
A Flexible Processing-in-Memory Accelerator for Dynamic Channel-Adaptive Deep
Neural Networks

Li Yang Shaahin Angizi Deliang Fan
Arizona State University University of Central Florida Arizona State University

Tempe, AZ 85281 Orlando, FL 32816 Tempe, AZ 85281

lyang166@asu.edu angizi@knights.ucf.edu dfan@asu.edu

Abstract— With the success of deep neural networks (DNN),
many recent works have been focusing on developing hardware
accelerator for power and resource-limited embedded system via
model compression techniques, such as quantization, pruning,
low-rank approximation, etc. However, almost all existing DNN
structure is fixed after deployment, which lacks runtime adaptive
DNN structure to adapt to its dynamic hardware resource, power
budget, throughput requirement, as well as dynamic workload.
Correspondingly, there is no runtime adaptive hardware platform
to support dynamic DNN structure. To address this problem, we
first propose a dynamic channel-adaptive deep neural network
(CA-DNN) which can adjust the involved convolution channel
(i.e. model size, computing load) at run-time (i.e. at inference
stage without retraining) to dynamically trade off between
power, speed, computing load and accuracy. Further, we utilize
knowledge distillation method to optimize the model and quantize
the model to 8-bits and 16-bits, respectively, for hardware
friendly mapping. We test the proposed model on CIFAR-10
and ImageNet dataset by using ResNet. Comparing with the
same model size of individual model, our CA-DNN achieves
better accuracy. Moreover, as far as we know, we are the first to
propose a Processing-in-Memory accelerator for such adaptive
neural networks structure based on Spin Orbit Torque Magnetic
Random Access Memory(SOT-MRAM) computational adaptive
sub-arrays. Then, we comprehensively analyze the trade-off of
the model with different channel-width between the accuracy
and the hardware parameters, eg., energy, memory, and area
overhead.

I. INTRODUCTION

Nowadays, Deep Neural Networks (DNNs), as the most

popular deep learning algorithm, evolve to deeper layers,

larger model size and denser connection. For instance, VGG-

16[1] has 522MB of parameters and 30.8 GFLOP per im-

age. ResNet[2] can obtain more than 100 layers. However,

such DNNs are difficult to be deployed into a power and

resource-limited system. To solve this problem, many recent

works have been proposed to compress large DNNs, in-

cluding network quantization[3], low-rank approximation[4],

weight non-structured/structured pruning[5], [6], knowledge

distillation[7], etc. However, the above methods mainly have

two disadvantages: first, the model after compression is fixed

at runtime, which is not flexible for a dynamic environ-

ment, like dynamic computing resource allocation, low/high

power mode, throughput requirement, and dynamic workloads.

Second, With different computing resources or application

environment changing, the model has to be retrained using

different compression ratios and, then reloaded to the target

hardware, which involves very high cost.

From DNN hardawre accelerator design domain, the tradi-

tional isolated memory and computing units (GPU or CPU)

has faced serious challenges, such as long memory access

latency, significant congestion at I/Os, limited memory band-

width, huge data communication energy and large leakage

power consumption for storing network parameters in volatile

memory[8]. To address these concerns, Processing-in-Memory

(PIM) CNN accelerators, as a potentially viable way to address

memory wall challenge, have been widely explored[8], [9],

[10]. The key concept behind PIM is to embed logic units

within memory to process data by leveraging the inherent

parallel computing mechanism and exploiting large internal

memory bandwidth.

To address above discussed problems, in this work, we

first propose a dynamic channel-adaptive DNN (CA-DNN)

structure, which can adjust the involved convolution channel

(i.e. model size, computing load) at runtime (i.e. at inference

stage without retraining) to dynamically trade off between

computing complexity (thus power, speed) and accuracy. Cor-

respondingly, We further propose a PIM accelerator for the

proposed adaptive CA-DNN structure based on SOT-MRAM

computational adaptive sub-arrays. We summarize our main

contributions as follows:

1) We propose a new training strategy for a new dynamic

CA-DNN through knowledge distillation by treating the pro-

posed model as an ensemble network consisting of multiple

smaller sub-nets with different channel-width. Experiments

on ImageNet and CIFAR-10 dataset show that our CA-DNN

achieves either similar or better accuracy comparing with

individual model and other recent works with the same model

size. We also analyze the effectiveness of the knowledge

distillation by ablation study on different teacher model sizes.

Further, we quantize both the weights and activations to 8-bits

for hardware friendly mapping.

