
Parallel-Log-Single-Compaction-Tree: Flash-Friendly Two-Level
Key-Value Management in KVSSDs

Yen-Ting Chen1,∗, Ming-Chang Yang2,†, Yuan-Hao Chang3,‡ and Wei-Kuan Shih4,∗
∗Department of Computer Science, National Tsing Hua University, Hsinchu, Taiwan

†Department of Computer Science and Engineering, The Chinese University of Hong Kong, Hong Kong
‡Institute of Information Science, Academia Sinica, Taipei, Taiwan

1andy499415045@gmail.com, 2mcyang@cse.cuhk.edu.hk, 3johnson@iis.sinica.edu.tw, 4wshih@cs.nthu.edu.tw

Abstract— Log-Structured Merge-Tree (LSM-tree) based key-
value store applications have gained popularity due to their high
write performance. To further pursue better performance for
key-value applications, various researches were conducted by
adopting different architectures of flash devices, such as key-
value solid-state drives (KVSSDs). However, since LSM-trees
were originally designed based on the architecture of hard disk
drives (HDDs), true potential of SSDs can not be well exploited
without re-designing the management strategy. In this work,
we propose Parallel-Log-Single-Compaction-Tree (PLSC-tree),
which is a two-level and flash-friendly key-value management
strategy specially tailored for KVSSDs. In particular, the first
layer takes advantage of the massive internal parallelism of SSDs
for maximizing the write performance via logging, while the
second layer is designed to alleviate the internal recycling (i.e.,
compaction) overheads of flash devices for ultimately optimizing
the performance on managing key-value pairs. A series of ex-
periments were conducted based on a well-known SSD simulator
with realistic workloads, and the results are very encouraging.

I. INTRODUCTION

Log-Structured Merge-Tree (LSM-tree) [11] key-value store
applications have gained growing attentions due to their high
write performance on data storage. An LSM-tree batches and
writes key-value pairs to the storage device sequentially. It
manages key-value pairs in multiple levels of files. Under
this trend, researches are devoted to improving the perfor-
mance of this kind of key-value application based on different
architectures of flash devices, such as traditional solid-state
drive (SSD), open-channel SSD and key-value SSD (KVSSD).
However, most of these existing designs did not resolve the
severe write amplification caused by managing key-value pairs
in multiple levels of files. Thus, it is necessary to funda-
mentally re-design the structure of LSM-trees and cooperate
with the characteristics of SSDs for ultimately improving the
performance. This work is thereby inspired by the urgent need
on proposing a new key-value management strategy, which not
only can make good use of the internal parallelism but also
can minimize the internal recycling overheads of key-value
flash storage device.

Persistent key-value stores play an important role in large-
scale and data-driven applications due to their efficient in-
sertions and lookups with simple operational interface. For
those write-intensive applications, LSM-trees such as Google’s
BigTable [2] and LevelDB [9] are considered to be the
first choice and are designed based on the characteristics of

hard-disk drives (HDDs). LSM-trees batch key-value pairs
in the memory of the host system and write them to the
storage device sequentially to achieve high write performance.
Furthermore, in order to provide efficient lookups, LSM-trees
read, sort, and write key-value pairs in the background to keep
each of them as unique as possible. Consequently, additional
sequential reads and writes are performed and causes severe
read and write amplification. However, random I/Os of HDDs
are much slower than sequential ones. The performance impact
of random I/Os are severer than that of write amplifications
caused by the LSM-trees. Therefore, it is a good deal to do
such a trade-off for improving the performance of HDDs.

