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Abstract— Parallel computing is essential to achieve the
manycore architecture performance potential, since it utilizes
the parallel nature provided by the hardware for its computing.
These applications will inevitably have to synchronize its parallel
execution: for instance, broadcast operations for barrier synchro-
nization. Conventional network-on-chip architectures for broad-
cast operations limit the performance as the synchronization is
affected significantly due to the critical path communications
that increase the network latency and degrade the performance
drastically. A Wireless network-on-chip offers a promising so-
lution to reduce the critical path communication bottlenecks of
such conventional architectures by providing hardware broadcast
support. We propose efficient barrier synchronization support
using hybrid wireless/wired NoC to reduce the cost of broadcast
operations. The proposed architecture reduces the barrier syn-
chronization cost up to 42.79% regarding network latency and
saves up to 42.65% communication energy consumption for a
subset of applications from the PARSEC benchmark.

Index Terms—Broadcast operation, wireless/wired network-
on-chip, parallel computing, barrier synchronization

I. INTRODUCTION

The High-Performance Computing (HPC) platforms, com-

posed of on-chip manycore systems, provide the necessary

support for the computational requirements of several types

of scientific research, cloud computing, and data center ap-

plications. A manycore system requires fast communica-

tion infrastructures to fulfill the inter-core communication

requirements. The parallel applications, which rely heavily

in inter-core communications, also require broadcast com-

munications. Conventional implementations for packed-based

Network-on-Chip (NoC) typically lack real hardware sup-

port for broadcast, hence it introduces communication bot-

tleneck and degrades system performance. In conventional

NoC architectures support broadcast operations in the form of

multiple unicast transmissions, which results in a significant

increase of the latency and energy consumption of NoC.

Recently, NoC architectures have been explored to address

the challenges during barrier synchronization [1][2], but these

proposed solutions suffer from scalability issues. Emerging

interconnect architectures aim to reduce performance by lim-

iting multi-hop communication in conventional wired NoCs.

Three emerging interconnects (three-dimensional (3D), pho-

tonic, and RF/wireless NoCs [3][4][5]) were introduced to

address the long range multi-hop communication bottleneck.

Inductive/capacitive-coupled 3D integration technology [6] is

another alternative to wireless interconnects but it produces

electromagnetic interference through unwanted coupling. The

photonic NoC achieves a higher bandwidth than Wireless

Network-on-Chip (WiNoC). However, the high bandwidth is

not required for parallel applications during broadcast op-

eration for synchronization. Moreover, photonic NoC does

not immediately provide any broadcast capability, whereas it

is naturally available with RF interconnects. WiNoCs using

mm-wave interconnects have emerged as one of the promis-

ing solutions for scalable, energy-efficient NoC fabrics with

CMOS compatible technology. Beyond broadcast capabilities,

WiNoCs provide an end-to-end single-hop communication and

so can be an efficient solution for improving the performance

of parallel applications significantly [7][8].

WiNoC is a promising solution for the implementation of

broadcast communications [9]. However, there are restrictions

to its implementation: firstly, a dedicated radio channel is not

a feasible solution since it is not realistic to plug a wireless

interface to each core. Secondly, the usual token-passing

protocol introduce a waiting time that can degrade the single-

hop advantage of wireless links. Therefore, a hybrid solution

is a possible compromise as long as it is simple enough

to provide gains without a prohibitive complexity overhead.

We propose a new mechanism to improve the overall system

performance by providing efficient barrier synchronization that

reduces the cost of broadcast operations significantly. One

of the main contributions of this work is that both wired

and wireless links are utilized simultaneously for unicast and

broadcast operations. The choice is made at runtime according

to performance-driven decision. We also propose a lightweight

Dynamic Broadcast Mode Controller (DBMC) to control the

unicast and broadcast packets at the network level. Hence,

during the synchronization operation, the network can use real

broadcast messages on a barrier by using a wireless link.

