
Designing Efficient Shortcut Architecture for Improving the Accuracy of 
Fully Quantized Neural Networks Accelerator 

Abstract - Network quantization is an effective solution to 
compress Deep Neural Networks (DNN) that can be accelerated 
with custom circuit. However, existing quantization methods 
suffer from significant loss in accuracy. In this paper, we 
propose an efficient shortcut architecture to enhance the 
representational capability of DNN between different 
convolution layers. We further implement the shortcut 
hardware architecture to effectively improve the accuracy of 
fully quantized neural networks accelerator. The experimental 
results show that our shortcut architecture can obviously 
improve network accuracy while increasing very few hardware 
resources (0.11× and 0.17× for LUT and FF respectively) 
compared with the whole accelerator. 

I Introduction 

Deep neural networks have made dramatical 
improvements in various computer vision tasks, speech 
recognition, and natural language processing [1-4], etc. It 
also attracts an increasing number of studies to deploy 
state-of-the-art DNN models to embedded devices and 
custom circuits. However, as networks get deeper, DNN 
models suffer from over-parametrization and large amounts 
of redundancy, which often require considerable storage and 
computational power for hardware implementation [5]. In 
addition, irregular floating-point operations also cause 
additional calculation burden. As a result, training neurons 
and weights with low width or low precision is a crucial 
method for reducing the computational complexity of neural 
networks while greatly cutting down memory overhead for 
the specific hardware accelerator. 

A lot of work has demonstrated that the neural network 
itself has strong robustness. Networks can also achieve 
satisfying accuracy without full-precision floating-point or 
even half-precision floating-point. Therefore, in order to 
tremendously simplify the neural network, many network 
quantization proposals have been proposed to quantize both 
weights and the activations of feature maps in neural 
network. Quantization methods are very friendly to deploy 
and implement various DNN models in resource-limited 
hardware platform. 

However, the loss of network accuracy of low-bit DNN 
model is significant. Fully quantized network with both 
activations and weights are constrained to low bits may 
easily lead to the loss of information representation ability 
along with layer-by-layer convolution operations. Figure 1 
summarizes the loss of accuracy for the state-of-the-art 
quantization methods such as BNN, XNOR-Net and 
DoReFa-net [6-8]. Figure 1 (a) and (b) are the top-1 and 

top-5 classification accuracy of ImageNet before and after 
full quantization respectively. Figure 1 (c) is the 
classification accuracy of Cifar-10 with XNOR-Net full 
quantization. According to the accuracy comparison of the 
full quantization operation in the experiments, we can see 
that full quantization methods will lead to a 5.9% to 28.7% 
decline in top-1 accuracy of ImageNet, which is 
unacceptable in performance sensitive applications. 

In order to improve the accuracy and efficiency of fully 
quantized DNN accelerator, we make the following 
contributions: 
� We present a new shortcut strategy to compensate the

information losing as the fully quantized operations,
which fully considers the hardware implementation and
will not incur too much hardware resources overhead.

� To save memory resources and improve shortcut
efficiency, we further propose a Max/Avg pooling
operations to transmit the feature information between
different convolution layers.

� We implement the strategy with Verilog HDL to
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(a) The top-1 classification accuracy of ImageNet dataset
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(c) The classification accuracy of Cifar-10 dataset.
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Fig. 1. The comparison of the accuracy variation of the fully 
quantized neural networks and original conventional neural 
networks in state-of-the-art DNN model and different datasets. 
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comprehensively evaluate our design. Our hardware 
module can be easily integrated in the current hardware 
accelerators for improving the accuracy of fully 
quantized neural networks. 

� The experimental results show that the range of
accuracy improvement of fully quantized networks is
up to 0.81% to 18.18% while increasing very few
hardware resources (0.11× and 0.17× for LUT and FF)
compared with the ordinary accelerator.

The rest of the paper is organized as follows: Section II 
presents the related work. Section III proposes the detailed 
algorithm and hardware design of our shortcut for fully 
quantized DNN. Section IV shows experiment methodology 
and evaluation results. Section V concludes the paper. 