2) We develop a SOT-MRAM based PIM accelerator for

the proposed CA-DNN. To maximize computation in parallel,

each kernel fin(kh × kw × C) is initially allocated to one
single computational sub-array, which can dynamically select

channel-width according to current configuration. Then, we

comprehensively analyze the trade-off of the model with dif-

ferent channel-widths between the accuracy and the hardware

parameters, eg., energy, memory, and area overhead.

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE
313

5B-2

�����

��	
�

�������

�������

	
��
�����
�

����
��������
������ ����
��������
������

����

������
�������������������

����

����

���
�
��

Figure 1: Proposed CA-DNN architecture.

II. DYNAMIC CHANNEL-ADAPTIVE DNN

A. Knowledge Distillation

Knowledge Distillation (KD) is one model compression

method, which is generalized by [7]. The idea behind it is

to train a small model (student) by mimicking a pre-trained,

larger model or an ensemble model (teacher). In details, the

student model is not only trained by minimizing the standard

loss (SL) in which the target is the ground truth label, but also

by minimizing the loss in which the target is the output of the

teacher model (soft target). The standard loss function is:

LSL = H(δ(zs), yr) (1)

Where H is the cross-entropy loss, zs is the output of the
teacher model after softmax function, δ represents the softmax
function and yr is the ground truth label. Differently, the loss
of knowledge distillation is a KL-divergence loss function,

which can be formulated as:

LKD = τ2 ∗ KL(δ(zs/τ), δ(zt/τ)) (2)

Where the τ is a hyper-parameter that used to adjust the
distance of each class result, and zt is the output of the teacher
model.

The final loss function is the combination of these two

losses, which can be described as:

LStudent = (1− β)LSL + βLKD (3)

β is used to control the ratio between these two losses.

B. Channel-Adaptive Deep Neural Network(CA-DNN)

1) Proposed Framework: Unlike standard knowledge dis-
tillation framework, the student model in our proposed CA-

DNN is an ensemble model, which includes multiple sub-nets

by adjusting the channel-width in each convolution layer. We

utilize channel-width as a factor for each layer in the student

model to select sub-net. The Fig.1 shows an example of CA-

DNN with two student sub-nets. Sub-net 1.0× is the full

size of the student model and the sub-net 0.5× just keeps

half number of feature map channels in each convolution

layer, which shares partial weights with the full size student

model. Note that, after training, these two models could be

dynamically switched without retraining since sub-net 0.5×
is a sub-set of Sub-net 1.0×, but with different computing
load and accuracy.

In addition, inspired by [11], each sub-net in the ensem-

ble student model deploys independent batch-norm layer[12]

which solves the feature aggregation inconsistency between

different sub-nets. Meanwhile, since these batch-norm param-

eters is channel-wise, comparing with the convolutional and

fully connected layer, the extra parameters and corresponding

computation cost are negligible for different sub-nets.
2) Training Method: In terms of training, we aim to

optimize the loss of the ensemble student to achieve the

adaptive trade-off between accuracy and model size. The loss

of ensemble student is defined as the accumulation of the loss

of all sub-nets:

Lens =
S∑

i=1

Li
subnet (4)

Where S is the number of the sub-nets, and i is the index of
sub-nets list, eg, 4 sub-nets list [1.0×, 0.75×, 0.5×, 0.25×].
Algorithm 1 lists the proposed training method. First, we

define the teacher model, sub set number, model size of

sub-nets list in ensemble student model. In each training

iteration, the forward path of teacher model and all sub-

nets are executed one time, then loss of each sub-net is

computed as formatted in Eq.3. Then, during the backward

pass, we accumulate the gradient of all sub-nets which is

mathematically same with the Eq.4, and then update weights.

Algorithm 1 CA-DNN training method
Require: Define the numbers and channel width of sub-nets

in student model SNet. Given a pretrained teacher model

TNet.

1: SNet and TNet initialization

2: for i← 1, niters do
3: Get a batch of data x and label y

4: Execute forward of TNet: yt = TNet(x)
5: for sub-net i in SNet do
6: Execute sub-net: ys = SNet(x)
7: Compute loss: Lsub-net = (1− β)LSL + βLKD

8: Compute and accumulate gradients

9: end for
10: update weights

11: end for

C. Experiments Results
We test the proposed CA-DNN on CIFAR-10[13] and

ImageNet[14]. Further, we analyze the effectiveness of the

teacher model and the flexibility of the student model.
1) CIFAR-10: ResNet20[2] is evaluated on CIFAR-10

dataset. In order to show the effectiveness of our proposed

method, we compare with the most recent work S-NN[11].