The major contributions of this work are as follows: (i) Pro-

posal of a broadcast-aware WiNoC architecture to improve the

performance by simultaneous use of both wired and wireless

links; (ii) Design and implementation of lightweight DBMC

to control the unicast and broadcast traffic; (iii) Validation

under the PARSEC benchmark [10] and comparison with

existing architectures. To evaluate the wireless interconnect-

based architecture, we have modified the existing Noxim

simulator [11] to handle broadcast traffic; (iv) Investigation

of the power dissipation at Wireless Interfaces (WIs) To the

best of our knowledge, this is the first work that shows a

substantial amount of power saving at the WI under a parallel

application workload.

The remainder of this paper is organized as follows. Section

2 describes related work. The proposed architecture including

barrier synchronization, dynamic broadcast mode controller

and communication protocol is discussed in Section 3. Section
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4 presents the results of the performance evaluation, and

Section 5 concludes this work.

II. LITERATURE REVIEW

Many research works have investigated the barrier syn-

chronization in parallel computing using packed-based NoC

architecture. Software-based barrier synchronization imple-

mentations increase the latency significantly with system

size due to serialization of the barrier operation on such

architectures. Hardware-based barrier synchronization is im-

plemented supporting multiple thread groups to overcome this

limitation, where each group has its barrier. The proposed

method reduces the latency for serialization compared to

the traditional planner wired. However, the transmission-line

based approach faces several challenges in a manycore system

[1]. The transmission-line needs to spread the entire chip area

and requires excessive branching points to communicate with

every core. Besides, it is not an efficient solution due to cross-

talk, inter-channel interference for long transmission lines and

large fan-out and power dissipation for large-sized systems.

Hardware-based barrier synchronization is implemented using

a G-line based network allowing efficient signaling of barrier

arrival and release [12]. A hybrid tree-based all-to-all barrier

for NoC-based manycore system is explored in [2] to improve

the performance by avoiding the off-centered barrier core.

However, they are all based on multiple unicast packets,

which is not efficient in parallel computing. The latency is

also destination-dependent, so the message delivery time is

unbalanced. The CMOS-compatible WiNoC architecture can

play an essential role in providing an efficient broadcast mech-

anism for these applications. Recently, OrthoNoC [9] has been

introduced using wireless links for the broadcast operations.

This proposed scheme significantly improves packet latency

overall and demonstrate the interest of NoCs with efficient

broadcast mechanisms. However in [9], the total number of

wireless hubs is 64 for a 64-core system. Only one wireless

pair can communicate at a time through the radio broadcast

plan based on a collision detection protocol. This approach

is costly in terms of radio hubs, which means large area and

static power consumption. It is also oversized when the ratio

of broadcast communications is limited as observed in usual

parallel computing applications. So we introduce a hybrid

solution that combines true wireless and wired broadcast

mechanisms. Compared with a fully wireless approach, the

problem of availability must be solve by means of hybrid

routing and rerouting solutions that we developed in this work.
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Fig. 1: Broadcast enabled WiNoC architecture.

III. PROPOSED ARCHITECTURE

A conventional NoC architecture consists of base routers

(BRs) attached to message source/sink components; with all

BRs interconnected by wires in a specific topology. A WiNoC

is a group of clusters with one WI for each. Our proposed

architecture is scalable, in this paper, we consider a single

scenario for evaluation of four equally-sized clusters in our

64-core architecture. Our WiNoC architecture places the WI

at the center of each cluster, providing inter-cluster wireless

links with the minimal median distance to improve the overall

system performance. Figure 1 shows the WiNoC topology with

BRs and wireless hubs. For example, one WIs is a source

hub, and the others are destination hubs during the broadcast

operation. Only a single WI can communicate during the

broadcast operation. Usually, in a conventional NoC, each core

integrates a dedicated synchronization controller to control

the barrier messages [8]. The barrier control registers of the

controller handle the barrier arrival and release messages

among involved cores. They record the number of cores

arriving at the barrier and activate the barrier releasing flag

to all involved cores only if all cores have reached the barrier.

Multiple types of message delivery (e.g., all-to-all, master-

slave, butterfly, and tree) can be implemented. However, the

network performance is affected dramatically using these

conventional approaches due to longest core-to-core critical-

path, and the implementation of broadcast messages.