In order to achieve a higher degree of performance, people
start to consider using flash storage devices (e.g., solid state
drives) as the main storage. A flash storage device is usually
composed of multiple NAND flash chips, which are connected
into multiple channels. Each chip consists of dies and each
die consists of planes. There are usually thousands of blocks
in a plane and hundreds of pages in a block. Due to the
hardware constraint, a flash page is the basic unit of read/write
operations. Owing to the write-once property, flash pages that
have been programmed/written can not be overwritten unless
its residing block is erased first, where a flash block is the
basic unit of erase operations. Thus, updates to data of flash
pages are usually stored into other free pages rather than the
original pages (referred to as out-place update). Because of the
aforementioned hardware properties, an embedded manage-
ment software called flash translation layer (FTL) is usually
implemented to tackle the address translation, which maps the
logical block addresses (LBA) referenced by the host system
to the physical page addresses (PPA) in the flash memory. In
addition, another crucial mechanism called garbage collection
is also implemented in FTL to recycle the space of invalid
pages so as to release the storage space occupied by the invalid
data. On the other hand, based on the chip organization of flash
storage device, four levels of parallelism (i.e., channel-level,
chip-level, die-level and plane-level) and advanced commands
(e.g., multi-plane operations [1]) are widely utilized by FTL
for improving the access performance [6], [7].

Characteristics of SSDs are fundamentally different from
HDDs and make the performance improvement restricted.
Therefore, more and more researches are devoted to improving
the performance of LSM-tree based key-value applications,
which are built upon SSDs by investigating the bottleneck
between host system and flash storage device [8], [13]. [8]
proposed to separate keys from values and only keep keys

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE
277

4D-3

sorted, so as to reduce the write amplification by avoiding
unnecessary movement of values. [13] proposed to exploit the
internal parallelism of flash devices by adopting open-channel
SSDs as the main storage device to improve the performance.
Notably, few researches even proposed a new SSD style,
namely the key-value solid-state-drive (KVSSD), which sup-
ports key-value interface where key-value pairs can be directly
read/written from/to the flash memory with key-value-specific
APIs (i.e., put(), get() and delete() operations) [3], [4], [12]. In
KVSSDs, the management of key-value pairs can be offloaded
to the flash storage device and eliminate the unnecessary I/O
stacks between the host system and the flash storage device
for great performance improvement. [3], [4] first proposed
the architecture of KVSSD and created different-sized storage
units to store variable-sized value, in order to resolve the
low space utilization problem caused by storing variable-sized
key-value pairs into fixed-sized flash pages to achieve high
performance. [12] proposed to integrate the LSM-trees into
KVSSDs and use an in-RAM key-range tree to reduce the
write amplification of LSM-trees.

However, the write amplification problem of LSM-tree
based key-value applications mainly comes from process-
ing multiple levels of files to reorganize the stored key-
value pairs. Although existing designs have proposed different
mechanisms to alleviate the write amplification, the degree
of improvement over flash device performance is greatly
restricted without re-designing the architecture of LSM-trees.
Thus, this study proposes a two-level key-value management
strategy, called Parallel-Log-Single-Compaction-Tree (PLSC-
tree), which is designed based on the architecture of KVSSDs
and cooperates with the characteristics of SSDs to ultimately
achieve high read/write device performance. Inspired by Lev-
elDB, PLSC-tree proposes to manage KVSSD in a two-level
fashion, instead of multiple levels, to significantly reduce the
write amplification. The first level is designed to maximize
the write performance by leveraging the internal parallelism
of SSDs. On the other hand, the second level is designed
to alleviate the internal recycling overheads of flash device
by reorganizing and storing key-value pairs with a smaller
storage unit. Furthermore, to evaluate the capability of PLSC-
tree, a series of experiments were conducted to compare with
the LevelDB, which is one of the representative LSM-tree
based key-value store management designs known for its high-
performance. The evaluation results show that the read (resp.
write) performance of the proposed PLSC-tree can achieve
28.6 (resp. 45.5) times faster than that of LevelDB under our
test scenario.

The rest of this paper is organized as follow: Section II
presents the background and motivation. Section III presents
the new two-level key-value management strategy, namely
PLSC-tree, to achieve high device performance for KVSSDs.
Section IV presents the experimental results. Finally, we
conclude this work in Section V.

