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ABSTRACT

To speed up the FPGAplacement and routing closure, we propose a novel

approach to predict the routing congestion map for large-scale FPGA

designs at the placement stage. After reformulating the problem into an

image translation task, our proposed approach leverages recent advance-

ment in generative adversarial learning to address the task. Particularly,

state-of-the-art generative adversarial networks for high-resolution im-

age translation are used along with well-engineered features extracted

from the placement stage. Unlike available approaches, our novel frame-

work demonstrates a capability of handling large-scale FPGA designs.

With its superior accuracy, our proposed approach can be incorporated

into the placement engine to provide congestion prediction resulting in

up to 7% reduction in routed wirelength for the most congested design

in ISPD 2016 benchmark.

1 INTRODUCTION

The ceaseless down scaling of integrated circuit (IC) technologies contin-

ues to drive, as a byproduct, an up scale in the challenges and complexity

associated with physical design. This in practice translates to extended

design closure time, as multiple expensive design iterations are needed

before converging at a final physical scheme, especially for large-scale

designs.

To address this challenge, research has focused lately on developing

predictive models that can make available, at early stages of the design

flow, useful predictions about later stages. Particularly, in modern Field-

Programmable Gate Array (FPGA) place and route flows, leveraging

routing congestion information during the placement step has demon-

strated significant performance improvement [1–4]. Thus, it is of vital

importance to develop accurate routing congestion prediction models

for large-scale FPGA designs.

Recently, advancements in machine learning have revolutionized

almost every field of research by introducing a far-reaching data-driven

perspective for problem solving, and electronic design automation (EDA)

is no exception here. In EDA, machine learning applications span differ-

ent tasks [5]. The main drive for this wide adoption is the exceptional

speedup associated with machine learning techniques which in turn

translates into faster design closure and better physical design quality.

Relevant to our work are the techniques proposed for routing con-

gestion prediction [6, 7]. In [6], design rule checking (DRC) violations

after detailed routing are predicted based on input placement solutions.

The work presents two modes: 1) prediction of the total number of

DRC violations with placement information only; 2) prediction of DRC

hotspots with placement and global routing solutions. The major appli-

cation of [6] is to guide detailed placement for the mitigation of local

DRC violations after detailed routing, while it is not designed for the

compliance of global routing congestion. On the other hand, the work in

[7] proposes predicting the routing congestion maps for FPGA designs.

It relies on features extracted from both placement and global routing

schemes to perform the task. Despite the fact that such a setup can help

accelerate the detailed routing process, it is of greater impact to predict

the full routing congestion map with features exclusively obtained from

the placement stage. Knowing that state-of-the-art FPGA placement
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engines are iterative, such a scenario can further speedup the design clo-

sure and improve routing quality by incorporating routing information

into the placement engine.

This issue was addressed in the latest work on FPGA routing con-

gesting prediction in [8] where predictions are made based on features

extracted from the placement stage solely. In [8], a conditional gen-

erative adversarial network is used to model the routing congestion

prediction as an image translation task. This model architecture, namely

pix2pix, has been adopted recently to address different tasks in EDA

[8–11]. While the scheme proposed in [8] is designed to provide routing

predictions at placement stage, the proposed model and its associated

features are ill-equipped to handle large-scale FPGA designs such as

those in ISPD 2016 benchmark [12].

In fact, the approach presented in [8] is not capable of scaling to

large designs due to three main limitations. The first is inherent in the

pix2pix model architecture which has limited resolution and thus, poses

a limit on the design size [13]. Additionally, the features extracted at

the placement stage in [8] depreciate with the increase in design scale.

In particular, the connectivity information is incorporated in the input

as a connectivity map with flying lines. While such a map is expressive

in small and uncongested designs with limited connectivity, it becomes

obsolete with large and dense designs. Hence, with connectivity infor-

mation distorted, the quality of the congestion prediction is expected to

degrade. Moreover, the feature maps used in [8] are based on the VTR

academic software [14] that cannot handle industrial-size designs.

To address these limitations, we propose a new placement-based

routing congestion prediction approach for large-scale FPGA designs.

Our proposed approach adopts a new conditional generative adversar-

ial network (CGAN) model, namely pix2pixHD, which performs high-

definition (HD) image translations for large images with high resolutions

[15]. With HD image translation, our approach can achieve high predic-

tion accuracy for large FPGA designs while relying on well-engineered

features that can encode the placement and connectivity information

for large-scale designs. Moreover, when substituting the congestion

prediction used in state-of-the-art congestion aware placement engine,

our prediction scheme results in better placement quality and achieves

up to 7% reduction in routed wirelength for the most congested design

in ISPD 2016 benchmark.

