
Towards Read-Intensive Key-Value Stores with
Tidal Structure Based on LSM-Tree

Yi Wang1, Shangyu Wu1, Rui Mao1,2

1. The National Engineering Laboratory for Big Data System Computing Technology, Shenzhen University
2. Guangdong Province Engineering Center of China-Made High Performance Data Computing System, Shenzhen University

Shenzhen, 518060, China
yiwang@szu.edu.cn, shangyuwu1006@gmail.com, mao@szu.edu.cn

Abstract—Key-value store has played a critical role in many
large-scale data storage applications. The log-structured merge-
tree (LSM-tree) based key-value store achieves excellent perfor-
mance on write-intensive workloads which is mainly benefited
from the mechanism of converting a batch of random writes
into sequential writes. However, LSM-tree doesn’t improve a
lot in read-intensive workloads which takes a higher latency.
The main reason lies in the hierarchical search mechanism in
LSM-tree structure. The key challenge is how to propose new
strategies based on the existing LSM-tree structure to improve
read efficiency and reduce read amplifications.

This paper proposes Tidal-tree, a novel data structure where
data flows inside LSM-tree like Tidal waves. Tidal-tree targets
at improving read efficiency in read-intensive workloads. Tidal-
tree allows frequently accessed files at the bottom of LSM-tree to
move to higher positions, thereby reducing read latency. Tidal-
tree also makes LSM-tree into a variable shape to cater for
different characteristic workloads. To evaluate the performance
of Tidal-tree, we conduct a series of experiments using standard
benchmarks from YCSB. The experimental results show that
Tidal-tree can significantly improve read efficiency and reduce
read amplifications compared with representative schemes.

Index Terms—Storage system, key-value store, LSM-tree, read
amplifications, write amplifications

I. INTRODUCTION

Persistent key-value (KV) store has been a widely used

technique that maps a collection of objects or records to

the corresponding data. With higher performance, better scal-

ability and more flexibility, KV store becomes an efficient

choice for many data-intensive applications to achieve excel-

lent performance, including web indexing, e-commerce, social

networking, and online gaming. KV store enables various

operations to speed up the processing of applications, such

as quick insertions or updates, flexible queries for point or

range and efficient indexing.

The log-structured merge-tree (LSM-tree) [1] is one of

most preferred data structures in key-value store which is

often adopted by several large Internet companies for large-

scale data applications, such as BigTable [2] and LevelDB

[3] at Google, RocksDB [4] and Cassandra [5] at Facebook,

HBase [6] at Apache, PUNTS [7] at Yahoo!. Due to the

outstanding performance on write-intensive workloads, LSM-

tree has become a standard technique. The main idea of LSM-

tree is to maintain a batch of random writes in a buffer

waiting to be flushed into storage devices without changing its

sequentiality. In other words, those random writes are stored

as key-value pairs in the buffer. When the buffer is full, these

key-value pairs will be flushed into storage devices in the form

of files. All files are organized by a hierarchical structure in

storage devices. In order to enable efficient lookups, LSM-tree

maintains those files organized in sorted order.

Although LSM-tree significantly improves write efficiency,

as a trade-off, read efficiency is relatively low. In previ-

ous work, lots of techniques are proposed to reduce write

amplifications by reducing the amount of data involved in

compaction operations [8], [9], [10], [11], [12]. However, the

more compactions occur, the more I/O operations are involved.

Other works combine LSM-tree with novel external structures

to improve read efficiency [13], [14], [15]. In these works,

the searching process inside LSM-tree is not accelerated.

LSM-tree is originally designed for hard disk drives (HDDs),

and it is friendly to HDDs. With the development of new

storage devices, some researchers have combined LSM-tree

with emerging storage devices such as flash memory [16],

[17]. These techniques focus on how to take advantage of

the characteristics of storage devices to improve read or

write performance. However, the characteristics of different

workloads should also be considered.

This paper presents Tidal-tree, a novel data structure for
read-intensive key-value stores. The objective is to make data

inside LSM-tree move in both directions like tidal waves.

In order to achieve the objective, Tidal-tree firstly identifies

frequently accessed files. Tidal-tree then calculates the des-

tination of these files in the upper layers in the LSM-tree.

