)

Detection.
Data: Precise logic function I', approximate logic functiony
Result: Find the optimal tampering alert logic

1 Exhaustive search for the list of input patterns E that lead to
L&) =y(&).&i €5

Use randomly modified logic §() to replace the approximate
logic y();

Initialize detection rank det;(i € [1, size(Z)] as 0;

while i < size(Z) do

s | if 8(&;) I=y(&i) then

‘ Increase det; ;

7 else

‘ det; remains same ;
end
10 Form the alert logic using &; and expected output outy;
1 Estimate hardware cost for the alert logic HW; ;

i++

12

13 end

-

4 Choose the optimal &; for alert logic generation;

of the attack. To trade off the hardware cost and detection success
rate, we search for the optimal combination of input pattern and
the outputs. More details of our method are shown in Algorithm 2.

We resume the example analyzed in Section 4.2.2 and use Al-
gorithm 2 to develop the alert logic for the malicious carry. After
an exhaustive search, we find that the input pattern of ’0 1 0" (for
A, B, and Cin, respectively) will lead to different carry bits for the
precise and approximate adders. Thus, we form the Boolean logic
expressed in Eq. 5 to generate the alert signal.

Alert = A + B + Cin + Cout; (5)

The proposed algorithm is able to detect the over-propagation and
under-propagation attacks mentioned in Section 4.2.2 with success
rates of 66.67% and 100%, respectively. To improve the detection
success rate, we can bring in Sum to the alert logic in Eq. 6.

Alert = A + B + Cin + Cout + Sum;

6 EXPERIMENTAL RESULTS

6.1 Assessment on Proposed IIC

(6)

We implemented four 64-bit ripple carry adders, precise addition
with or without IIC and approximate addition with or without IIC,
in a TSMC 65nm technology. We used Synopsys Design Compiler to
report the area, power and critical-path delay shown in Table 4. The
approximate adder consumes less area and power and runs faster
than the precise adder due to simplified logic. The proposed IIC
does not increase the delay on the critical path since the integrity
detection runs in parallel with the normal addition logic. Compared
to the baseline adders, the area and power consumption for the
adders with IIC is almost doubled. This is because the IPs (i.e. 1-bit
adders) under protection use only a few logic gates. When the logic
complexity for PC and AC IPs increases, the overhead percentage
is expected to drop.

263

4C-3

Table 4: Comparison of hardware cost for precise and ap-
proximate 64-bit adder with and without proposed IIC.

. Area Dynamic Leakage | Dela
Adder design (um?) Po:zer(yW) Power(ﬁW) (ns)y
Precise Adder w/o IIC | 622.08 | 224.62 2.76 8.52
Approx. Adder w/o IIC | 610.56 | 205.61 2.69 7.88
Precise Adder w/ IIC 1354.68 | 346.24 6.28 8.52
Approx. Adder w/ IIC | 1343.16 | 327.54 6.21 7.88
100 26 107

[n
5 @ n N

n

SYVVVVVVYYYYY VYV

M
Failure rate of proposed integrity check
5

Failure rate of proposed integrity check

0 50 100 150 200

Tampered image row

250 08

0 10 20 30 40

Tampered image row

(a) (b)
Figure 8: Attack detection failure rate of proposed IIC algo-
rithm. (a) Failure rate for all possible attack locations, and
(b) impact of DCT block size on the detection failure rate.

50

75
{1
70l ‘ ‘ H b |
= |||
i |
% ‘
5 60 l
<
2 55f
©
5 sof
2
§ 45t
o % Original DCT-IDCT
40 {|—e— Tampered DCT-IDCT
¢ Tampered DCT-IDCT with our IIC

35

50 100 150 0

Tampered image row

Figure 9: PSNR between original and decompressed images.