Our main contributions are summarized as follows:

• We cast the routing congestion problem as a high-definition

image-to-image translation task where features from placement

stage are used to estimate congestion map for large-scale FPGA

designs.

• AnewCGAN for high-definition image-translation, namely pix2pixHD,

is adopted to predict FPGA congestion.

• We propose using well-engineered features extracted from the

placement stage that are capable of encoding placement and

connectivity information for large-scale designs.

• Our proposed framework achieves superior modeling perfor-

mance compared to state-of-the-art FPGA congestion map pre-

diction methods [4, 8] when using advanced image similarity

evaluation metrics.

• Incorporating our approach into a placement engine results in up

to 7% reduction in routed wirelength compared with the widely

adopted congestion prediction method [4].
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The remainder of this paper is organized as follows. In Section 2, we

present the problem formulation and the evaluation metrics used in

our experiments. Then, the details of our proposed large-scale FPGA

routing congestion prediction approach are shown in Section 3. Section 4

presents experimental results demonstrating the efficacy of our method,

and conclusions are presented in Section 5.

2 BACKGROUND

2.1 Problem Description

In the FPGA physical design process, placement and routing are the two

major stages that map a circuit description into the physical layout. Typ-

ically, such a process is iterative and requires multiple rounds of place

and route (PnR) before converging to the final layout. Conventionally,

the placement task was performed without taking routing requirements

and behavior into consideration. However, state-of-the-art FPGA place-

ment engines consider routability as one of the metrics governing the

placement process [1–3]. With primitive routability estimation methods,

fewer iterations are needed to get a clean design; thus a shorter design

closure time is experienced.

FPGA routing congestion map prediction task aims to take the benefit

from such inter-stage information passing into a next level by predicting

the entire routing congestion map of the design based on information

at the placement stage. This has many practical applications including

placement strategy selection and placement adjustment to mitigate

routability issues.

Precisely, the task is to train a model that is capable of estimating the

routing congestion map for large-scale FPGA designs. As an input, the

model takes a design netlist and a placement solution and it generates a

congestion map prediction as an output. Technically, a good way to pre-

serve spatial relations in the placement scheme is to encode features as

an image. Such an approach was adopted in [6, 8] where input features

are encoded into an image, and the desired output is generated in an

image format as well. In one of the approaches proposed in [6], a set of

features is first extracted from both the placement and global routing

stages and then mapped to different layers of an input image. Next, this

image is inputted to a trained model to predict an image showing the

location of DRC hotspots in the design. While this approach targets

detecting highly congested regions through DRC hotspot detection, it

does not have the objective of predicting the complete routing conges-

tion map. Besides, while no global routing information is needed to

predict the total number of DRC hotspots in [6], predicting the DRC

hotspot image, which reflects congestion locations, requires the global

routing information. Thus, the work in [6] does not address our problem

formulation in this work: estimating the complete routing congestion

map based on placement stage information.

On the other hand, the work in [8] addresses precisely this objective

by mapping the problem into an image translation task. In this task,

placement features are mapped into an input image and a model is

trained to predict the complete routing congestion map as an output

image. However, this work is ill-equipped to handle industrial-size FPGA

designs. Besides having a limited prediction resolution (256×256 pixels),

the features used to represent placement and netlist information are not

adequate for large-scale designs. For the connectivity information, it

relies on flying lines to encode the connections in the FPGA design as

shown in Figure 1(a). Clearly, this representation becomes obsolete for

large-scale FPGA designs with over 700K nets. Figure 1(b) shows the

connectivity representation with only 5K nets included, which, although

complicated, is still comprehensible. However, including the entirety

of 700K nets results in Figure 1(c) which is simply a blacked-out image

with no useful information since all pixels have a value equal to zero

(black color). Besides, keeping in mind the rectilinear nature of routing,

flying lines representation fails to reflect an accurate estimate of routing

demand at different locations in large designs. In addition, the image

representation for the placement in [8] is based on the VTR academic

software [14] that cannot handle industrial-size designs. Hence, such

features limit the applicability of the work in [8] to small FPGA designs

only.