Tidal-tree uses a floating or moving up operation to re-allocate
those files to the destination. This can effectively improve

read efficiency and reduce read amplifications in read-intensive

workloads. To avoid extra overheads caused by the floating

process, Tidal-tree adopts a stretching mechanism to reshape

LSM-tree. The stretching mechanism changes the shape of

LSM-tree based on the characteristics of different workloads.

To evaluate the effectiveness of Tidal-tree, we conduct

a series of different characteristic workloads generated by

the standard database evaluation tool Yahoo! Cloud Serving

Benchmark (YCSB) [18]. Tidal-tree is compared with rep-

resentative schemes [3], [11] in terms of latency, read or

write amplifications, the amount of data involved in com-

paction operations, and the number of times to access LSM-

tree. Experimental results show that Tidal-tree can effectively

achieve over 25% reductions in latency. Moreover, Tidal-tree

can significantly reduce read amplifications by over 65%.

978-1-7281-4123-7/20/$31.00 ©2020 IEEE

5B-1

307

���� ��

��

�	

�

���
����

������

���	

����
���

����

���

����

���

�
������

�������
����

�����
����
����
���

���

�

���!���"

�����

���

�����

���#

���!

�

���"

�����

����� �����

Fig. 1. The architecture of LevelDB.

The rest of this paper is organized as follows. Section II

introduces system architecture used in the paper, and presents

the motivation of this paper. Section III presents the proposed

Tidal-tree in detail. Section IV shows the experimental results.

Finally, in Section V, we conclude this paper and discuss the

future work.

II. BACKGROUND AND MOTIVATION

A. LSM-tree

LSM-tree adopts a log structure to convert a batch of

random writes to sequential writes, resulting in high write per-

formance. LevelDB [3] is one of the most popular key-value

store databases based on LSM-tree. Figure 1 shows the overall

structure of LevelDB. LevelDB divides the memory into

two parts called MemTable and Immutable MemTable
implemented by SkipList. In disk, all files called SSTable
(Sorted String Table) are organized in a multi-level structure,

including 7 levels denoted by L0, . . . , L6, respectively.

Each SSTable consists of several data blocks, an index

block, and several meta blocks. Data blocks contain key-

value pairs. The index block indexes data blocks. Meta blocks

include extended functions such as bloomfilter. The footer

block indicates the location of the index block and meta

blocks. There are some other auxiliary files such as Log files

for the recovery, Manifest files for storing the metadata and
the Current file for indicating the current version of the

database. Each level has a limit on the number of SSTables

where 4 is for Level L0 while 10
i for Level Li(i > 0). Except

for Level L0, there is no key overlap between SSTables at each

level.

When a new write operation (a delete is treated as a

special update with a delete flag) comes, it is inserted into

the MemTable or replaces the former one if its key exists.

When the MemTable is full (4MB as a default), it is converted

to an Immutable MemTable which is read-only. Then a new

MemTable is created for following operations. The Immutable

MemTable is gradually dumped into the disk in the form of

SSTable and the SSTable is appended to the head of the file list

in Level L0. The dumping process is done in the background

benefited from a version control mechanism of LevelDB, and

the new version is merged with the current version after the

dumping process is finished. When the number of files in each

level is beyond the limit number, a Compaction operation is
triggered.

Figure 1 shows an example of how a compaction operation

operates. The compaction operation triggered in Level L1 first

selects a victim file (SST3) in Level L1 and several files

(SST5 and SST6) in Level L2 whose key range have an

overlap with the victim file. These SSTables are loaded into the

memory (Step 1) and merged into a series of new SSTables

(SST10 and SST11). Subsequently, SST10 and SST11 are

inserted into Level L2 (Step 2). When searching for the value

of a key, LevelDB first searches the MemTable and Immutable

MemTable in the memory. If the key does not exist, LevelDB

searches the key from Level L0 to Level L6 until it is found.

Due to the compaction operation and the hierarchical structure,

the first found key-value pair is the latest one.

B. Motivation

Read and write amplifications are two major problems in

LSM-tree. Several techniques have been proposed to reduce

write amplifications while few focus on read amplifications.