We used DCT-IDCT to process the cameraman picture shown in
Fig. 5 as a case study. A triggered hardware Trojan (attack model 1)
will swap the LSB of the exponent and the MSB on the mantissa
of the floating-point number representing the pixel content. The
image row under attack was swept from 1 to 256 (last row) to
examine whether our IIC is data-dependent. As shown in Fig. 8(a),
our attack detection failure rate is in the range of 2.2 * 1073 and
8.087 * 10~ and it is data independent. We further changed the
block size in the DCT algorithm. Figure 8(b) shows that the range
of our attack detection failure rate remains nearly consistent for
the block size of 8 and 32. Next, we analyzed the peak signal-to-
noise ratio (PSNR) between the original and decompressed images.
As shown in Fig. 9, our approach successfully maintains the same
PSNR as the DCT-IDCT without interconnect tampering. Our worst
PSNR is 2.03x higher than the PSNR of the tampered DCT-IDCT
without protection.

6.2 Assessment on Proposed ELA Detection

We continue to use the same adder in Section 6.1 to evaluate
our ELA detection method. Hamming distance was adopted to

* No alert
O Alert with carry
Alert with carry and sum

* No alert
o Alert with carry
Alert with carry and sum

; Under-prec ion attack ; Over-propagation attack
* *
127 sk 4 N : LS 128 & . : ke g #H
8 | wte w Z 8 | we ¥ ¥
2 g W 2ol e 2 g W M Mok ES
e gk KR " e Tty e, W %
A P 2 * P 3 “}
S5 084 oy * 508ty e,
= kS o %
E 0.6 . E 0.6
G047 o0 o o ooy O =04 A
* O L RO *
02" FEET 00 o gl 02
0 0
0 20 40 60 0 20 40 60

ID of tampered 1-bit adder ID of tampered 1-bit adder

Figure 10: Hamming distance improved by proposed ELA de-
tection method in a 64-bit adder.

Table 5: Hardware cost of the 64-bit approximate adder with
and without proposed ELA detection method.

. . Area Dynamic Leakage | Dela
Alert logic and location (ym?) Poxil/er (W) | Power (5W) (ns)y
Baseline w/o any alert logic | 610.56 | 205.61 2.69 7.88
Submodule w/ alert in Eq. 5 | 627.84 | 205.61 2.71 7.88
Submodule w/ alert in Eq. 6 | 640.08 | 206.66 2.80 7.88
Top module w/ alert in Eq. 5 | 641.16 | 207.52 2.77 7.93
Top module w/ alert in Eq. 6 | 652.32 | 208.69 2.80 7.95

compare the number of different output bits between the precise
and approximate adders (w/o our protection method) experiencing
under-propagation (up) and over-propagation (op) tampering at-
tacks. Hamming distance for all test cases are shown in Fig. 10. For
the under-propagation case, the proposed alert logic will reduce the
Hamming distance by 74.6%. If we use both sum and carry (Eq. 6) to
detect attacks, our method successfully reduces Hamming distance
to zero (i.e. 100% attack detection rate).

Table 5 shows the hardware cost for different alert logic designs.
The baseline is the 64-bit approximate adder implemented with a
TSMC 65nm technology. The ELA detection unit was applied at
the top module or each 1-bit full adder (i.e. submodule). The alert
logic applied in the submodule does not incur delay overhead since
the attack detection logic is not on the critical path. If applied in
the submodules, our detection logic expressed in Eq. 5 consumes
2.8% and 0.55% more area and power, respectively, than the baseline.
More complicated alert logic in Eq. 6 increases the area and power
overhead to 4.8% and 0.95%, respectively. When we moved the attack
detection logic to the top module of the 64-bit adder, the delay, area,
and power overhead goes up by 0.88%, 6.8%, and 1.5%, respectively.
In summary, our ELA method is a light-weight solution against
approximate function tampering.

7 CONCLUSION

Approximate computing has emerged as a promising strategy to
improve systems’ energy efficiency at the cost of reduced precision
or accuracy. The majority of approximate computing research fo-
cuses on the algorithms for approximation and the applications of
approximate arithmetic units and storage, rather than the poten-
tial security threats brought by approximate computing. Following

264

4C-3

up the most recent visionary literature on security threats in ap-
proximate computing systems, this work numerically demonstrates
the impact of two security threats on a floating-point adder and
the image classification error of an ANN. We propose two attack
models to characterize the attacks that affect interconnect and func-
tion modules in approximate arithmetic units. Furthermore, we
suggest a general framework to strengthen the attack resilience
of approximate computing systems. An input integrity check algo-
rithm is proposed to secure the interconnect between precise and
approximate computational IPs. The approximate arithmetic func-
tion is protected with an exclusive logic based detection method.
Our experimental results show that the attack detection failure rate
is below 2.2 * 1073, The application of our input integrity check
algorithm improves the peak signal-to-noise of image processed
in a DCT-IDCT by over 2X that of the baseline. Our case study
shows that the proposed exclusive logic alert method reduces the
Hamming distance between precision and approximate addition
output by up to 74.6%, while the delay, area and power overhead is
less than 0.88%, 6.8% and 1.5%, respectively.