(a)

(b) (c)

Figure 1: An example of connectivity representation used in [8] for a

small design is shown in (a). (b) and (c) show the results of using the

same representation for a large design with over 700K nets where (b)

shows only 5000 nets and (c) demonstrates the failure in handling all

700K nets.

In this work, we propose a routing congestion prediction approach

for large-scale FPGA designs which relies on a high-definition image

translation framework paired with well-engineered feature encoding.

2.2 Evaluation Metrics

With the problem formulated as an image translation task, adequate

image similarity metrics are needed to judge upon the quality of the

results. Here, we present the different evaluation metrics used in our

experiments to evaluate the proposed approach and compare it with

state-of-the-art approaches.

Two pixel-level metrics, namely normalized root-mean-square-error

and pixel accuracy, are used to evaluate the prediction. In addition, we

propose using two image similarity metrics that are relevant to the

FPGA routing congestion estimation task. The first is the structural

similarity index that can capture local congestion clusters that possess

spatial structures [16]. On the other hand, earth mover’s distance is

used as another metric to assess the difference in the pixel distribution

between the golden and predicted images [17, 18] .

Given an FPGA architecture of size H ×W , images Ŷ and Y with size

H ×W and range [0, 255] representing a predicted routing congestion

map and its corresponding golden map, the details of the used metrics

are presented below.

Definition 1 (Normalized Root-Mean-Square-Error - NRMS). NRMS

is defined as the normalized root mean square pixel difference between

Ŷ and Y . Mathematically, it can be expressed as:

NRMS =

√∑H
i=1

∑W
j=1(yi, j − ŷi, j )

2

(ymax − ymin ) · (H ×W )
. (1)

Definition 2 (Pixel Accuracy - PIX). Pixel accuracy is defined as the nor-

malized pixel-level difference between Ẑ andZ , the predicted congestion
map and the golden one after exposure normalization. Mathematically,

this can be expressed as:

PIX =

∑H
i=1

∑W
j=1 |zi, j − ẑi, j |

255 · (H ×W )
. (2)

Definition 3 (Structural Similarity Index - SSIM). Structural Similarity

Index is a perception-basedmetric that captures changes in the structural

information between images. It can be viewed as a quality measure of

one of the images being compared, provided the other image is regarded

as of perfect quality [16]. Mathematically, over a k × k window of the

images Yk and Ŷk , SSIM can be expressed as:

SSIMk =
(2μYk μŶk

+ c1) · (2σYk ,Ŷk
+ c2)

(μ2
Yk
+ μ2

Ŷk
+ c1) · (σ

2
Yk
+ σ 2

Ŷk
+ c2)

, (3)

where μYk is the pixel averages over window Yk and σ 2
Yk

is the corre-

sponding variance, σYk ,Ŷk
is the covariance of Yk and Ŷk , and c1 and

c2 are two terms used to ensure division stability. Intuitively, the value

27

1B-3



of SSIMk is high when the pixel averages in the two windows are close

and the covariance between them is high.

Definition 4 (Earth Mover’s Distance - EMD). EMD is the minimum

amount of work to match the pixel distributions of Y and Ŷ , normalized
by the total weight of the lighter distribution. It is widely used in content-

based image retrieval to compute distances between the color histograms

of two images. EMD’s details are omitted due to page limit. Reader is

referred to [17, 18] for details.

3 CONGESTION MAP PREDICTION

3.1 Feature Extraction

To leverage the impressive success of conditional generative adversarial

networks for FPGA routing congestion prediction, this task should

be cast as image translation where the objective is to map an image

from the feature domain to the output domain. In the output domain,

the desired congestion map can be directly viewed as a Red-Green-

Blue (RGB) image with 2 non-zero channels representing the vertical

and horizontal routing congestion as shown in Figure 2 where the

vertical and horizontal congestion maps are mapped to the green and

red channels respectively, with the blue channel set to zero. Besides, to

ensure the generalization of the learned model, the dataset is normalized

such that the highest congestion level in the data is mapped to pixel

level 255.

Figure 2: Sample encoded routing congestion map is shown. Vertical

congestion is mapped to the green channel, while the horizontal one is

mapped to the red.

On the other hand, feature representation in the input space is not

trivial. In practice, two types of information need to be encoded in

the input image: (i) the placement scheme and (ii) the connectivity

information. While both types are present in the placement results

and the netlist, our task is to map them into an image format with

minimal loss in information relevant to the routing procedure. For the

placement information, pin density reflects an accurate representation

of the placement scheme. Besides, it provides an insight into the routing

congestion since regions with higher pin density are more likely to suffer

from congestion issues when routing. Therefore, we use pin density

as the first feature which mainly captures the necessary placement

information and encode it on the blue channel of the input image as

shown in Figure 3(a).