II. Related Work

Weights quantized networks. BWN [7] trains neural 
networks with weights constrained to +1 or -1, and each 
layer shares a scaling factor. In contrast, TWN [9] quantizes 
weights to 1, 0 and -1, which improves the representational 
capability of quantized network without increasing the 
computational complexity. INQ [10] converts full-precision 
network model into a low-precision version whose weights 
are constrained to be either powers of two or zero. All the 
quantization methods try to trade-off between expected 
bit-width (model size) and accuracy (model performance). 

Weights and activations fully quantized networks. In 
order to further reduce model storage consumption and 
computational complexity, a great deal of existing work also 
quantize the activations of feature maps except for 
quantizing weights. XNOR-net [7] reduces information loss 
by introducing quantization coefficients and adjusting the 
internal order of CNN feature extraction module. As the 
binarized outputs will reduce accuracy, DoReFa-Net [8] uses 
k-bits to quantize weights and activations. The fixed-point
design [11] leverages back-propagation-based retraining and
adds a coefficient to each quantized value to improve the
accuracy of fully quantized networks.

Current DNN accelerators. One of the key goals for 
quantized neural networks is to deploy DNN into resource 
limited hardware systems. Currently, most of the existing 
DNN accelerators (e.g. [12-15]) support the acceleration of 
traditional networks such as AlexNet [2] and VGG [16], but 
lack the dedicated acceleration for fully quantized networks, 
which may lead to unnecessary computing and storage 
overhead. The emerging bit-level accelerators with variable 
data bit width (e.g. [17] [18]) can implement the quantized 
neural networks. However, the accuracy is not satisfied due 
to the loss of feature information caused by the fully 
quantized network itself.  

In brief, this paper distinguished itself with other work is 
that we fully study the quantized methods for neural 
networks and focus on how to improve the accuracy of fully 
quantized neural networks while avoiding incur additional 
hardware resources overhead. According to 
software-hardware co-design method, we propose an 
efficient shortcut architecture to transfer the feature 

information of weights and activations from the former layer 
to the next convolution layer. Our shortcut design can be 
easily integrated into current accelerator without redesign, 
nor increase the additional data bandwidth of original 
accelerator. To our best knowledge, this is the first work to 
improve the accuracy and efficiency for fully quantized 
neural network accelerators with efficient shortcut methods. 

III. Efficient Shortcut for the Fully Quantized DNN

In this section, we introduce the efficient shortcut strategy 
to improve the accuracy of fully quantized DNN, and the 
design of key hardware units with efficient shortcut. 

A. Design of Efficient Shortcut

The information loss is obvious if there is no shortcut
operation, as shown in Figure 2 (a). Taking XNOR-Net as an 
example, the input feature map is performed bitcount 
convolution with the binarized weights. The output feature 
map is not binarized, which is obtained by binarized input 
feature map and binarized kernel after bitcount convolution 
but it is full precision, as shown in Figure 2 (b). However, 
the output feature map will be binarized before the next 
convolution calculation. Therefore, the network with both 
quantized activations and weights will lose part of the 
feature information and affect the accuracy of the network.

The shortcut method proposed by ResNet [19] is very 
suitable for transmitting feature information between 
different convolution layers without increasing the 
computational complexity of the network. Inspired by the 
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(a) The convolution block of XNOR-Net.
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Fig. 2. The feature information loss of full quantization effect. 
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advantages of shortcut in ResNet, we propose to leverage the 
efficient Max/Avg pooling shortcut to transfer network 
feature information and improve the accuracy of fully 
quantized network while be benefit to hardware design and 
resource saving, as shown in Figure 3. 