TABLE I: Synchronization events during executions of Body-

track and Streamcluster on NoC-based multiprocessors.

Application Type
Events per number of threads

16-core 32-core 64-core

Bodytrack Barrier 2,112 4,288 17,788

Condition 447 750 4,264

Mutex 9,000 10,472 37,818

Streamcluster Barrier 208,064 364,480 728,960

Condition 381 802 1,274

Mutex 510 1,054 2,142

A. Barrier Synchronization
The POSIX Thread (PThread) standard is one of the most

well-known interfaces used for parallel computing. PThread

offers multiple procedures for developers to synchronize data

among application threads or the threads themselves. In this

work, we chose to improve the barrier synchronization proce-

dure, where the architecture explored in this work can achieve

significant benefits, as it releases threads by sending the same

message to multiple destinations. Barriers are responsible

for synchronizing threads to a user-specified location in the

application. When all participating threads reach the specified

location, they can continue to execute; otherwise, they are

blocked. Therefore, we have changed the releasing procedure

to generate a single broadcast message instead of multiple

unicast ones. The use of synchronization procedures provided

by PThread is contingent on the design of the application.

The PARSEC benchmark [10] is a collection of applications

intended for next-generation shared-memory architectures that

employs the PThread standard. From the twelve applications

available on PARSEC, we selected two of them as a repre-

sentative of the PARSEC workload: Bodytrack, for a small

number of broadcast messages, and Streamcluster, for a large

number of broadcast messages. Bodytrack is a computer-

vision application that tracks a 3D pose of a mark-less body.
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Streamcluster is a data-mining application that solves the on-

line clustering problem for a stream of input points. Both ap-

plications use multiple synchronization procedures; however,

Table I shows the barrier procedure has most of the requests.

Therefore, we can exploit the broadcast-enabled network for a

64-core system. When considering all the data traffic generated

by the application, Streamcluster requires more than 5% of

the overall traffic for broadcast messages, as shown in [13].

The performance is affected by these messages dramatically

as it increases the congestion and provides poor quality of

service. Besides, it increases the power dissipation due to

the retransmission of the same packet. CMOS-compatible

wireless emerging interconnect offers many advantages to

overcome these drawbacks of conventional NoCs. Hence,

we consider the WiNoC architecture to reduce number of

hops required for communication and to implement broadcast

through simultaneous receptions. Once the packet arrives at

the WI, the packet is transmitted to neighboring cores by

tree-based load-balanced paths using the protocol described

in Section 3.3. Experimentally, we found that the proposed

architecture reduces the network latency significantly during

the broadcasting phase for barrier synchronization.

Fig. 2: Broadcast mode controller and operations.
B. Dynamic Broadcast Mode Controller

The primary components of on-chip wireless communica-

tion infrastructure are the antenna and transceiver. In this work,

we employ a zigzag metal antenna adopted from [14], and

a non-coherent On-Off Keying (OOK) modulation scheme

for the WiNoC transceiver [5]. A unique wireless channel

is shared among all WIs, and the token passing mechanism

with round robin arbitration is used to provide access to

the shared wireless medium. Hence, only a single broadcast

operation is possible at the same time using wireless links. In

[5], the primary components of the transmitter (TX) circuitry

are an up-conversion mixer and a power amplifier (PA). The

receiver (RX) consisting of a low noise amplifier (LNA), a

down-conversion mixer and a baseband amplifier. For paral-

lel applications, multiple simultaneous broadcast and unicast

operations must take place to improve the overall system

performance.