Figure 3: Sample encoded feature map is shown. Pin density is mapped

to the blue channel, vertical demand is mapped to green, and the hori-

zontal is mapped to red.

As for the connectivity information, we propose a systematic ap-

proach to encode FPGA connectivity that, while reflecting the routing

demand, is capable of handling large-scale FPGA designs. Towards this

end, we adopt a routing demand estimation framework analogous to

those proposed in [4, 19]. The key idea is to compute, for each net, the

probability of it being routed on each of the vertical and horizontal grids

within its bounding box.

To elaborate on this, we consider the simple example shown in Figure

4. For a given net, the bounding box of its pins (red circles) is first ob-

tained where xnet and ynet represent the dimensions of the bounding
box. Horizontally, the net has a probability of 1/ynet to be routed in a
particular grid inside the bounding box along the x−axis. Similarly, it
has a probability of 1/xnet to be routed on each vertical grid along the
y−axis. Thus, the horizontal demand map is incremented by 1/ynet at
each location in the blue shaded region. Similarly, the vertical demand

map is incremented by 1/xnet at each location in that region. This rou-
tine is applied for all nets in the design to get the vertical and horizontal

demand maps. The vertical and horizontal demand maps are encoded

on the green and red channels of the input image as shown in Figure

3(b) and (c) respectively after applying a normalization step similar to

that used for the output.

xnet

ynet

Figure 4: A routing demand computation example is shown.

At the end of this process, we can obtain the 3-channel input image

carrying pin density information and the vertical and horizontal rout-

ing demand maps. On the other hand, the output image is formed by

encoding the vertical and horizontal congestion maps on two channels

of the image. An example normalized input/output RGB image pair is

shown in Figure 5 where the input and output images are presented in

Figure 5(a) and Figure 5(b) respectively.

3.2 HD Image Translation Model

With an adequate training dataset encoded as demonstrated in Section

3.1, a CGAN model designed for high-definition image translation can

be trained to predict congestion maps for large-scale FPGA designs.

Recently, CGAN model pix2pix [13] has been adopted in EDA to address

several challenges [8, 9]. A CGAN takes an input image in one domain

and tries to generate a mapped output in another domain. Typical ex-

amples include image colorization and aerial to map and edge to photo

translations.

Practically, a CGAN is composed of two main components: the gener-

ator and the discriminator. The generatorG is trained to produce images

in the output domain, based on an input image in another domain, that

cannot be distinguished from “real” images by an adversarially trained

discriminator, D, which is trained to do as well as possible at detecting
the generator “fakes”.

Despite its success in the aforementioned tasks, pix2pix falls short

of addressing the routing congestion prediction task for large-scale

FPGA designs due to its limited resolution (256 × 256). Such constraint

limits the size of FPGA designs the method can handle. To address this

limitation, we propose using a new pix2pixHD model developed for

high-definition image translation tasks [15]. With an output resolution

reaching 4096 × 2048, pix2pixHD fits well for large-scale FPGA routing

congestion task. To enable such a high-definition image generation,

pix2pixHD introduces threemain features: (i) a coarse-to-grain generator,

(ii) a multi-scale discriminator, and (iii) a robust adversarial learning

objective function [15].

3.2.1 Generator. The generator is decomposed into two sub networks:

a global generator (G1) and a local enhancer (G2). As shown in Figure

6, the global generator consists of three components: a convolutional

(a) (b)

Figure 5: An example input/output image pair is shown.
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front-endG1,C , a set of residual blocksG1,R [20], and a deconvolutional

back-end G1,D [15, 21]. The local enhancer has a similar structure,

however, it is designed to generate images with double the resolution

of the global generator. Moreover, as shown in Figure 6, the input to

the residual block G2,R is the sum of two feature maps: the output

feature map ofG2,C and the last feature map from the back-end of the

global generatorG1,D [15]. This is intended to help integrate the global

information from G1 to G2.

During training, the global generator is trained first and then the

local enhancer. Finally, we jointly fine-tune the entire generator together.