II. BACKGROUND AND MOTIVATION

LevelDB [9] is a widely used LSM-tree based persistent
key-value store and is well-known for its high performance,
especially the write performance. As shown in Figure 1,
LevelDB is mainly composed of two in-memory sorted skip

lists (i.e., memtable and immutable memtable) and seven levels
of Sorted String Table (i.e., SST) files. When a key-value pair
is going to be written, LevelDB initially appends it to an on-
disk log file to prevent from data loss and then insert it to the
memtable. Notably, the objective of memtable is to accumulate
key-value pairs in memory of the host system to achieve
sequential write for improving the write performance of hard
disks. Once the memtable is full, a new memtable is generated
to keep serving the incoming writes of key-value pairs and the
previous memtable is converted to an immutable memtable.
After that, key-value pairs in the immutable memtable are
converted to data bytes (e.g., 2 MB) and flushed to the disk
by a procedure called minor compaction to form an SST. In
order to manage each SST in all levels, a file called manifest
is in charge of recording the smallest and largest keys of each
SST and is used to search key-value pair(s) as well. Besides, a
current file is maintained to keep track of the newest version
of manifest with considering the crash recovery.

In order to support efficient lookup on key-value pair(s),
LevelDB recursively reorganizes SSTs in each level to its next
level to recycle stale key-value pairs that have duplicated keys.
In LevelDB, the total size of all SSTs in each level is limited
and increased by level with a factor of ten, except for level 0.
Once the total size of SSTs in a level is exceeded, a procedure
called major compaction is triggered to reorganize and merge
SSTs in this level to the next level. When major compaction
is performed, one SST is chosen from a level and SST(s)
with overlapped key range in the next level (e.g., level i+1)
will be merged and generate new SST(s) to the next level
(e.g., level i+1). This procedure will be continued until the
total size of SSTs of each level is within their corresponding
limitations. Notably, since SSTs in level 0 are directly flushed
from the host system, keys might have multiple versions and
the valid one is the last written one. Thus, except for level
0, the key ranges of SSTs in each level are non-overlapped.
Consequently, maximum overhead to read a key is restricted
to the total number of SSTs in level 0 and one SST from each
of the other levels since only SSTs whose key range include
the searched key will be checked.

���� �����	

��	���

������� ������

���� ����� ����

���
������ ���

���
��� ��� ���

����
������

���
������

�

��� ��� ��� ��� ���

��� ��� ��� ��� ��� �

�

��	�����
��� ���!�

������ ��	��
��

���� ���	����

�	�� ���	������"�#���

���

$!���"�

�����

%		!�����

Fig. 1: Architecture of LevelDB.

With the growing demands for high-speed applications such
as LevelDB, people start to consider flash storage devices (e.g.,
SSDs) as the main storage to achieve a higher performance.
More and more researches were devoted to investigating the
performance bottleneck between LSM-tree based key-value
applications and flash storage devices. Among them, few
researches have even proposed a brand new architecture of
key-value-specific solid state drives (KVSSDs) to overcome

278

4D-3

the gap of host system and SSDs. However, these researches
did not fundamentally re-design the architecture of LSM-
tree to meet the characteristics of flash memory. First, SSDs
have a large degree of internal parallelism that could be
leveraged to maximize the read/ write performance [6], [7].
Second, since flash memory does not support in-place updates,
multiple levels of compactions performed by LevelDB would
incur severe write amplification and even trigger considerable
numbers of additional reads/writes/erases. Thus, this study
presents a two-level key-value management strategy, in which
each level cooperates with different characteristics of SSDs to
achieve high performance.

III. PLSC-TREE:
PARALLEL-LOG-SINGLE-COMPACTION-TREE

A. Overview

In this section, a new Parallel-Log-Single-Compaction-Tree
(referred to as PLSC-tree) is proposed to manage key-value
pairs in a flash-friendly way to achieve high performance.
As shown in Figure 2, our key idea is to manage the whole
physical flash memory in a two-level fashion and each level
considers to cooperate with different characteristics of flash
devices. Notably, in order to manage these two logically
separated storage spaces, PLSC-tree also introduces a new
storage concept called unsorted string table (referred to as
UST) to mange flash pages in groups of different sizes
and is the basic allocated and reclaimed unit in PLSC-tree.
Please note that the USTs are maintained by link-list because
key-value pairs are batched and stored without sorting. The
first level (i.e., level 0) is designed to maximize the write
performance. The number of flash pages in this level is aligned
to the number of flash planes, so as to leverage the internal
parallelism of the flash device (i.e., parallel-log). Thus, the
number of flash pages of an UST in level 0 is always equal to
the number of flash planes. On the other hand, the second level
(i.e., level 1) is designed to alleviate the internal overheads
of the recycling procedures, such as compaction and garbage
collection, by reorganizing and storing key-value pairs in an
UST to a smaller storage unit (i.e., single-compaction). Thus,
number of flash pages of an UST in level 1 could range from
only one to the number of flash planes.