Read amplifications can lie in two factors: First, the hierarchi-

cal structure and the searching mechanism in LSM-tree can

deteriorate read efficiency. For example, LevelDB needs to

check SSTables for at most 14 times in the worst case [11].

Especially, in read-intensive workloads, searching keys at the

bottom layers of LSM-tree will lead to tremendous latency

due to several failed attempts before the key is found. Second,

the compaction operation not only causes write amplifications

but also increases read amplifications. A compaction operation

in LevelDB often involves over 5 SSTables in the merging

process which causes extra timing overhead [16].

To improve read efficiency while maintaining the same write

efficiency, firstly we intend to reduce the number of times to

search keys in the hierarchical structure. We observe that the

data flow in LSM-tree is always in one single direction, from

top level to bottom level driven by compaction operations.

To find the data stored in the bottom level has to traverse

the LSM-tree. Different from the conventional LSM-tree, we

believe that the bottom-up movement of data in LSM-tree can

improve read efficiency during read-intensive workloads. We

also observe that, most compaction operations are triggered by

moving data from the upper level to the bottom level. Since the

conventional LSM-tree restricts the number of SSTable files in

each layer, the floating or moving up operation may potentially

cause more compaction operations. It is essential to relax the

constraint by dynamically modifying the limited number of

SSTable files in each level. These observations motive us to

propose a novel data structure for read-intensive key-value

stores based on LSM-tree.

III. TIDAL-TREE: A TIDAL DATA FLOW STRUCTURE BASED

ON LSM-TREE

A. Overview

There are several challenges to improve the read efficiency

based on the existing LSM-tree structure. First, the hierar-

chical file organization and the compaction operation signif-

5B-1

308

icantly improve write efficiency at the cost of reducing read

efficiency. If the hierarchical file organization is changed or

the compaction operation is replaced, the great write efficiency

may be lost. How to design a new strategy based on the

existing structure and mechanism without losing a lot of write

efficiency becomes a key point. Second, the characteristics

of different data also have a great influence on the storage

structure. For example, the LSM-tree structure prefers write-

intensive workloads. It is difficult to propose a structure that

performs well on all different characteristic workloads, but

designing a structure for specific characteristic workloads

seems to be a viable solution.

This section presents Tidal-tree, which is designed to opti-
mize read efficiency among read-intensive workloads. First,

Tidal-tree presents a new strategy called floating process

to move some bottom-level SSTables to the upper levels.

Second, Tidal-tree identifies read and write characteristics of

workloads and presents a new mechanism called the stretching

mechanism to adjust the shape of LSM-tree for a better read

and write efficiency.

B. Floating Process

As shown in Figure 2, when an SSTable SST8 in Level

L6 is frequently accessed and exceeds the floating threshold

of Level L6, a floating process is triggered to move SST8

to the upper level (Level L1) to reduce read latency (Step

1). Before moving, the floating process firstly calculates the

destination level of SST8 (i.e., Level L1). If there exists

obsolete or redundant copy of the old data in its passing level

(i.e., Li(2 ≤ i ≤ 5)), these copies will be removed during the
floating process (Step 2). The rest data of SST8 is merged with

SST3 (Step 3) and further divided into several new SSTables

(SST10 and SST11) to be inserted into Level L1 (Step 4).

From the whole floating process, three problems should be

addressed: 1. How to identify the SSTable that needs to be

moved to an upper level? 2. If an SSTable is selected to

perform floating process, which level does it need to move

to? 3. How to remove the old data and merge the rest data

into the destination level during the floating process?

����

�����$�
%�
�& ��

��

�!
�

�

���
����

�

������

���	

����
���

����

���!

���#

���

�
������

�����������

�����
����
����
���

���
���

�

�������"

�����

����� �����

����� ���������

�

���"

Fig. 2. The architecture of Tidal-tree and the floating process.

1) Identify the SSTable that needs to be moved: In the

default LSM-tree structure, all SSTables in the hierarchical

structure are organized in chronological order. The new data

will be placed in the upper level in the hierarchical structure.