The architectural details for G1,C and G1,D in the global generator are

shown in Tables 1 and 2 respectively. As for G1,R , it is formed of nine

residual blocks each having two 3 × 3 convolutional layers with 1024

filters [20]. Similarly, G2,R in the local enhancer is composed of three

such residual blocks with 64 filters instead of 1024, and the details of

G2,C and G2,D are summarized in Table 3.

3.2.2 Discriminator. For high-resolution image generation, the discrim-

inator needs to have a large receptive field [15]. For that, a multi-scale

discriminator, with three discriminators (D1, D2 and D3) that operate at

different image scales, is used [15]. Both the real and synthesized images

are downsampled by a factor of 2 and 4 to create an image pyramid

of 3 scales. With this structure, the three discriminators are trained to

differentiate real and synthesized images at the 3 different scales. The

discriminator operating at the coarsest scale has the largest receptive

field with a global view. On the other hand, the one at the finest scale

encourages finer details in generated images. The 3 discriminators have

the same structure where a 70× 70 PatchGAN network is used [13] with

4 convolutional layers each having a filter size of 4 × 4 and with 64, 128,

256 and 512 filters respectively.

3.2.3 Training. With the three discriminator networks, the conven-

tional GAN objective function can be expressed as [13, 15]:

min
G

max
D1,D2,D3

∑

k=1,2,3

LGAN (G,Dk ). (4)

where
LGAN (G,Dk ) = Ex,y [logDk (x ,y)]

+ Ex [log (1 − Dk (x ,G(x)))].
(5)

To improve this loss, a feature mapping loss based on the discrimina-

tor is added to push the generator towards producing natural statistics

at multiple scale [15]. Specifically, we extract features from multiple

layers of the discriminator and learn to match these intermediate repre-

sentations from the real and the synthesized image [15]. Mathematically,

the feature matching loss can be expressed as:

Global 
Generator G1

G1,C

G1,R

G1,D

G2,C G2,D

G2,R
2x downsampling

Local Enhancer  G2

Figure 6: The the generator in the pix2pixHD model is shown. It com-

prises two components, a global generator G1 and a local enhancer G2.

Table 1: The details ofG1,C

are shown.

Lyr Filter # Filters Str

1 7 × 7 64 1

2 3 × 3 128 2

3 3 × 3 256 2

4 3 × 3 512 2

5 3 × 3 1024 2

Table 2: The details of G1,D are

shown.

Lyr Filter # Filters Str

1 3 × 3 512 1/2

2 3 × 3 256 1/2

3 3 × 3 128 1/2

4 3 × 3 64 1/2

5 7 × 7 3 1

Table 3: The details of G2 are shown.

Component Layer Filter # Filters Str

G2,R
1 7 × 7 32 1
2 3 × 3 64 2

G2,D
1 3 × 3 64 1/2
2 7 × 7 3 1

LFM (G,Dk ) = Ex,y

T∑
i=1

| |D
(i)

k
(x ,y) − D

(i)

k
(x ,G(x))| |1 (6)

whereT is the total number of layer and D
(i)

k
denotes the output feature

map of the discriminator Dk at the i−th layer. This feature matching
loss is related to the perceptual loss [21], which has been shown to be

useful for style transfer application [13]. The final loss function is the

sum of Equations (5) and (6) in addition to a VGG-loss term added to

enhance accuracy [15, 21].

4 EXPERIMENTAL RESULTS

In our experiments, we use ISPD 2016 contest benchmark [12] with

480×168 device size. Compared to VTR benchmark [14] used in previous

work [8] with less than 12K cells, 2016 contest benchmark [12] contains

large designs with up to 1.1M cells as shown in Table 4.

4.1 Data Preparation and Training Setups

For each benchmark, 200 different random net weighting schemes are

obtained, then the corresponding placement results are generated using

elfPlace [1]. Then, routing is performed using NCTU-GR [22] to obtain

the golden routing congestionmaps. As a first step, the feature extraction

process described in Section 3.1 is performed to prepare both the input

and output images for the learning task. Then, two evaluation setups

are performed. In Setup 1, 11 out of the 12 designs are used for training,

while the 12th design is used for testing. For each design d , testing is
performed using amodel that has seen all designs except ford . This setup
is intended to demonstrate the generalization capability of the model

outside the training dataset. While in Setup 2, the data corresponding

to each particular design is split into 80% used for training and 20%

used for testing. With this setup, the models see only the design of

interest during training; hence, they are design specific and can be used

to provide routing congestion information within the PnR iterations for

the given design.