Performance can be further improved over the works [2][9]

by efficiently combining both wired and wireless infrastruc-

tures for broadcast as well as unicast operations. The main

reason is that the access to WI is not guaranteed. The wireless

channel can be used for on-going communication, or the

WI does not have the token in case of a standard token-

passing protocol. In this case, the latency gains of WiNoC

can be lost. We implement the DBMC, as shown in Figure 2,

for efficient broadcast operations. DBMC is associated with

each WI source router (WISR) that decides the route of a

packet, which is connected with each WI as shown in Figure

1. Consequently, the total number of DBMC is 4 in our

experimental 64 core setup and the overhead due to these

circuits is shown by results of the RTL implementation of

DBMC in Section 4.5. Note that we additionally consider the

Hop count to decide the use of WI for unicast packets, this

is detailed in the next section (Fig. 4,5). DBMC sends the

request to the WI arbiter based on the status of the packets

and the Token Management Controller (TMC) for the output

port, which is mentioned in the Table of Figure 2. Here,

broadcast and unicast operations are represented by the values

1 and 0, respectively. The availability of the token, which is

represented by 1, otherwise 0, is collected from TMC [15],

which is implemented with a simple 2×2 logic table; thus,

the cost is negligible.
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Fig. 3: Cluster-wise Whirl method for wired broadcast

C. Communication Protocol

In this section, we describe various types of broadcast

mechanisms such as wired, wireless and hybrid methods for

the barrier synchronization.

1) Wired-based Broadcast: The traditional implementation

of a barrier scheme selects a master node for collecting barrier

arriving messages from all other cores and for broadcasting

the barrier release messages to them. Most of packed-based

NoCs use unicast communications to implement this protocol,

which is an inefficient and unbalanced solution. The tree-

based routing scheme called Whirl [16] has been introduced

to balance link loads and provide broadcast that ensures non-

duplicate packet reception. In this scheme, the source node

decides the route for packets. For every broadcast packet, the

route is encoded in two bits: the Left Turn Bit (LTB) and

the Right Turn Bit (RTB). The current flit motion direction

decides its route.

2) Wireless-based Broadcast: For a fast broadcast mes-

sage, the operations are handled by the wireless NoC archi-

tecture, where each core uses an antenna and a transceiver to

send and receive the broadcast signals [9]. This architecture

is divided into two network planes such as wired plane and

wireless plane. The wireless plane is mainly designed for the

broadcast operations, and the wired plane is used for unicast

traffic only. A hybrid controller is introduced to handle these

unicast and broadcast traffic at runtime. In this case, overall

system performance in terms of network latency is degraded

due to congestion and token holding time at the wireless

interfaces as shown in results Section 4.2.

3) Hybrid Broadcast Implementation: To improve the over-

all system performance and avoid the power and area over-

heads due to a large number of transceivers and antennas

components, we have implemented broadcast mechanism with

the help of source routing. Despite the power and area over-

heads, the advantages of source routing include in-order packet

delivery, faster and multiple non-minimal and minimal path

routing [17]. An inefficient broadcast operation can affect the

overall system performance by up to 40% [13]. Deterministic
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source routing is one of the most suitable candidates for a

broadcast operation. For the intra-cluster and source-routing

broadcast communication, all the information related to source

and destination path is pre-computed in the form of tree-based

load-balanced paths inspired by the Whirl method [16] and

stored in a source routing table. We modify the router design

to incorporate the source routing scheme. A higher priority is

provided to broadcast communication.

For inter-cluster communication, the WISR decides the

route of a packet, which is associated with each WI. We con-

sider omnidirectional setup along with token passing protocol

to access wireless medium. Any node within the cluster sends

a broadcast request packet to the WISR via a unicast packet

to the WI. The broadcast packet is transmitted using wireless

medium if a token is available for inter-cluster communication;

otherwise, the broadcast packet traverses using wired links and

ad hoc packet duplications. That is why this broadcast scheme

is called hybrid broadcast mechanism. This approach avoids

waiting time that would take away the advantage of single-hop

wireless links. For intra-cluster, the source router randomly

chooses four bits LTBW, LTBN, LTBE and LTBS for each

direction W, N, E and S, respectively [16]. At the WISR, the

RTBs for each direction is computed from the complement

of LTBs as shown in Figure 3. For example, WISR randomly

chooses four bits of LTBs: 0, 0, 1, and 1 for N, E, S, and W

respectively and computes the corresponding RTBs as shown

in the figure. If a given LTB bit is high, then the flit should

turn left, and if RTB bit is high, then flit should turn right

relative to its current direction. Finally, the (LTB, RTB) pairs

create a broadcast tree cluster-wise as shown in the Figure 3.
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Fig. 4: Flowchart showing the packet control mechanism.