Acknowledgments

This research is partially supported by the NSF CAREER grant
(No. CNS-1652474).

REFERENCES

[1] V. Camus, J. Schlachter, C. Enz, M. Gautschi, and F. K. Gurkaynak. 2016. Approx-
imate 32-bit floating-point unit design with 53% power-area product reduction.
In Proc. ESSCIRC’16. 465-468.

Z.Du, K. Palem, A. Lingamneni, O. Temam, Y. Chen, and C. Wu. 2014. Leveraging
the error resilience of machine-learning applications for designing highly energy
efficient accelerators. In Proc. ASP-DAC’14. 201-206.

V. Gupta, D. Mohapatra, A. Raghunathan, and K. Roy. 2013. Low-Power Digital
Signal Processing Using Approximate Adders. TCAD’13 32, 1 (Jan 2013), 124-137.

L. Ceze D. Burger H. Esmaeilzadeh, A. Sampson. 2012. Architecture Support for
Disciplined Approximate Programming. In Proc. ASPLOS’12. 301-312.

J. Han. 2016. Introduction to approximate computing. In Proc. VTS’16. 1-1.

Q. Huang, D. Zeng, S. Tian, and C. S. Xie. 2012. Synthesis of defect graphene
and its application for room temperature humidity sensing. Materials Letters’12,
76-179.

S. Keshavarz and D. Holcomb. 2017. Privacy leakages in approximate adders. In
Proc. ISCAS’17. 1-4.

Y. LeCun and C. Cortes. 2010. MNIST handwritten digit database. http://yann.
lecun.com/exdb/mnist/

S. Mittal. 2016. A Survey of Techniques for Approximate Computing. Proc.
CSUR’16 48 (2016), 62:1-62:33.

A.Raha, S. Sutar, H. Jayakumar, and V. Raghunathan. 2017. Quality Configurable
Approximate DRAM. TC’17 7 (July 2017), 1172-1187.

F. Regazzoni, C. Alippi, and L. Polian. 2018. Security: The Dark Side of Approxi-
mate Computing?. In Proc. ICCAD’18. 1-6.

A. Sampson, J. Nelson, K. Strauss, and L. Ceze. 2013. Approximate storage in
solid-state memories. In Proc. MICRO’13. 25-36.

D. Shin and S. K. Gupta. 2008. A Re-design Technique for Datapath Modules in
Error Tolerant Applications. In Proc. ATS 08. 431-437.

S. Venkataramani, V. K. Chippa, S. T. Chakradhar, K. Roy, and A. Raghunathan.
2013. Quality programmable vector processors for approximate computing. In
Proc. MICRO’13. 1-12.

S. Venkataramani, A. Ranjan, K. Roy, and A. Raghunathan. 2014. AxXNN: Energy-
efficient neuromorphic systems using approximate computing. In Proc. ISLPED’14.
27-32.

Q. Xu, T. Mytkowicz, and N. S. Kim. 2016. Approximate Computing: A Survey.
D&T’16 33, 1 (Feb 2016), 8-22.

L. Yang and B. Murmann. 2017. SRAM voltage scaling for energy-efficient
convolutional neural networks. In Proc. ISQED’17. 7-12.

P. Yellu, N. Boskov, M. Kinsy, and Q. Yu. 2019. Security Threats on Approximate
Computing Systems. In Proc. GLSVLSI'19. 387-392.

Q. Zhang, T. Wang, Y. Tian, F. Yuan, and Q. Xu. 2015. ApproxANN: An ap-
proximate computing framework for artificial neural network. In Proc. DATE’15.
701-706.

[2]

=
&