Once the data is allocated in the bottom level, the read request

will not change its level. The frequently accessed SSTable at

the bottom level will cost extra read overhead, which greatly

increases read amplifications.

Our aim is to move these frequently accessed SSTables to

its upper level. First, we record the access frequency denoted

as fi,t for each SSTable, where i and t denote that the SSTable
is the t-th SSTable SST i

t in Level Li. Second, the SSTable

with the access frequency fi,t will be moved to the upper level
if it satisfies the following condition,

fi,t ≥ min(fi−1,max)× γ

η
(1)

, where i > 0, fi−1,max is the maximum access frequency of

SSTable in Level Li−1, γ is a constant parameter that controls
the frequency of the floating process, and η is the ratio of read
to write for the current workload.

2) Determine the destination level: SSTables normally have
different access frequency. The allocation of SSTable should

consider its access frequency. In Tidal-tree, SSTables are

organized not only in chronological order but also by access

frequency. When an SSTable is ready to move, we calculate

the destination level of this SSTable based on its access

frequency.

Assuming the SSTable SST i
t is selected to perform floating

process and Lj is the destination level, we calculate the

total time cost of searching SSTable SST i
t for two cases:

(1) moving up SST i
t and (2) not moving up the SST i

t ,

respectively. The time cost includes the hierarchical searching

process involved in future read operations. Especially, the cost

of the floating process is also included in the case of moving

up SST i
t . We use TR, TW to denote the time cost for each

page read and page write operation in flash memory.

• Not moving up SST i
t :

TNM = fi,t × 3× TR × (4 + i) (2)

TNM includes the time cost of the hierarchical searching

process. In the worst case, each level has 1 SSTable that

needs to be checked except for 4 SSTables at most in

Level L0. Therefore, there are 4 + i × 1 SSTables in

total waiting to be checked. For each SSTable, at most

three I/O operations are needed: reading a filter block,

reading a index block and reading a data block. Each

I/O operation involves in reading a physical page in flash

memory. Based on the access frequency fi,t, SST
i
t will

be accessed fi,t times in the future.
• Moving up SST i

t :

TM = fi,t×3×TR×(4+j)+TR×(1+

i−1∑
l=j

cl)+TW×cj

(3)

TM includes the time cost of the hierarchical searching

process and the floating process. The calculation of the

time cost of the hierarchical searching process is similar

5B-1

309

Algorithm III.1 Moving an SSTable from Level Li to Level Lj .

Input: The SSTable SST i in Level Li, SSTables
{SST l

1, . . . , SST
l
cl} with a key overlap in Level Ll

(i− 1 ≤ l ≤ j).
Output: None.
1: Create an iterator Iti of SST i, then delete SST i.
2: for l from i− 1 to j do
3: Create all iterators {Itl1, . . . , Itlcl} of {SST l

1, . . . , SST
l
cl}

with a key overlap in Level Ll.
4: Remove the old data in Iti compared to {Itl1, . . . , Itlcl}.
5: end for
6: Merge Iti and {Itj1, . . . , Itjcj}, then create new SSTables and

write them back to Level Lj .
7: if Level Lj needs to do a compaction operation then
8: Do a compaction operation in Level Lj .
9: end if

to not moving up SST i
t . We assume that there are

cl (j ≤ l ≤ i − 1) SSTables with a key overlap in the
SST i

t ’s passing levels. Including reading the SST i
t , the

total number of reading SSTables is 1 +
∑i−1

l=j cl. For
each SSTable, one I/O operation needs to be performed:

reading a data block. In Level Lj , SSTables need to be

merged in memory, then they are written back to flash

memory. Therefore, the time cost of the floating process

is TR × (1 +
∑i−1

l=j cl) + TW × cj .

Then, we define Td = TNM − TM to indicate the reduced

time cost after moving SST i
t up. If Td is negative, it means

that the floating process causes the extra time cost. TW ≈
α× TR, Td can be simplified,

Td = TR ×
⎛
⎝3× fi,t × (i− j)−

i−1∑
l=j

cl − α× cj − 1

⎞
⎠ (4)

, where 0 ≤ j ≤ i− 1. Since the maximum value of j is 7,
the largest Td can be found by enumerating j.
3) Remove the old data and merge the rest data during the

floating process: There are two properties in LSM-tree which
ensure the correctness of searching data:

• There is no key overlap between SSTables at each level

except Level L0.