Previous experiments show that the residual blocks of 
original ResNet need more than two layers to enhance the 
accuracy of non-quantized DNN model. However, for the 
fully quantized neural networks, we find that the effect of 
quantization operation is just like a special regularization, so 
it is reasonable to add a shortcut branch to each convolution 
layer and transmit the feature map information from the 
previous layer to the next convolution layer. We formulate 
the operation with two equations: Eq. (1) is the expression of 
shortcut operation in ResNet, and Eq. (2) is the expression of 
a convolution operations with the proposed efficient 
Max/Avg pooling shortcut. 

 R(x) = F(x) + x (1) 

 H(x) = S(x) + P(x) (2) 

In Eq. (1), R(x) is the output of ResNet block, F(x) is the 
output of input feature maps calculated by multi-layer
convolution branch in block, and x is the input feature maps 
of each block. In Eq.(2), H(x) is the output of the improved 
convolution layer proposed in this paper, S(x) is the output 
of the convolution branch of each layer, and P(x) is the 
output of the maximum pooling shortcut or average pooling 
shortcut branch with the same kernel size and stride. 

Figure 4 (a) further compares the two kinds of ResNet 
block with shortcut operations. It can be seen that the 
original shortcut of ResNet is to add the input and output 
feature maps of block directly, which may result in 
additional data bandwidth requirements for the hardware 
implements of DNN accelerator. Therefore, we improve the 
shortcut operation as shown in Figure 4 (b). The direct 
accumulation of input and output feature maps is changed to 
the maximum pooling or average pooling operations of the 

input feature maps, which is synchronized with the 
convolution and then corresponds to the accumulation of the 
output feature maps. As a results, the feature map
information is transmitted to the next fully quantized 
convolution layer. Figure 4 (b) shows the convolution with 
Max/Avg pooling shortcut in fully quantized DNN 
(XNOR-Net): Assuming that the convolution kernel size is 
3×3. A is the full-precision input feature map. When 
bitcount convolution (BinConv) is performed, the maximum 
pooling or average pooling is also calculated with the same 
kernel size and stride on our shortcut branch. After that, a 
full-precision output feature map B is obtained after pooling 
operation, and a full-precision output feature map C is 
obtained after bitcount convolution. Then, by accumulating 
B and C, the final full-precision output feature map D is 
obtained, which has obtained the information compensation 
from the previous layer. 
 
B. Implementation of Convolution Computing Module 

(CCM) with Improved Shortcut Architecture 
 

Our Max/Avg pooling shortcut will not increase the data 
bandwidth of the hardware accelerator. Figure 5 shows the 
detailed implement of our hardware design. 

Figure 5 (a) is the traditional PE unit architecture of the 
neural network accelerator. By changing the data bit width 
of the input neuron x and the weight w, the accelerator can 
be used to calculate the fully quantized neural network. 
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Fig. 3. The convolution block of XNOR-Net with Max/Avg 
pooling shortcut. 
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(b) The calculation process of Max/Avg pooling shortcut. 

 
Fig. 4. Improvement of ResNet shortcut by efficient Max/Avg 
pooling shortcut. 
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Figure 5 (b) is a PE unit architecture of our Max/Avg 
pooling shortcut architecture. The maximum pooling or 
average pooling shortcut can be selected according to the 
neural network configuration. When the input neuron x and 
weight w are sent to the multiplier, neuron x is also sent to 
Max/Avg pooling shortcut module to calculate the pooling 
result with the same convolution kernel size and stride. The 
final output of shortcut (Shortcut_out) can be obtained with 
synchronized clock of the convolution output (Conv_out). 

We further implement the shortcut architecture in a whole 
Convolution Computing Module (CCM), as shown in Figure 
6 (a). Each column of PE arrays is defined as Basic Column 
Module (BCM), which includes m PE units. The 
corresponding Conv_out_buffer is used to cache the
convolution outputs of the BCM. The adder for each PE 
column units is used to accumulate the convolution outputs 
of different PE units under the same convolution window. 