Figure 4 describes the runtime hybrid mechanism for packet

transmission from the source (SRC) to the destination (DST).

For unicast, the number of hop counts (N h) between SRC and

DST is 4 in the simulation setup. We get benefits from wireless

links when hop count is greater than 4, which is discussed in

[8]. The packet flow route depends on multiple conditions. Ini-

tially, broadcast packets are reached to nearest WISR (within a

cluster) using XY routing. Intra-cluster packets are transmitted

using source routing. Broadcast packets, with a token avail-

able, adopt the wireless path for inter-cluster communication.

In the latter, instead of waiting for a token for using the

wireless links, simultaneous multiple broadcast operations can

take place using wired and wireless links. When packets arrive

at the DST WI hub, they are transmitted again using source

routing from DST WI hub to all cores within the cluster. It

is also important to notice that broadcast operations using

wireless links are prioritized over long unicast operations to

avoid the blockage of paths. This hybrid scheme provides

an efficient routing strategy for parallel applications. Figure

5 shows the hardware level implementation of DBMC. The

broadcast packets are transmitted over wireless path based on

the availability of a token at WI. Deadlock cases are avoided

for long distance unicast and for broadcast packets as source

routing is used where the paths are pre-computed.
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Fig. 5: Dynamic Broadcast Mode Controller circuit.

IV. PERFORMANCE EVALUATION

This section explores the performance benefits of using hy-

brid communication links for parallel applications that employ

barrier synchronization. We compare the proposed architec-

ture to the baseline NoC, Whirl scheme based NoC (Whirl-

NoC) and WiNoC architectures. We also address power-aware

WiNoC architecture.

TABLE II: Simulation Setup

Arch Component Configuration

System

CPU 1GHz × 86 ISA cores In-order

L1 cache
private 64KB, 2-way, LRU policy,

64B line, 1 cycle latency

L2 cache
shared 256KB, 8-way, LRU policy,

64B line, 10 cycle latency
Cache coherency

protocol
MESI with cache directory

Network
Topology 12 × 12 Mesh, WiNoC
Routing XY routing, source routing

Flit Size and
Packet Size

32 bits and
2 flits broadcast and 8 bits unicast

A. Simulation Setup

We consider two applications from the PARSEC benchmark

[10]: Bodytrack (small percentage of broadcast messages)

and Streamcluster (highest barrier usage) as a representa-

tive of standard benchmarks for barrier synchronization. The

communication traces are extracted by running the Gem5

[18] full system simulator. The communication traces of the

applications are extracted for medium (med) and large (lar)

inputs, defining the time the application is being executed.

Bodytrack implements the application employing 4 barriers

(consequently, 4 sources) and uses 3 types of threads to

execute its computation. Streamcluster employs a single bar-

rier for the application implementation; hence, only a single

source. Both applications can be released only when 63 cores

have reached the barrier. The release procedure is done with

a broadcast. Hence, every 64th barrier event occurs a broad-

cast. The total numbers of broadcast messages are 210, 267,

11390, 1068, and 45560 for Bodytrack med, Bodytrack lar,

Streamcluster med, 4x Bodytarck and 4x Streamcluster, re-

spectively. The traces are executed on a modified version of

the Noxim simulator [11] to validate our proposed architecture

concerning latency, throughput and communication energy.