• The newer a key-value pair is, the upper level it is in.

In order to maintain these two properties, we need to remove

the old data in SST i
t during the floating process, then merge

the rest data in SST i
t into the target level. The removing

process reads SSTables with a key overlap into memory and

removes the old data in SST i
t . Especially, at the target level,

the old data in SST i
t needs to be removed and the rest data

needs to be merged to create new SSTables. Although the over-

head of removing and merging process cannot be neglected,

it has been taken into consideration when determining the

destination level.

Algorithm III.1 presents the floating process of moving

SST i from Level Li to Level Lj . SSTables with a key overlap

in SST i’s passing levels will be read into memory for remov-

ing the old data. Each SSTable is associated with an iterator

for enumerating key-value pairs. Algorithm III.1 creates an

iterator Iti of SST i in memory, then creates iterators of

SSTables with a key overlap while looping from Level Li−1

to Level Lj . The removing process can be implemented by a

multi-way algorithm. After all the old data of Iti is removed,
Algorithm III.1 merges the rest data of Iti into Level Lj .

To avoid breaking the constraint in Level Lj , Algorithm III.1

checks whether a compaction operation in Level Lj should be

triggered.

C. Stretching Mechanism

Frequent floating processes will lead to frequent compaction

operations which cause the degradation of efficiency. Although

we have set a parameter called γ to control the frequency of

the floating process, there is still a potential ping-pong conflict

of moving SSTables up and down. The main reason is that

each level has its constraint on the number of SSTables. For

example, the maximum number of SSTables in Level L0 is

4. It means that the compaction operation will be triggered

when there are more than 4 SSTables in Level L0. To avoid

such a potential problem, we propose a stretching mechanism

to break the constraint.

'
(�)����*�������+�

��

��

�	

�"

�

'�(���
,�
�,�
)������
�
�-�,

'-(���
,*�������+�

��

��

�	

�"

�

��

�"

�

�!

�

Fig. 3. Adjust LSM-tree shape to adapt to different read and write charac-
teristic workloads.

Figure 3 shows various shapes adjusted for different char-

acteristic workloads, and the red dashed line is the constraint.

Due to the excellent write efficiency of original shape of LSM-

tree showed in Figure 3 (a), we adopt the shape for write-

intensive workloads. The shape showed in Figure 3 (c) is better

for read-intensive workloads, since more data can be found in

upper levels. For other workloads, the shape depends on the

ratio of the number of read operations to the number of write

operations. Figure 3 (b) is applied for read and write balanced

workloads.

The parameter δi represents the amount of changes of

the constraint in Level Li, the parameter θi represents the
maximum number of SSTables in Level Li, and parameter ρi
represents the original number of SSTables in Level Li. We

design a formula to adjust LSM-tree’s shape,

θi = ρi + η × (7− i)× δi (5)

, where η is the read and write ratio. The stretching mechanism
adjusts the shape of LSM-tree according to θi whenever η
changes.

IV. EVALUATION

A. Experimental Setup

We conduct experiments using various workloads from

Yahoo! Cloud Serving Benchmark[18]. YCSB is a popular

database evaluation framework designed to provide a series of

common benchmarks to facilitate the comparison of the per-

formance of new generation cloud data service systems with

5B-1

310

TABLE I
THE LATENCY FOR LEVELDB [3], WISCKEY [11], AND OUR TIDAL-TREE

Workloads R:U:I LevelDB (μs) Wisckey (μs) Tidal-tree (μs)

workload1 1:0:0 512,650,125 577,589,925 381,452,050
workload2 9:1:0 445,705,625 372,636,825 310,519,975
workload3 9:0:1 636,266,525 546,240,575 417,856,825
workload4 4:1:0 526,766,325 364,671,700 282,732,375
workload5 4:0:1 844,639,500 514,764,550 360,232,425
workload6 1:1:0 776,803,150 284,216,400 159,527,250
workload7 1:0:1 1,954,055,575 476,449,925 286,489,775
workload8 2:1:1 1,393,392,625 341,406,925 204,750,475
workload9 1:4:0 1,019,924,925 205,826,400 195,903,075
workload10 1:0:4 3,218,374,125 503,556,000 406,143,000
workload11 0:1:0 1,195,470,825 153,969,300 153,969,300
workload12 0:0:1 4,872,872,300 563,718,400 563,718,400

different read and write characteristics. There are two phases

to generate YCSB workloads: a loading phase which involves

massive insert operations, and a running phase composed of

several read, insert and update operations.