The Max/Avg pooling shortcut outputs of each BCM are 
transmitted to the Result Calculation Module (RCM), as 
shown in Figure 6 (b). Noted that if the computing 
parallelism pattern of the PE unit is based on a convolution 
window, the result of the comparator in the PE unit is the 
final maximum pooling shortcut result. The average value of 
the accumulator in the PE unit is the final average pooling 
shortcut result (the outputs of Shortcut_out_buffer are 
transmitted by the controller to the divider). If the computing 
parallelism pattern of the PE unit is based on a row or a 
column of a convolution window, the results of the 
comparator in the PE unit need to be compared with the 
outputs of corresponding multiple PE units in the same 
convolution window for obtaining the final maximum 

pooling shortcut result (The outputs of Shortcut_out_buffer 
are transmitted by the controller to the comparator to 
compare different rows in the same convolution window). 
The final average pooling shortcut result is the cumulative 
and recalculated average of the results of the corresponding 
accumulator of PE units in the same convolution window 
(the outputs of Shortcut_out_buffer are accumulated for 
different rows in the same convolution window by the 
accumulator, and then calculated the average value by 
divider). Finally, according to the addition of pooling 
shortcut results and corresponding convolution outputs, the 
information transfer is completed, which compensates the 
loss of accuracy caused by quantization. 

In brief, according to our hardware design, the input 
neurons are quantized in the PE unit. When PE calculates 
the partial convolution operation, the shortcut circuit 
calculates the partial pooling operation. Then, the partial 
convolution output of PE unit and the partial pooling 
shortcut output are cached in Conv_out_buffer and 
Shortcut_out_buffer respectively. At last, the final 
convolution output and the final pooling shortcut output are 
calculated in each BCM, and the final output result is 
obtained by synchronously adding up the convolution 
outputs and pooling outputs. 
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(a)  The traditional PE computing unit without shortcut  
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(b) The PE computing unit architecture with the efficient 

Max/Avg pooling shortcut structure 
 

Fig. 5. Redesign of PE computing unit with shortcut unit. 
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(a)  The CCM in a general neural network accelerator. 
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(b) The architecture of RCM. 

 
Fig. 6. Redesign of Convolution Computing Module. 
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IV. Experimental Methodology and Evaluation Results 
 

In this section, we evaluate our shortcut algorithm for 
fully quantized network by analyzing its accuracy and 
resource utilization in hardware. We first perform image 
classification on the Cifar-10 by integrating the shortcut 
architecture on the target neural network model. We further 
implement the fully quantized neural networks accelerator 
with efficient shortcut architecture by Verilog HDL and 
evaluate it on FPGA. 
 
A. Image Classification with Fully Quantized Network 
 

Taking XNOR-Net as an example, it quantizes both 
activations and weights as +1 and -1. We have implemented 
full quantization using XNOR-Net method with various 
neural network models to evaluate the image classification 
accuracy on Cifar-10. 

Table 1 lists the experimental accuracy of various 
networks, including the original network, the fully quantized 
network, the fully quantized network with average pooling 
shortcut, and the fully quantized network with maximum 
pooling shortcut. 

The Max/Avg pooling shortcut is used to compensate for 
the information loss caused by the quantization of feature 
results, it can be seen that the proposed method is very 
effective to improve the accuracy of the fully quantized 

network, which can lead to a 0.81% to 18.18% increase in 
accuracy. Among them, the effect of maximum pooling 
shortcut is better than that of average pooling shortcut. 

Furthermore, we compare the fully quantized VGG and 
ResNet with different depths, as shown in Table 2 and Table 
3. The maximum pooling shortcut is better for ResNet-18, 
while the average pooling shortcut is better for ResNet-34. 
This is because different pooling methods extract different 
feature information. From the experimental results, it can be 
seen that the deeper the fully quantized network is, the 
higher the improving accuracy of the proposed Max/Avg 
pooling shortcut is. This is because the deeper fully 
quantized network layers are, the more part of the feature 
information will be lost with layer-by-layer convolution, 
which has cumulative impact on the network accuracy. 
Increasing the pooling shortcut to transmit feature 
information will significantly improve the accuracy of the 
fully quantized networks. 
 