The OOK modulation [5] based wireless interconnect along

with token passing protocol is implemented within the network

simulator. The proposed system, which is a standard system
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size in current manycore technology trends, consists of 64

cores. The width of all wired links is the same as the flit

size (i.e., 32 bits). The NoC switches are driven with a 2.5

GHz clock. The power-gated components of WIs are designed

and implemented using Cadence tools. DBMC is synthesized

from RTL description by using Synopsys Design Compiler

with 28nm CMOS technology. We use Cadence tools to obtain

the area usage and power dissipation, and the delay of sleep

transistors. Table II presents the summary of the simulation

setup. In this work, we consider four NoC topologies. In case

of the mesh wired NoC and regular WiNoC, the broadcast

messages are transmitted in the form of multiple unicast

messages. In case of the Whirl-NoC, broadcast messages are

transmitted based on the Whirl algorithm [16]. Finally, for the

proposed architecture, both unicast and broadcast messages are

transmitted using a hybrid wired/wireless network. Broadcast

messages within each cluster are implemented using source

routing based on the Whirl algorithm, where pre-computed

paths are stored in a table. Inter-cluster communication is

implemented using wireless links if a token is available at

WI; otherwise, wireline with XY is employed between WISR

nodes. In section 4.5 and 4.6, we provide a rough estimation

of power [9] where all works have their resulted scaled down

to 28nm CMOS for a fair comparison.

Fig. 6: Average packet latency of different NoC architectures.

B. Network Latency Reduction

Figure 6 shows that the proposed architecture reduces the

average packet latency when compared to the mesh wired

NoC, Whirl-NoC and WiNoC architectures. It can be ob-

served that regular WiNoC does not outperform the wired

mesh NoC in all cases. In the case of Bodytrack lar the

mesh wired NoC performs better than regular WiNoC, but

in the case of 4x Streamcluster they are equivalent. Hence,

regular WiNoC cannot be considered as the best solutions

for broadcast operation. However, the proposed architecture

reduces the network latency up to 43.24% for Bodytrack med,

37.86% for Bodytrack lar, 42.79% for Streamcluster med,

42.79% for 4x Bodytrack and 26.27% for 4x Streamcluster

over the mesh wired NoC. The proposed architecture reduces

the average packet latency up to 50.80% for Bodytrack

with medium input, 37.86% for Bodytrack with large input,

41.14% for Streamcluster with medium input, 31.46% for

4x Bodytrack and 26.37% for 4x Streamcluster over the

WiNoC. The proposed architecture reduces the network la-

tency up to 20.45% for Bodytrack with medium input, 30.23%

for Bodytrack with large input, 33.33% for Streamcluster,

20.46% for 4x Bodytrack and 22.76% for 4x Streamcluster

over the Whirl-NoC. These results demonstrate the proposed

architecture achieves significant performance improvements

over the existing NoC architectures for broadcast operations.

Fig. 7: Throughput improvements over mesh NoC and the

regular WiNoC

C. Network Throughput Improvements

Figure 7 shows the peak of the network throughput improve-

ments at saturation over mesh wired NoC, Whirl-NoC and

WiNoC architectures. The proposed architecture, as expected,

improves performance over mesh topology due to the presence

of single hop, long-range wireless, and wired links. From the

throughput comparison, it can be observed the hybrid archi-

tecture provides better throughput than conventional mesh,

Whirl-NoC and WiNoC. It improves the throughput over

regular WiNoC by 34.2% for Bodytrack med, 10.5% for

Bodytrack lar, 37.16% for Streamcluster med, 21.06% for

4x Bodytrack and 29.42% for 4x Streamcluster. Similarly, the

proposed architecture improves the throughput up to 20.44%

for Bodytrack med, 12.65% for Bodytrack lar, 20.40% for

Streamcluster med, 22.55% for 4x Bodytrack and 23.83%

4x Streamcluster benchmarks over the Whirl-NoC.

D. Communication Energy Saving

Figure 8 presents the packet energy savings achieved by the

proposed architecture according to the application. The packet

energy is the energy dissipated in transferring one packet

completely from source to destination at network saturation. In

order to evaluate our proposed architecture in terms of packet

energy, we use energy model for wired link from [9] and

wireless link from [19]. The results summarize the average

energy consumption of a single packet for mesh NoC, Whirl-

NoC, WiNoC, and our proposed architecture. From the figure,

it can be observed the proposed architecture saves the com-

munication energy per packet by 17.34% for Bodytrack med,

41.65% for Bodytrack lar, 42.65% for Streamcluster med,

27.52% for 4x Bodytrack and 26.39% for 4x Streamcluster

over the WiNoC. The proposed architecture also saves energy

up to 22.16% for Bodytrack med, 20.50% for Bodytrack lar,

28% for Streamcluster med, 17.54% for 4x Bodytrack and

23.50% for 4x Streamcluster over the Whirl-NoC. Therefore,

we achieve a significant amount of energy saving using power-

gated WI, which will be discussed in the next section.