Besides, in order to provide efficient lookup for key-value
pairs, PLSC-tree also proposes a global index to always keep
track of their newest version by recording their residing UST
and location. In global index, keys are separated into groups
according to their length of byte and each group is a 256-entry
hash table. Key-value pairs that are hashed to the same bucket
in a group will be simply maintained by a link-list. Notably,
the number of groups should depend on the maximum size of
keys supported by the key-value application. Notably, global
index is also designed to greatly alleviate the write amplifi-
cation introduced by compaction since duplicated keys do not
need frequent merge to guarantee the lookup efficiency. Last
but not least, PLSC-tree is designed based on the architecture
of the KVSSDs, which support key-value-specific APIs. Thus,
a string-byte converter is responsible to convert key-value
pairs between string and byte to overcome the gap of the
key-value applications and the flash device. In order to show
how these design goals are achieved, Section III-B and III-C

&'������
(���'

��	���

�������	�����
�������	�
���������

��������	
	�������	������	
	�������������	�����	������

����������	
	�����������	
	������������

���� ��� ��� ����
���� ���

�����
�
���
���

���������

�����
�
���
���

���� ��� ��� ����
���� ��� ��� ����

� �������
��
��������	��

�����	�� ��

	
�

��	���������	����
������������
���� �

����"�)����*$�"������

+�����*
%"��,

� � �

�
�

�

� 	�

	�

	� 	�

!"#$%����

�

Fig. 2: Architecture of PLSC-tree.

elaborate the operations of KVSSD in level 0 (i.e., parallel-
log) and level 1 (i.e., single-compaction), respectively.

B. Parallel-Log: Optimization of Write Performance

This section will present how the first level (i.e., level
0) logs key-value pairs sequentially and writes them to the
physical flash memory in parallel for achieving high write
performance, by demonstrating the procedures of the three
most important key-value operations (i.e., put, get and delete).

Since the put operation is the starting point of all other
operations, we elaborate the procedure of handling the
put(key, value) operation first. As shown in Figure 3, when
a put(“PLSC”, “tree”) operation is initiated by a key-value
application, the string-byte converter will be in charge of
converting the key-value pair from strings to bytes. After that,
converted data of bytes (e.g., KV9) of this newly put key-value
pair is appended to the write buffer and a corresponding kNode
is generated to keep track of it and maintained by a temporary
link-list, called KVbatchList. Once the write buffer is full, data
will be partitioned and aligned to the flash page size and
flushed to the flash planes in parallel. Then, a level 0 UST
identified by an unique ID (i.e., UTID) is formed to manage
these flushed flash pages by their physical page number (i.e.,
PPN). Besides, in order to maintain the coherence between the
physical flash memory and the USTs after garbage collection
is performed, a PPNtoUTID map is used to maintain the
correctness of mappings between PPNs and their residing
USTs. After the flush operation is performed, all the kNodes
in KVbatchList will be popped and inserted to the global
index. Notably, each kNode records the necessary information
to search for the corresponding key-value pair and its location,
including the key of string, UTID of the residing UST, start
byte address in the UST (i.e., Offset) and length of byte (i.e.,
Len). Notably, considering the comparison of strings is slow,
each key shall provide a 128-bit signature to reduce the latency
on searching a key.

279

4D-3

����&&!"#$'	&&����'�

!!()*+�

,- .

�

!!(��)*+� /��

�)*+� !!(!!(!!(

. ,- ,, 0,

"����	1)#*	"���

�

�

+2�����	#����

1�����	�� �� �34/�

�

!���	�����

�

!�������
�����
/�5���

���2�	1 ���2�	. ���2�	,.

+2����)�����

���6��7� �����6��7���� �����

�� 8
�����	��	���	

�� ��

#���2�%����	
$�2������9�����	+2��:

1 . - �

�

7

�

� �(���1 �(��� 8

#�� ��� ; ��� -�%�

�������"��� �(��� 1 �(��� . �(��� 8	�

+2����

���%�����	
4���������2

� � �

�

,, .