4.2 Performance Evaluation

We use the evaluation metrics introduced in Section 2.2 to compare our

approach to the following existing ones:

RUDY [4]: a model-based congestion estimation. It was introduced

in Section 3.1 as one of the features used in our approach.

pix2pix [8, 13]: a machine learning approach based on the model

proposed in [8]. However, as shown in Section 2.1, the connectivity

feature used in [8] fails for large-scale designs, besides, the model can

only handle designs with size up to 256 × 256. Thus, to enable this

comparison, two adjustments were done. The first is that images are

scaled down to 256 × 256 and the CGAN model proposed in [8] is used

to predict congestion maps. In addition, we use the features proposed

in our work instead of those used in [8] which are not applicable for

large-scale designs. Hence, this approach can be summarized as using

features proposed in this work with the learning model proposed in [8]

along with proper image scaling.

4.2.1 Setup 1. With Setup 1, Figures 7 and 8 show the resulting con-

gestion maps corresponding to two samples from designs FPGA-2 and

FPGA-8, respectively. Both vertical and horizontal golden routing con-

gestion maps are shown in addition to the prediction results from the

proposed approach (Proposed), pix2pix, and RUDY. Evidently, one can

visually notice that the proposed approach can produce the best predic-

tion results. To quantify this superior performance, Tables 5 and 6 show

a comparison of the evaluation metrics across the different approaches

for both vertical and horizontal congestion respectively. In these tables,

the visual observation is validated numerically with the proposed ap-

proach out-performing other approaches in all evaluation metrics, on

average.

4.2.2 Setup 2. Compared to Setup 1, models in Setup 2 are design

specific, hence, they are expected to generate better results. This is

validated in Table 7 where a comparison between Setup 1 and Setup 2
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Table 4: The ISPD 2016 benchmark details are shown.

Benchmark #LUT #FF #RAM #DSP #Ctrl Set

FPGA-1 50K 55K 0 0 12
FPGA-2 100K 66K 100 100 121
FPGA-3 250K 170K 600 500 1281
FPGA-4 250K 172K 600 500 1281
FPGA-5 250K 174K 600 500 1281
FPGA-6 350K 352K 1000 600 2541
FPGA-7 350K 355K 1000 600 2541
FPGA-8 500K 216K 600 500 1281
FPGA-9 500K 366K 1000 600 2541
FPGA-10 350K 600K 1000 600 2541
FPGA-11 480K 363K 1000 400 2091
FPGA-12 500K 602K 600 500 1281

Resources 538K 1075K 1728 768 N/A

Figure 7: A sample congestion prediction result is shown for FPGA-2.

Figure 8: A sample congestion prediction result is shown for FPGA-8.

using the proposed approach is shown. In the table, only the average

evaluation over the 12 benchmarks is reported due to space limit.

4.3 Applications

Our proposed routing congestion prediction approach has several appli-

cations; here, we present two important ones.

Routability-driven placement: our prediction framework is used

within the placement engine so that congestion can be accounted for

during the placement process. In the original implementation of elfPlace

[1], which is considered among the state-of-the-art routability-aware

placement engines, RUDY [4] is used to predict congestion during the

placement process. Here, we use our proposed approach instead and

compare the results with the original case with RUDY under two scenar-

ios. In the first scenario, the original routing capacity of the FPGA board

is assumed. Table 8 summarizes the results showing routed wirelength

(Rtd WL) when RUDY and our proposed approach are used for conges-

tion prediction during placement under full routing capacity. Knowing

that designs FPGA-5, 7 and 11 are the congested ones, it is clear that

our proposed approach can improve the placement quality to achieve

better routed wirelength. Besides, design FPGA-5 is by far the most

congested and our proposed routing congestion prediction can achieve

7% reduction in routed wirelength for this design.

On the other hand, and to further demonstrate the efficacy of our

proposed approach, the routing capacity is reduced to 88% its original

value in an attempt to push more designs towards congestion. Since

FPGA-5 is highly congested, it is excluded from this scenario because

any small reduction in routing capacity can make the design unroutable.

The new routing capacity (88% of original capacity) is chosen such that

all placements in the training dataset, excluding FPGA-5, are routable.

Also shown in Table 8 are the routed wirelength results for this scenario

where FPGA-11 is now the most congested design. As shown in the

table, our proposed approach can achieve better results for the con-

gested designs with more than 1% reduction in wirelength on FPGA-11.