B. Resource Analysis for Hardware Platform 
 

We further use Verilog HDL to implement a 2-bit fully 
quantized neural network accelerator with our shortcut 
architecture and a 2-bit accelerator without our shortcut 
architecture. Only the CCM is different in the two designs. 
Figure 7 shows the system architecture design of the 
accelerator. We deployed and synthesize the two designs on 
Zynq UltraScale+ ZCU102 Evaluation Board 

TABLE I
The Effect of Max/Avg Pooling Shortcut on the Accuracy of Different Fully Quantized Networks 

(Using XNOR-Net as the Quantitative Method) 

Neural Networks 
Accuracy (%) 

Original XNOR-Net XNOR-Net with Avg 
pooling shortcut 

XNOR-Net with Max 
pooling shortcut Improvement 

VGG-13 92.40 89.78 90.03 90.59 0.81 

AlexNet 86.55 81.91 81.94 84.06 2.15 

ResNet-18 90.04 82.51 84.05 84.86 2.35 
 

TABLE II 
The Results of VGG with Different Depths 

Neural Networks 
Accuracy (%) 

Original XNOR-Net XNOR-Net with Avg 
pooling shortcut 

XNOR-Net with Max 
pooling shortcut Improvement 

VGG-13 92.40 89.78 90.03 90.59 0.81 

VGG-16 92.16 85.42 90.07 90.20 4.78 

VGG-19 92.04 71.84 89.20 90.02 18.18 
 

TABLE III 
The Results of ResNet with Different Depths 

Neural Networks 
Accuracy (%) 

Original XNOR-Net XNOR-Net with Avg 
pooling shortcut 

XNOR-Net with Max 
pooling shortcut Improvement 

ResNet-18 90.04 82.51 84.05 84.86 2.35 

ResNet-34 90.80 81.97 87.06 83.71 5.09 
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(xczu9eg-ffvb1156-2-e) with Vivado 2018.3. 
Table 4 shows the comparison of the hardware resources 

cost of the key Computing Engine (CE), which is used to 
calculate convolution, batch normalization, activation and 
pooling. It can be seen that the improved shortcut 
architecture does not increase too much hardware resource 
consumption (only increases by 0.11× and 0.17× for LUT 
and FF respectively). 
 

V. Conclusions 
 

Low-precision neural networks are promising solutions to 
reducing computation and storage resources for large-scale 
DNNs. Fully quantized networks that quantize both 
activations and weights may lose critical feature information 
along with layer-by-layer convolution operations, which will 
result in the accuracy degradation of the neural network. In 
this work, we propose a shortcut architecture inspired by the 
ResNet. Our shortcut architecture can be easily integrated in 
current hardware accelerators without additional data 
bandwidth and storage consumption, and can obtain the 
range of accuracy improvement of fully quantized networks 
up to 0.81% to 18.18%. Compared with the ordinary CE 
architecture, the hardware resource consumption of the CE 
with our shortcut only increases by 0.11× and 0.17× for LUT 
and FF respectively. 
 

Acknowledgements 
 

This research was supported by National Natural Science 
Foundation of China (No. 61722406, 61751401, 61602368), 
and by the Fundamental Research Funds for the Central 
Universities. 
 