We have collected 12 different workloads that satisfy Zipfian
distribution. Each workload includes 100,000 insert operations

during the loading phase and 500,000 different operations dur-

ing the running phase. Among them, workloads 1-5 are read-

intensive workloads including at least 80% read operations

and workloads 9-12 are write-intensive workloads including at

least 80% write operations. Workloads 6-8 are read and write

balanced workloads. The size of the key is 16 Bytes and the

size of the value is 1 KByte. We simulated a Intel 3D NAND

flash memory chip. The time costs for a page read operation, a

page write operation, and a block erase operation take 75 μs,
1250μs, and 5 ms, respectively. We compared Tidal-tree with
two representative schemes, Wisckey[11] and LevelDB[3].

Wisckey is a representative LSM-tree management scheme

with key-value separation. LevelDB is the standard LSM-

tree management scheme that is widely used in commercial

database systems. Therefore, they are selected for comparison.

B. Results and Discussion

1) Latency: The latency reflects the time cost of con-

ducting a series of operations. Table I presents the latency

of LevelDB[3], Wisckey[11] and the proposed Tidal-tree.

For the column “R:U:I”, “R” , “U” , and “I” represent the

normalized number of read operations, update operations,

and insert operations, respectively. From the experimental

results, Tidal-tree reduces the latency by 22.88% and 65.65%

on average compared to Wisckey and LevelDB, respectively.

For read-intensive workloads, the reductions are 25.32% and

38.79%, respectively. For write-intensive workloads, Tidal-tree

has almost the same latency as Wisckey, and Tidal-tree can

still achieve a significant reduction compared to LevelDB. The

main reason is that Tidal-tree will move frequently accessed

key-value pairs to upper levels in order to reduce read latency.

Meanwhile, Tidal-tree sets a parameter to limit the frequency

of moving SSTables, avoiding the increase of extra latency for

write-intensive workloads.

2) Read and Write Amplifications: Read and write amplifi-
cations indicate the ratio between the amount data read from or

written to the underlying storage device and the amount of data

requested by the user. Read and write amplifications are major

���
��

���
����

��

���
����

�	

��
����

��

��
����

�	

���
����

��

���
����

�	

���
����

���
���
	

���
��
�

��

���
��
�

�	
�
��
���
���
���
���

��

��
���
���

�
��
��
��
��
���
��
���
��
���
�

���������
� �!�"�#�
�$����%$&��

(a) Read Amplifications

���
����

��

���
����

�	

��
����

��

��
����

�	

���
����

��

���
����

�	

���
����

���
���
	

���
��
�

��

���
��
�

�	
���
�����

�	
�
��
��

�
��
��
'�
(�

�
��

&��
��
��
��
���
��
���
��
���
��

���������
� �!�"�#�
�$����%$&��

(b) Write Amplifications

Fig. 4. Read and write Amplifications of LevelDB [3], Wisckey [11] and
Tidal-tree.

problems in LSM-tree. Read amplifications are caused by the

mechanism of searching keys in LSM-tree. A compaction

operation will lead to a set of read and write operations for

SSTables. These operations inevitably introduce read and write

amplifications.

Figure 4 illustrates read and write amplifications of

LevelDB[3], Wisckey[11] and our Tidal-tree. Experimental

results show that Tidal-tree can reduce read amplifications by

65% and 89% compared to Wisckey and LevelDB, respec-

tively. Tidal-tree effectively reduces the number of SSTables

that needs to be checked before the latest key-value is returned.

In terms of write amplifications, Tidal-tree maintains write

amplifications at a low level, which are about 2.09 times of

Wisckey but 0.23 times of LevelDB. Since Tidal-tree adopts

the same strategy of key-value separation as Wisckey, the write

amplification compared to LevelDB is significantly reduced.