It is important to note that FPGA-4 and FPGA-12 experienced minor

wirelength increases in scenarios 1 and 2 respectively. However, it is

clear that our proposed approach does not have inherent limitation in

handling specific design since FPGA-4 and FPGA-12 did not experience

performance degradation in scenarios 2 and 1 respectively; instead,

FPGA-4 experienced an improvement under scenario 2. These results

show that our predictions have better correlation with the golden so-

lution when compared to RUDY which enables improved placement

quality resulting in better wirelength during routing. Moreover, since

the prediction time for RUDY and and our proposed approach is negligi-

ble compared to the placement time, as will be shown in Section 4.4, the

overall placement time is not affected by the prediction method used.

Placement quality ranking: On the other hand, routing conges-

tion prediction can be used to rank placement quality when different

placements are available. Instead of routing all placements, those with

high congestion can be eliminated immediately. Table 9 compares the

number of matches among the 10% most congested placements between

the golden results and different prediction methods. As shown in the

figure, our predictions can achieve the best average matching.

4.4 Runtime Comparison

Based on the aforementioned performance evaluation, it is clear that

our proposed approach is the most suited to handle the routing con-

gestion prediction task for large designs. It can be used for placement

enhancement and ranking which can significantly improve routing

quality. Instead of running the complete routing scheme to get the con-

gestion information, the prediction model can provide this information

at the placement stage. Table 10 compares the runtime for the predic-

tion models to that of running the routing flow (denoted NCTU). The

proposed approach can achieve up to 5000× and 51× speedup when

using GPU and CPU-only respectively. More importantly, the prediction

time is constant and is independent of the design size.

5 CONCLUSION

In this work, we propose a novel routing congestion map prediction

framework for large-scale FPGA designs at the placement stage. It starts

by casting the problem as a high-definition image translation task, then

uses state-of-the-art HD image translation models. The proposed frame-

work uses as an input well-engineered features representing the place-

ment scheme and design connectivity for large-scale designs which

are encoded on different channels of the input image. Our proposed

approach demonstrates superior performance in terms of evaluation

metrics used when compared to existing approaches. Moreover, its

incorporation in the placement step results in up to 7% reduction in

wirelength.
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Table 5: A comparison between different estimation methods is shown for the vertical congestion prediction under Setup 1.

NRMS (lower better) SSIM (higher better) PIX (lower better) EMD (×10−2) (lower better)
Design RUDY pix2pix Proposed RUDY pix2pix Proposed RUDY pix2pix Proposed RUDY pix2pix Proposed

FPGA-1 0.079 0.844 0.077 0.931 0.195 0.952 0.047 0.318 0.014 0.043 0.58 0.02

FPGA-2 0.107 1.049 0.089 0.885 0.672 0.912 0.037 0.101 0.048 0.052 0.156 0.05

FPGA-3 0.178 1.487 0.467 0.679 0.418 0.714 0.093 0.087 0.066 0.129 0.307 0.174

FPGA-4 0.27 0.664 0.17 0.578 0.447 0.777 0.096 0.089 0.056 0.164 0.224 0.107

FPGA-5 0.388 0.124 0.34 0.514 0.629 0.644 0.086 0.069 0.054 0.196 0.103 0.181

FPGA-6 0.205 1.01 0.276 0.566 0.371 0.681 0.132 0.102 0.093 0.141 0.322 0.191

FPGA-7 0.271 0.369 0.186 0.477 0.521 0.705 0.112 0.094 0.083 0.189 0.111 0.184

FPGA-8 0.321 0.773 0.211 0.55 0.446 0.689 0.209 0.151 0.131 0.158 0.339 0.168

FPGA-9 0.329 0.562 0.279 0.521 0.473 0.075 0.207 0.112 0.232 0.175 0.088 0.15

FPGA-10 0.226 0.838 0.181 0.572 0.327 0.577 0.222 0.162 0.163 0.083 0.274 0.076

FPGA-11 0.301 0.613 0.111 0.491 0.463 0.644 0.179 0.133 0.102 0.178 0.100 0.088

FPGA-12 0.191 0.999 0.32 0.62 0.300 0.494 0.184 0.17 0.144 0.128 0.189 0.131

Average 0.239 0.778 0.226 0.616 0.439 0.656 0.134 0.133 0.099 0.137 0.233 0.127

Table 6: A comparison between different estimation methods is shown for the horizontal congestion prediction under Setup 1.