$�2����	����2�	
��	�����

"�2

Fig. 3: Example of parallel log (i.e., put operation).

Furthermore, if the put operation is to put value to an
existing key, then it is an update operation on this key. Since
a key would only have one corresponding kNode in the global
index, the older kNode will be updated to the newer one for
maintaining the newest version of the updated key. Notably,
before the kNode is updated, the invalidated storage space
occupied by the stale key-value pair shall be updated to its
corresponding UST in the UST List. Furthermore, in the case
that the key is still in the write buffer, corresponding kNode
in the KVbatchList will be updated to the newly put one and
the following kNodes shall update their Offset as well.

The get(key) and delete(key) operations can be simply
processed by searching the KVbatchList and global index. To
perform the get operation, the KVbatchList is first looked up
to find the given key. Once the corresponding kNode of the
inquired key is found, data in the write buffer will be handed
to the string-byte converter and the result will be returned after
the conversion is completed. In the case that the inquired key is
not found in the write buffer, the global index is first looked up
to find the corresponding kNode of the given key. After that,
indexes of the flash pages in UST that contain the inquired
key-value pair can be located by calculating the Offset and
Len in the kNode. Thus, corresponding flash pages can be read
from the flash memory by their mapped PPNs in the UST and
data is handed to the string-byte converter for returning the
result. Similarly, to perform the delete operation, KVbatchList
and global index are looked up to find the corresponding
kNode of the given key. Once the kNode is found, it will be
removed from the KVbatchList or global index and invalidated
storage space of its residing UST will be updated if it is found
in the global index.

C. Single-Compaction: Alleviation of Recycling Overheads

This section will present how key-value pairs are reorga-
nized to the second level (i.e., level 1) and stored with a
smaller UST to alleviate the internal overheads, by demon-
strating the procedures of two important recycling processes
(i.e., compaction and garbage collection).

When more and more put and delete operations are pro-
cessed, invalid key-value pairs will gradually occupy the
physical flash memory. Finally, all the free flash pages will be
used up and cannot be allocated by any UST to store the newly
put or updated key-value pairs. Thus, recycling mechanisms

must be implemented in order to release the storage space of
invalid key-value pairs. In PLSC-tree, compaction and garbage
collection are proposed to recycle the storage space of invalid
key-value pairs in cooperation. Compaction is responsible for
logically recycling the invalid storage space by reorganizing
the USTs in levels 0 and 1. On the other hand, garbage
collection is responsible for physically releasing the storage
space by reclaiming invalid flash pages to free pages.

�
"����	.)#*	"���

)*+� $(* !!(!!(+2�����	#����

)*+� $(* !!(+2�����	#����

�

�
"����	1	��	"���	�	

)#*	"���

)*+� !!(!!(!!(� +2�����	#����

)*+� !!(!!(!!(� +2�����	#����

)*+� !!(!!(!!(� +2�����	#����

�

�

�

!�������
�����
/�5���

���2�	1 ���2�	. ���2�	,.

� � �

!���	3���

3���	�� �� �34/�

�.�	��2�
�����5)#*	
����	5���
&&+2�����	#����'

��	1 ��	. ��	2	�

#���2�%����	
$�2������

�-�	3���2������	
���%�����	�����

�<�	3�%���	�����	
���%�����	�����

�2�	��2�����)#*

�,�	$����	��������
��	9�����	+2��:

��	1 ��	.

Fig. 4: Example of single compaction.