Both networks use the same training configuration and model

size. It is also worth to note that the teacher network here

is the same ResNet20 model which has 91.2% accuracy. If

we choose larger teacher model, better performance could be

achieved which is discussed in II-C3. From the Table I, it

can be seen that in terms of full precision (FP), our model

achieves better accuracy on all the sub-nets. Moreover, to

efficiently implement on the Processing-In-MRAM platform

we proposed, we further quantize both activation and weights

of convolutional layers to 8-bits and 16-bits. The results shown

that both quantization have negligible accuracy loss.

314

5B-2

Table I: CIFAR-10 results

Network
Width S-NN Ours

FP FP 16-bit 8-bit

ResNet20

1.0x 89.8 91.1 91.0 91.1
0.75x 88.4 90.2 89.8 89.8
0.5x 85.6 87.5 87.0 86.9
0.25x 79.5 81.0 80.7 80.6

2) ImageNet: We further examine the proposed CA-DNN
on larger ImageNet dataset by using ResNet50 as student

model and ResNet101 as teacher model. We also compare

our results with S-NN and individual model(I-NN), which is

the single network trained independently with the same model

size and hyper-parameter configuration. As shown in Table II,

we achieve best accuracy on each model size.

Table II: ImageNet results on ResNet50

Network Width I-NN S-NN Ours Params(MB)

ResNet50

1.0x 76.1 76.0 76.6 25.5
0.75x 74.7 74.9 75.4 14.7
0.5x 72.0 72.1 72.4 6.9
0.25x 63.8 65.0 65.2 2.0

3) Ablation Study and Analysis: •Teacher Model Selec-
tion: Given a fixed student ensemble model, we employ differ-
ent teacher models to explore the effectiveness of knowledge

distillation. As shown in Table III, we choose ResNet20 as

the student and ResNet20/32/44 as the teacher, respectively,

testing on CIFAR-10 dataset. The experiment shows that

student ensemble model has better performance with larger

teacher model.

Table III: Teacher model selection on CIFAR-10

Student
Width Teacher

ResNet20 ResNet32 ResNet44

ResNet20

1.0x 91.1 91.4 91.9
0.75x 90.2 90.7 91.2
0.5x 87.5 88.6 88.7
0.25x 81.0 82.9 82.5

•Multiple Channel-Width Selection: To show the flexi-

bility of the proposed CA-DNN, we choose more sub-nets in

a single student ensemble model. Table IV lists the ResNet20

which is assembled by 8 sub-nets on CIFAR-10 dataset.

The accuracy of each sub-net decreases with smaller model

size. In addition, in comparison to the 4 sub-nets case, the

corresponding same sub-nets(0.25x, 0.75x, 1.0x) on 8 sub-

nets case have almost the same accuracy, which demonstrate

that the number of sub-nets in the ensemble model has very

small effect on the accuracy of each sub-net.

Table IV: Multiple channel-width selection on CIFAR-10

Network Channel Width
0.25x 0.35x 0.45x 0.5x 0.55x 0.65x 0.75x 0.85 1.0x

ResNet20
81.0 82.3 85.9 - 87.1 88.7 90.1 90.1 91.0
81.0 87.5 90.2 91.1

III. BIT-WISE PROCESSING-IN-MRAM ACCELERATOR

Our proposed PIM accelerator architecture is depicted

in Fig.2a with computational sub-arrays, kernel and image

banks, and a Digital Processing Unit (DPU) with three sub-

components as represented by Quantizer, Activation Function,

and Batch Normalization. The platform is mainly controlled

by Ctrl (located in each sub-array) to run whole DNNs layers.

The architecture is inspired by preliminary IMCE [10]. In the

first step, with Kernels (W) and Input feature maps (I) that
are respectively saved in Kernel and Image Banks, W has to

be instantly quantized for mapping into sub-arrays. Moreover,

quantized shared kernels will be used for different inputs.

This operation is implemented through DPU’s Quantizer-

Qunt.(shown in Fig.2a) and then outputs are sent to the sub-

arrays, developed to handle the computational load employing

PIM methods. In the second and third steps, as will be

thoroughly explained, the parallel computational sub-arrays

along with add-on counter and shifter units perform feature

extraction. Eventually, the accelerator’s DPU activates the

resultant feature map to complete the fourth step by producing

output feature map.