NRMS (lower better) SSIM (higher better) PIX (lower better) EMD (×10−2) (lower better)
Design RUDY pix2pix Proposed RUDY pix2pix Proposed RUDY pix2pix Proposed RUDY pix2pix Proposed

FPGA-1 0.107 0.786 0.067 0.89 0.231 0.955 0.068 0.306 0.026 0.063 0.508 0.033

FPGA-2 0.101 0.906 0.065 0.844 0.599 0.928 0.048 0.134 0.033 0.043 0.187 0.037

FPGA-3 0.199 1.058 0.307 0.477 0.424 0.78 0.118 0.098 0.073 0.134 0.343 0.177

FPGA-4 0.275 0.671 0.152 0.376 0.51 0.795 0.128 0.095 0.072 0.177 0.267 0.092

FPGA-5 0.341 0.171 0.285 0.372 0.705 0.642 0.13 0.077 0.063 0.246 0.118 0.191

FPGA-6 0.218 0.647 0.173 0.354 0.465 0.797 0.167 0.108 0.116 0.149 0.341 0.167

FPGA-7 0.252 0.439 0.159 0.306 0.611 0.778 0.143 0.127 0.105 0.127 0.198 0.151

FPGA-8 0.296 0.878 0.239 0.266 0.462 0.782 0.261 0.199 0.182 0.206 0.348 0.148

FPGA-9 0.297 0.517 0.268 0.228 0.617 0.442 0.24 0.169 0.217 0.165 0.205 0.23

FPGA-10 0.209 0.505 0.13 0.283 0.491 0.705 0.249 0.146 0.154 0.186 0.316 0.095

FPGA-11 0.351 0.332 0.227 0.19 0.651 0.691 0.262 0.19 0.143 0.257 0.058 0.22

FPGA-12 0.243 0.541 0.185 0.295 0.505 0.726 0.224 0.204 0.189 0.18 0.161 0.094

Average 0.241 0.621 0.189 0.407 0.523 0.752 0.17 0.155 0.115 0.162 0.255 0.137

Table 7: A comparison between Setup 1 and Setup 2 is shown.

Setup 1 Setup 2

NRMS
Horizontal 0.189 0.067
Vertical 0.226 0.057

SSIM
Horizontal 0.752 0.879
Vertical 0.656 0.815

PIX
Horizontal 0.115 0.058
Vertical 0.099 0.053

EMD (×10−2)
Horizontal 0.137 0.074
Vertical 0.127 0.045

Table 8: Thewirelength comparison under different predictionmethods

is shown.

Design
Full Routing Capacity Reduced Routing Capacity

Rtd WL
RUDY

Rtd WL
Ours

Imp
Rtd WL
RUDY

Rtd WL
Ours

Imp

FPGA-1 336117 336117 0.00% 336117 336117 0.00%
FPGA-2 691618 691618 0.00% 691618 691618 0.00%
FPGA-3 3062734 3062734 0.00% 3062734 3062734 0.00%
FPGA-4 5550659 5551473 -0.01% 5557608 5551473 0.11%
FPGA-5 10538770 9797007 7.04% N/A N/A N/A
FPGA-6 5773333 5773333 0.00% 5777149 5773333 0.07%
FPGA-7 9182199 9163640 0.20% 9199730 9163640 0.39%
FPGA-8 9053192 9053192 0.00% 9055093 9055093 0.00%
FPGA-9 11641853 11635870 0.05% 11652436 11635870 0.14%
FPGA-10 5515319 5515319 0.00% 5515319 5515319 0.00%
FPGA-11 11777500 11757650 0.16% 11877778 11757650 1.01%
FPGA-12 6235694 6235694 0.00% 6224962 6235694 -0.17%

Table 9: The number of matches among the top 10% most congested

placements are compared across different methods.

Design 1 2 3 4 5 6 7 8 9 10 11 12 Average

RUDY 4 4 2 2 0 0 4 2 2 5 3 10 3.16

pix2pix 1 3 2 1 0 1 0 1 2 2 0 1 1.17

Proposed 13 12 4 5 6 1 2 2 3 2 3 3 4.67

Table 10: The runtime comparison is presented (sec).

Design 1 2 3 4 5 6 7 8 9 10 11 12

NCTU 3 4 15 19 29 29 34 30 41 44 45 53

pix2pix GPU: 0.117 CPU: 0.284

Proposed GPU: 0.099 CPU:1.050
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