To prevent the free pages of flash memory from being used
up, thresholds shall be defined to monitor the numbers of
allocated flash pages of levels 0 and 1 respectively. Once
the predefined threshold is reached, compaction is invoked
and the process will not be stopped until the numbers of
the allocated flash pages in levels 0 and 1 are both within
their corresponding thresholds. Notably, since USTs in level 1
might be generated from level 0, compaction is first performed
on level 0 and then on level 1. As shown in Figure 4, the
first step is to find a worthwhile UST (referred to as victim
UST) that could release the largest amount of invalid storage
space. Thus, the corresponding UST List of the level that
invoked compaction will be traversed to find the UST that
owns the largest amount of invalid space as the victim UST.
Then, all flash pages of this victim UST will be read from
the physical flash memory to the read buffer by their PPNs.
After that, data in the read buffer is handed to the string-
byte converter to reconstruct the key-value pairs, which are
temporarily maintained in a link-list. For each key-value pair,
the validity will be checked by looking up the global index and
valid ones will be re-put by following the same procedure of
put operation (presented in Section III-B) to form new level 1
UST. Then, the victim UST will be discarded and all the flash
pages allocated by it will be marked as invalid pages, which
are waiting for garbage collection to reclaim them.

On the other hand, garbage collection will be invoked to
reclaim invalid storage space when the number of remaining
free pages in the flash memory is less than a predefined
threshold. Notably, since garbage collection is a mature re-
cycling mechanism, PLSC-tree is designed targeting to retain
the original procedure as much as possible and only few
modifications are required. When the garbage collection is
invoked, the first step is to find a worthwhile flash block
(referred to as victim block) that could release the largest
amount of free storage space. That is, the flash block that owns
the largest number of invalid flash pages would be chosen
as the victim block. After that, each valid flash page in the

280

4D-3

victim block will be copied to another available free page and
this action is so-called live-page copyings. For each copied
live-page, its corresponding UST will be visited by checking
the PPNtoUTID map and the mapping shall be corrected by
updating the old PPN to the new one. Finally, the whole victim
block will be erased to release free storage space after all live-
page copyings in the victim block are performed.

IV. PERFORMANCE EVALUATION

A. Experimental Setup

In this section, we evaluate the device performance and
analyze the internal overheads (i.e., compaction and garbage
collection) of the proposed PLSC-TREE when it is applied
to a key-value flash device. The experiment was conducted
in a customized simulator that was modified from a well-
known simulator called SSDSim [7]. SSDSim is a high-
accuracy and configurable SSD-based simulator that supports
advanced commands and evaluation on the device performance
(e.g., read/write total response time). Thus, it has offered
most of the basic framework for our key-value flash device.
Based on the customized simulator, a 128 GB key-value flash
device without warm-up was investigated, as shown in Table I.
Other detailed configurations (e.g., the usage of advanced
commands and threshold for garbage collection) follow the
original settings recommended by SSDSim.

TABLE I: The evaluated key-value flash device.

Channel number 4 Chip number 8
Die number 2 Plane number 2
Block number 1024 Page number 256
Page size 16KB

In addition, to demonstrate the effectiveness of the proposed
PLSC-TREE, LEVELDB was also implemented into our cus-
tomized simulator to represent the designs with the original
LSM-tree [13], [12]. In our experiment, LEVELDB is revised
to be integrated in the key-value flash device and configura-
tions, such as the size of each level, follow the standard design
(e.g., 8 MB, 10 MB, 100 MB, etc.) as described in Section II.
On the other hand, three representative key-value workloads
(i.e., “small”, “uniform”, and “large”) are used to evaluate
the proposed PLSC-TREE and the investigated LEVELDB.
Notably, the key sequence in the workloads is generated from
the well-known Yahoo Cloud Serving Benchmark (YCSB) [5]
based on the HBase database [10]. The total size of the put
keys is 397 MB. Besides, in order to offer different value sizes
for evaluation, the value for each key is generated in the three
evaluated workloads. In the “small” and “large” distributions,
the evaluated value sizes are all smaller or larger than the
investigated flash-page size (i.e., 16 KB). The total sizes of the
put values in the “small” and “large” distributions are of 7 GB
and 30 GB, respectively. On the other hand, the evaluated
value sizes are uniformly varied and the total size of put values
is 14 GB in the “uniform” distribution. In our experiment, one
million of put operations are first performed to test the write
performance and are followed by one million of get operations
to test the read performance under all workloads. Notably, to
ease the following discussion, the get (resp. to put) operations

will also be referred to as read (resp. to write) operations
interchangeably.