Moving SSTables to upper levels will lead to extra compaction

operations, which causes higher write amplifications compared

to Wisckey.

3) Compaction: When a compaction operation is triggered,

lots of computing and I/O resources are required for merging

and persisting key-values. Table II presents the amount of read

or write data involved in compaction operations. In Table II,

the amount of data involved in compaction operations of Tidal-

tree is 9.48 times of Wisckey but 0.36 times of LevelDB

on average among read-intensive workloads. Among write-

intensive workloads and read and write balanced workloads,

Tidal-tree involves almost the same amount of data as Wisckey

which is 0.88 times of Wisckey but 0.03 times of LevelDB.

5B-1

311

TABLE II
THE AMOUNT OF DATA INVOLVED IN COMPACTION OPERATIONS FOR

LEVELDB [3], WISCKEY [11], AND OUR TIDAL-TREE

Workloads R:U:I LevelDB (KB) Wisckey (KB) Tidal-tree (KB)

workload2 9:1:0 988,710 37,982 538,497
workload3 9:0:1 1,519,601 59,026 746,419
workload4 4:1:0 2,233,017 77,645 512,786
workload5 4:0:1 4,210,675 150,421 678,717
workload6 1:1:0 5,897,768 205,704 235,614
workload7 1:0:1 16,790,831 584,753 574,791
workload8 2:1:1 11,986,286 389,318 329,568
workload9 1:4:0 9,475,576 335,668 200,839
workload10 1:0:4 30,650,561 1,251,457 774,292
workload11 0:1:0 12,002,833 423,665 423,665
workload12 0:0:1 47,889,316 1,851,025 1,851,025

���
��

���
����

��

���
����

�	

��
����

��

��
����

�	

���
����

��

���
����

�	

���
����

���
���
	

���
��
�

��

���
��
�

�	
�)�
�)�
�)�
�)�
�)�
�)�

)�

)�
�)�
�)�
�)�
�)�
')�
')�

$*
��
��
�&
�+
��
��
�"
,�
���
�
�!
���
���
�

��������� � �!�"�#� �$����%$&��

Fig. 5. The average number of times to check SSTables for LevelDB [3],
Wisckey [11] and Tidal-tree.

Each level of LSM-tree has a limit on the number of files or

the total amount of data. More SSTables are moved to upper

levels in Tidal-tree among read-intensive workloads, which

causes more compaction operations. To prevent frequently

doing compaction operations, Tidal-tree dynamically adjusts

the limit for the number of SSTables at each level to fit the

characteristics of different workloads.

4) The number of times to check SSTables: To check an

SSTable involves several I/O operations such as reading index

blocks, reading data blocks and reading meta blocks. Reducing

the number of times to check SSTables can effectively improve

read efficiency. Figure 5 illustrates the average number of

times to check SSTables. Tidal-tree checks about 2.2 times

on average before the latest key-value is returned. Wisckey

and LevelDB check about 4.7 and 4.8 times on average,

respectively. The reduction is mainly due to the fact that,

Wisckey and LevelDB move SSTables to bottom levels by

compaction operations rather than moving SSTables to upper

levels. Different from Wisckey and LevelDB, Tidal-tree moves

SSTables to upper levels to reduce the extra checks, especially

for those frequently accessed SSTables in bottom levels.

V. CONCLUSION

This paper presents a data structure called Tidal-tree. Tidal-
tree modifies the existing LSM-tree structure considering

the access frequency of each file. Tidal-tree targets at read-

intensive workloads and aims to reduce the read amplification

of key-value stores. Experimental results show that the pro-

posed Tidal-tree can significantly reduce the total latency and

read amplifications and effectively improve the read efficiency

compared to the previous studies. In the future, we plan to

investigate the use of our technique on other applications and

propose a general structure that can be applied to workloads

with different characteristics.

ACKNOWLEDGMENTS

This work was supported in part by the National Natural

Science Foundation of China (61972259), in part by the

National Technology Innovation Special Zone under (19-163-

11-ZD-001-005-06), in part by the Guangdong Natural Sci-

ence Foundation (2019B151502055 and 2017B030314073),

in part by the Shenzhen Science and Technology Foundation

(JCYJ20170817100300603).