Fig. 8: Average energy consumption of NoC networks.

E. Power Overhead and Saving

Additionally, we investigate the power dissipation at WIs

partially. The power dissipation overhead of additional com-
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ponents (i.e., controllers, source routing and power-gating)

is 0.30mW. The area overhead for the DBMC is 10.43

μm2 each. Area occupation is estimated directly from the

hardware implementation of DBMC. For parallel applications,

the percentage of broadcast messages ( 5%) is very small

but crucial for the system performance. Hence, the significant

amount of communications ( 95%) is based on unicast. Hence,

the objective is to reach high-performance when necessary

( 5%) while minimizing the power consumption, so that the

broadcast mechanism do not degrade the energy efficiency.

Although our architecture must be efficient for barrier syn-

chronization, these events occur very widely, as they demand

milliseconds of application computation. From the hardware

perspective, delays of milliseconds can result in millions of

inactive cycles, which can be timely exploited by power-

gating the WIs. As we consider a token passing protocol based

WiNoC, all WIs are not required during unicast. Therefore,

there is a huge scope to reduce the DC power dissipation

for parallel applications. We adopted the scheme from [19]

for WIs to improve the power efficiency. After applying

power-gating at WI, the proposed architecture reduced the DC

power dissipation in WIs up to 50.46% during 95% of the

total simulation time. The major impact regarding wake-up

latency is negligible if compared to the delays between each

synchronization event. This was achieved not only without

any significant performance degradation but also maintained

the throughout and latency improvements.

F. Summary of Proposed and Existing Works

Table III presents a summary of proposed and existing

works on barrier synchronization for NoC-based systems. In

[9], power consumed by router and WI are 6mW and 16mW.

Hence, power dissipation by each router is 384mW and total

power dissipation by WIs is 1024mW, which is significantly

high dissipation. However, in case of our proposed architec-

ture, total power consumption is 384mW for each router, and

64mW for WIs, which is significantly lower as compared to

fully radio solution as in [9]. Note also that our approach

deals with Hub availability and it is independent of the MAC

protocol, so it is compliant with other techniques such as

collision detection as used in [9]. Compared to conventional

NoC, our proposed hybrid method, significantly reduces the

latency and power consumption with small area overhead (less

than 1%). The experimental results also show that WiNoC

alone is not the ideal solution for broadcast operations, since

it can be outperformed by the Whirl-NoC architecture.

TABLE III: Summary of proposed and existing works.

Ref. Approach Saving Penalty

[2]
Transmission-line
based broadcast

Worst-case latency:
4ns to 10ns

0.07% of total metal
area overhead

[3]
Tree-based
broadcast

20% during off-centered 1.3% power overheads

[11]
OrthoNoC/

WiSync
Latency

improvement: 30%
64 WIs for

64-core system.

This
Broadcast

enabled WiNoC

Latency decreases
up to: 42.79%

Energy: 42.65%
DC power by WI: 50.46%

Less than 1%
area overhead only 4

WIs for 64-core system

V. CONCLUSION

In this paper, we propose an efficient broadcast mechanism

based on hybrid wireless/wired NoC to improve the perfor-

mance of parallel applications by reducing barrier synchro-

nization latency significantly. The experimental results show

the proposed method reduces the latency and communication

energy consumption significantly. It also improves the network

throughput. Besides, we employed the power-gating method

with WIs to diminish the DC power dissipation. We observe

the proposed WiNoC architecture reduces network latency

by up to 42.79% over conventional NoC architectures under

applications of PARSEC benchmark. The proposed method

also saves up to 50.46% the WIs power dissipation compared

to the conventional WiNoC.
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