B. Experimental Results

1) Performance: Figure 5 shows the total read response
time introduced by LEVELDB and PLSC-TREE under all
distributions, where the x-axis denotes the distribution of value
sizes and the y-axis denotes the total response time to complete
the get operations. As shown in the figure, PLSC-TREE could
achieve read performance for at least 19.4 times and at most
28.6 times faster than LEVELDB under the “uniform” and
“large” distribution, respectively. This is because LEVELDB
reads too many flash pages for a single get operation. In order
to find a key, multiple SSTs from level 0 to levl 6 might be read
from the flash memory. Furthermore, standard size of an SST
file is 2 MB in LEVELDB; this means that 128 flash pages will
be read under our configuration. On the other hand, PLSC-
TREE can easily find a key by searching the corresponding
kNode in global index and read a limited number of necessary
flash pages.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

Small Uniform LargeT
o

ta
l
R

e
s
p

o
n

s
e

 T
im

e
 (

s
e

c
.)

Distribution of Value Sizes

LevelDB35764

24961

36883

PLSC-tree

1258 1289 1289

Fig. 5: Total read response time (of get operations).

 0

 1000

 2000

 3000

 4000

 5000

Small Uniform Large

T
o
ta

l
R

e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
.)

Distribution of Value Sizes

LevelDB

591

3570

5046
PLSC-tree

155
312

634

(a) Excluding compaction.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

Small Uniform Large

T
o
ta

l
R

e
s
p
o
n
s
e
 T

im
e
 (

s
e
c
.)

Distribution of Value Sizes

LevelDB

6379
13834

151525
PLSC-tree

155 312 3333

(b) Including compaction.

Fig. 6: Total write response time (of put operations).

Figure 6a and Figure 6b show the total write response
time introduced by LEVELDB and PLSC-TREE under all
distributions, where the x-axis denotes the distribution of value
sizes and the y-axis denotes the total response time to complete
the put operations. In Figure 6a, we first demonstrate the total
write response time without considering the latency caused
from the compaction, so as to show how the write performance
varies while the internal parallelism of flash devices is consid-
ered. As shown in the figure, PLSC-TREE could achieve write
performance for at least 3.8 times and at most 11.4 times better
than LEVELDB under the “small” and “uniform” distribution,
respectively. On the other hand, Figure 6b shows the total write

281

4D-3

response time while the latency caused from the compaction is
considered and should be regarded as the real response time of
the flash device. As shown in the figure, the write performance
of PLSC-TREE could achieve about 45.5 times faster than
that of LEVELDB under the “large” distribution. From the
test results, we can observe that the impact of compaction is
tremendous, and such an impact could make the difference of
write performance of these two designs become about 44 to
45 times. Thus, in order to further analyze the overheads of
compaction, Section IV-B2 is introduced to break down the
latency incurred by compaction.

2) Internal Overheads: Table IIa and Table IIb show the
total read and write latency incurred by the compaction of
the two investigated designs respectively. As shown in the
Table IIa, read latency incurred by compaction of LEVEDB
is about 25 times larger than that of PLSC-TREE in the
worst case, namely the “large” distribution. On the other
hand, Table IIb shows that the write latency incurred by
compaction of LEVEDB is about 78.9 times larger than that of
PLSC-TREE in the worst case, namely the “large” distribution.
The reason is that LEVELDB performed a large number of
compactions level by level to guarantee the efficiency of key
lookups and introduce considerable flash-page reads/writes
during the process. In contrast, PLSC-TREE performed com-
pactions only when the number of free flash pages is below
the predefined threshold. Besides, key-value pairs in level 1
are stored with smaller USTs and thus further alleviate the
overhead of compaction.

TABLE II: Latency incurred by compaction.

Design Small Uniform Large
LevelDB 5193 sec. 6684 sec. 51432 sec.

PLSC-tree 0 sec. 0 sec. 2065 sec.
(a) Read latency incurred by compaction.

Design Small Uniform Large
LevelDB 595 sec. 3580 sec. 50048 sec.

PLSC-tree 0 sec. 0 sec. 634 sec.
(b) Write latency incurred by compaction.