REFERENCES

[1] P. E. O’Neil, E. Cheng, D. Gawlick, and E. J. O’Neil, “The log-
structured merge-tree (LSM-Tree),” Acta Informatica, vol. 33, no. 4,
pp. 351–385, 1996.

[2] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber, “Bigtable: A distributed
storage system for structured data,” ACM Transactions on Computer
Systems (TOCS), vol. 26, no. 2, pp. 4:1–4:26, 2008.

[3] LevelDB, http://code.google.com/p/leveldb.
[4] RocksDB, http://rocksdb.org/.
[5] Cassandra, http://cassandra.apache.org/.
[6] HBase, http://hbase.apache.org/.
[7] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-

hannon, H. Jacobsen, N. Puz, D. Weaver, and R. Yerneni, “PNUTS:
Yahoo!’s hosted data serving platform,” Proceedings of the VLDB
Endowment (PVLDB), vol. 1, no. 2, pp. 1277–1288, 2008.

[8] T. Yao, J. Wan, P. Huang, X. He, F. Wu, and C. Xie, “Building efficient
key-value stores via a lightweight compaction tree,” ACM Transactions
on Storage (TOS), vol. 13, no. 4, pp. 29:1–29:28, 2017.

[9] P. Raju, R. Kadekodi, V. Chidambaram, and I. Abraham, “PebblesDB:
Building key-value stores using fragmented log-structured merge trees,”
in Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP), 2017, pp. 497–514.

[10] F. Mei, Q. Cao, H. Jiang, and J. Li, “SifrDB: A unified solution for
write-optimized key-value stores in large datacenter,” in Proceedings of
the ACM Symposium on Cloud Computing (SoCC), 2018, pp. 477–489.

[11] L. Lu, T. S. Pillai, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“WiscKey: Separating keys from values in SSD-conscious storage,”
in Proceedings of the 14th Usenix Conference on File and Storage
Technologies (FAST), 2016, pp. 133–148.

[12] H. H. W. Chan, Y. Li, P. P. C. Lee, and Y. Xu, “HashKV: Enabling
efficient updates in KV storage via hashing,” in 2018 USENIX Annual
Technical Conference (USENIX ATC), 2018, pp. 1007–1019.

[13] X. Wu, Y. Xu, Z. Shao, and S. Jiang, “LSM-trie: An LSM-tree-based
ultra-large key-value store for small data items,” in 2015 USENIX
Annual Technical Conference (USENIX ATC), 2015, pp. 71–82.

[14] Y. Zhang, Y. Li, F. Guo, C. Li, and Y. Xu, “ElasticBF: Fine-grained
and elastic bloom filter towards efficient read for LSM-tree-based KV
stores,” in 10th USENIX Workshop on Hot Topics in Storage and File
Systems (HotStorage), 2018.

[15] D. Teng, L. Guo, R. Lee, F. Chen, S. Ma, Y. Zhang, and X. Zhang,
“LSbM-tree: Re-enabling buffer caching in data management for mixed
reads and writes,” in 2017 IEEE 37th International Conference on
Distributed Computing Systems (ICDCS), 2017, pp. 68–79.

[16] P. Wang, G. Sun, S. Jiang, J. Ouyang, S. Lin, C. Zhang, and J. Cong,
“An efficient design and implementation of LSM-tree based key-value
store on open-channel SSD,” in Proceedings of the Ninth European
Conference on Computer Systems (EuroSys), 2014, pp. 16:1–16:14.

[17] J. Zhang, Y. Lu, J. Shu, and X. Qin, “FlashKV: Accelerating KV per-
formance with open-channel SSDs,” ACM Transactions on Embedded
Computing Systems (TECS), vol. 16, no. 5, pp. 139:1–139:19, 2017.

[18] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears,
“Benchmarking cloud serving systems with YCSB,” in Proceedings of
the 1st ACM Symposium on Cloud Computing (SoCC), 2010, pp. 143–
154.

5B-1

312

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