 
References 

 
[1] J. Schmidhuber, “Deep learning in neural networks: An 
overview,” Neural Networks, Vol. 61, pp. 85-117, 2015. 
[2] Krizhevsky, Alex, I. Sutskever, and G. Hinton, “ImageNet 
Classification with Deep Convolutional Neural Networks,” NIPS 
Curran Associates Inc, Vol. 25, 2012. 
[3] Graves, Alex, and Jürgen Schmidhuber, “Framewise phoneme 
classification with bidirectional LSTM and other neural network 
architectures,” Neural Networks, Vol. 18.5-6, pp. 602-610, 2005. 
[4] Collobert R, Weston J, Bottou L, et al., “Natural Language 
Processing (Almost) from Scratch,” Journal of Machine Learning 
Research, 2011. 
[5] Chung, Jaeyong, T. Shin, and Y. Kang, “INsight: A 
Neuromorphic Computing System for Evaluation of Large Neural 
Networks,” Computer Science, 2015. 
[6] Courbariaux M, Hubara I, Soudry D, et al., “Binarized Neural 
Networks: Training Deep Neural Networks with Weights and 
Activations Constrained to +1 or -1,” arXiv: Learning, 2016. 
[7] Rastegari M, Ordonez V, Redmon J, et al., “XNOR-Net: 
Imagenet Classification Using Binary Convolutional Neural 
Networks,” European Conference on Computer Vision, pp. 525-542, 
2016. 
[8] Zhou S, Ni Z, Zhou X, et al., “DoReFa-Net: Training Low 
Bitwidth Convolutional Neural Networks with Low Bitwidth 
Gradients,” arXiv: Neural and Evolutionary Computing, 2016. 
[9] Li, Fengfu, B. Zhang, and B. Liu, “Ternary Weight Networks,” 
arXiv: Computer Vision and Pattern Recognition, 2016. 
[10] Zhou, Aojun, et al., “Incremental Network Quantization: 
Towards Lossless CNNs with Low-Precision Weights,” arXiv: 
Computer Vision and Pattern Recognition, 2017. 
[11] Hwang, Kyuyeon, and W. Sung, “Fixed-point feedforward 
deep neural network design using weights +1, 0, and -1,” Signal 
Processing Systems (SiPS), 2014. 
[12] Chen, Yu Hsin, et al., “Eyeriss: An Energy-Efficient 
Reconfigurable Accelerator for Deep Convolutional Neural 
Networks,” IEEE Journal of Solid-State Circuits, Vol. 52.1, pp. 
127-138, 2016. 
[13] Han S, Liu X, Mao H, et al., “EIE: Efficient Inference Engine 
on Compressed Deep Neural Network,” Acm Sigarch Computer 
Architecture News, Vol. 44(3), pp. 243-254, 2016. 
[14] Zhang S, Du Z, Zhang L, et al., “Cambricon-X: An accelerator 
for sparse neural networks,” international symposium on 
microarchitecture, pp. 1-12, 2016. 
[15] Lee E H, Miyashita D, Chai E, et al., “LogNet: 
Energy-efficient neural networks using logarithmic computation,” 
international conference on acoustics, speech, and signal 
processing, pp. 5900-5904, 2017. 
[16] Simonyan, Karen, and A. Zisserman, “Very Deep 
Convolutional Networks for Large-Scale Image Recognition,” 
Computer Science, 2014. 
[17] Sharma H, Park J, Suda N, et al., “Bit Fusion: Bit-Level 
Dynamically Composable Architecture for Accelerating Deep 
Neural Networks,” International Symposium on Computer 
Architecture, pp. 764-775, 2018. 
[18] Sharify S, Lascorz A D, Siu K, et al., “Loom: Exploiting 
Weight and Activation Precisions to Accelerate Convolutional 
Neural Networks,” Design Automation Conference, 2018. 
[19] He K, Zhang X, Ren S, et al., “Deep Residual Learning for 
Image Recognition,” Computer Vision and Pattern Recognition, pp. 
770-778, 2015. 
 

PoolingReLUBN

Rerank_inw

CCM

Rerank_inx

Off-chip
Memory CPU

DMA

Feature M
ap B

uffer

Weight Buffer

CE

Fig. 7. System Architecture of Designed Accelerator. 

TABLE IV
Hardware Resource of Different CE (Computing Engine) 

Name LUT FF BRAM DSP  

Ordinary 
architecture 

16170 
(5.90%) 

6615 
(1.21%) 

72.50 
(7.95%) 

2 
(0.08%) 

 

With our 
shortcut 

architecture 

17971 
(6.56%) 

7779 
(1.42%) 

72.50 
(7.95%) 

2 
(0.08%) 
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