Last, we analyze the overhead of garbage collection by
presenting the number of performed erase and copyback (i.e.,
advanced command for accelerating live-page copyings) oper-
ations. Table IIIa shows the total numbers of erase operations
of the two designs. As shown in the table, none of the
erase operation is invoked in PLSC-TREE to release storage
space while LEVELDB has performed considerable numbers
of erase operations under “small” and “uniform” distributions.
Under the “large” distribution, only few erase operations are
performed in PLSC-TREE. The difference of the numbers of
erase operations between the two designs becomes even larger.
This phenomenon shows that LEVELDB incurs tremendous
write amplification problem and largely increases the number
of flash page writes. Similarly, since the performed number
of copyback operations is strongly related to the number of
performed erase operations, Table IIIb shows the same trend
as Table IIIa.

TABLE III: Overhead incurred by garbage collection.

Design Small Uniform Large
LevelDB 220832 326607 899967

PLSC-tree 0 0 3724
(a) Total operation counts of Erase.

Design Small Uniform Large
LevelDB 2057925 12895077 102329794

PLSC-tree 0 0 152334
(b) Total operation counts of Copyback.

V. CONCLUSION

This paper proposes a new two-level key-value management
strategy for key-value flash storage devices. The first level
batches and writes key-value pairs to the flash planes in
parallel to gain maximum write performance. The second level
stores key-value pairs with smaller storage unit to alleviate the
overheads of compaction and garbage collection. In particular,
a new storage concept called UST is proposed to manage the
flash pages in the two levels with different sizes and cooperate
with the global index to support efficient lookups. The results
show that the proposed design could achieve 28.6 times and
45.5 times better than the well-known LevelDB under our test
scenario, in terms of read and write performance respectively.

REFERENCES

[1] A. R. Abdurrab, T. Xie, and W. Wang. Dloop: A flash translation layer
exploiting plane-level parallelism. In 2013 IEEE 27th International
Symposium on Parallel and Distributed Processing, pages 908–918, May
2013.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach,
M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A
distributed storage system for structured data. ACM Trans. Comput.
Syst., 26(2):4:1–4:26, June 2008.

[3] Y. Chen, M. Yang, Y. Chang, T. Chen, H. Wei, and W. Shih. Kvftl:
Optimization of storage space utilization for key-value-specific flash
storage devices. In 2017 22nd Asia and South Pacific Design Automation
Conference (ASP-DAC), pages 584–590, Jan 2017.

[4] Yen-Ting Chen, Ming-Chang Yang, Yuan-Hao Chang, Tseng-Yi Chen,
Hsin-Wen Wei, and Wei-Kuan Shih. Co-optimizing storage space
utilization and performance for key-value solid state drives. IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, PP:1–1, 02 2018.

[5] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears.
Benchmarking cloud serving systems with ycsb. In SoCC, pages 143–
154, 2010.

[6] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren. Exploring and
exploiting the multilevel parallelism inside ssds for improved perfor-
mance and endurance. IEEE Transactions on Computers, 62(6):1141–
1155, June 2013.

[7] Y. Hu, H. Jiang, D. Feng, L. Tian, H. Luo, and C. Ren. Exploring and
exploiting the multilevel parallelism inside ssds for improved perfor-
mance and endurance. IEEE Transactions on Computers, 62(6):1141–
1155, June 2013.

[8] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
Wisckey: Separating keys from values in ssd-conscious storage. In FAST,
pages 133–148, Santa Clara, CA, February 2016.

[9] Sanjay Ghemawat and Jeff Dean. Leveldb.
[10] The Apache Software Foundation. Apache HBase repository.

https://hbase.apache.org/.
[11] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth O’Neil.

The log-structured merge-tree (lsm-tree). Acta Inf., 33(4):351–385, June
1996.

[12] S. Wu, K. Lin, and L. Chang. Kvssd: Close integration of lsm trees
and flash translation layer for write-efficient kv store. In 2018 Design,
Automation Test in Europe Conference Exhibition (DATE), pages 563–
568, March 2018.

[13] Jiacheng Zhang, Youyou Lu, Jiwu Shu, and Xiongjun Qin. Flashkv:
Accelerating kv performance with open-channel ssds. ACM Trans.
Embed. Comput. Syst., 16(5s):139:1–139:19, September 2017.

282

4D-3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