������ ������ ����	� ����� ����� �����
������ ������ ����	�

������� ���
�����

������� ��
�����

������ ���
�����

�����
�����
���	�
����
����
����

�����
�����
���	�

�

 ����� ���

����

�

 ����� ��

����

�

 ����� ���

����

�
��
������

���
�����

����������������� !��"#
�
�$

%����

�&'

Conv (I,W)

������������

��

(��)���*��)�

+��� �����������
� !�"��#���

��

+���

$���

%����
!��"#��
�

�$

�&'

+��)��
��
��������,�

!�
�

�

��
��
��'

�"
��

%����
!��"#��
�

�$

�&'

+��)��
�
��������,�

!�
�

�

��
��
��'

�"
��

+���

��

��
�-

�.
�-
�/

��
�-

�.
�-
�/

��
�-

�.
�-
�/

���

�
�

�

���

��

A A

�
��
�

B

���

�
�

�

���

��

A A

�
��
�

B

C

�
�
�

���
��

W
B

L1

R
BL

1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

�
�
�

���
��

W
B

L1

R
BL

1

RWL1

M1

M2
SL1

SL2
RWL2

SA
WWL1

M3

SL3
RWL3

+����

�"*�

&���

+����

�"*�

&���

+����

�"*�

&���

���$���"#��
%

���&�

Figure 2: (a) MRAM accelerator platform, (b) Computational

sub-array design.

•Sub-array architecture: Fig.2b illustrates the in-memory
computing sub-array architecture implemented by SOT-

MRAM. This sub-array is basically composed of a Memory

Row Decoder(MRD), a Memory Column Decoder(MCD), a

Write Driver(WD) and n Sense Amplifier(SA) (n ∈ # of

columns) that are adjustable by Ctrl to implement a dual mode

computation i.e. memory write/read and in-memory logic

operations. SOT-MRAM device is a composite device of a

spin Hall metal(SHM) and a Magnetic Tunnel Junction(MTJ).

Considering MTJ as the main storage element, the parallel

magnetization resistance in both magnetic layers is represented

by ‘0’ and is lower than that of anti-parallel magnetization

resistance (‘1’). Every SOT-MRAM bit-cell in computational

sub-arrays is connected to five controlling signals, namely

Write Word Line(WWL), Write Bit Line(WBL), Read Word

Line(RWL), Read Bit Line(RBL), and Source Line(SL). The

computational sub-array is mainly developed to realize the

computation between in-memory operands using two different

mechanisms as called two-row activation and three-column

activation. These mechanisms will be used to respectively

implement bulk bit-wise in-memory AND and addition op-

erations.

•Bit-line computation mode with RSA: The SOT-MRAM
sub-array is designed to realize the bulk bit-wise in-memory

logic operations between every two or three operands po-

sitioned in the same bit-line. Generally, in the 2-/ 3-input

in-memory logic method, every two/three bits stored in the

identical column are selected with the MRD [15] and simul-

taneously sensed by SA connected to the same bit-line. The

Reconfigurable Sense Amplifier(RSA), as illustrated in Fig.3,

has 3 sub-SAs and totally 5 reference-resistance branches

that could be enabled by control bits (CM , COR3, CMAJ ,

CAND3, CAND2) by the Ctrl to implement the memory and

315

5B-2

RAND2

RAND3

Vsense

RNOR3

RM

Iref

Sum

CM

CNOR3

CAND3

CAND2

Isense

��

W
B

L1

R
BL

1

RWL1

M1

M2
SL1

SL2
RWL2

WWL1

T1

T2
Cout

RMAJ

CMAJ

���������	�����
�����
�	����
���
VP,P VAP,PVAP,AP

AND2OR2

Vsense

RM
1

R1
Ise

ns
e

RM
2

R2

SA

RA
N
D
2

Ire
f

Vref

Figure 3: The reconfigurable SA for implementing single cycle

AND2 and addition operations.

computation modes. RSA realizes memory read and single-

threshold logic operations through activating one control bit

in either branches at a time. Additionally, by activating more

than two control bits at a time, more than one logic functions

could be simultaneously realized with SAs. This could be

employed to generate complex multi-threshold logic func-

tions such as XOR3/XNOR3. The RSA works based on the

following mechanism: the voltage generated after injecting a

small amount of current (reference current) over the selected

reference by Ctrl will be compared with the sensed voltage

of equivalent resistance of such parallel connected bit cells

and their cascaded access transistors after injecting a small

amount of current (sense current) over the resistors. Through

selecting different reference resistances e.g. RM and RAND2,

the RSA can perform basic memory and 2-input in-memory

Boolean AND function, respectively. For example, to realize

AND operation, Rref is set at the midpoint of RAP //RP

(‘1’,‘0’) and RAP //RAP (‘1’,‘1’). With the data organization

shown in Fig.2b, where A and B operands correspond to

M1 and M2 memory cells, respectively, 2-input in-memory

outputs AB in only one memory cycle. The idea of voltage

comparison between Vsense and Vref for implementing AND2

is shown on Fig.3. The computational sub-array can also

perform add/sub operation based on RSA in a single cycle.
Extensive analysis of effects of process variation has been

conducted in preliminary work[10], which will not be shown

here due to space limit.

IV. ADAPTIVE CO-OPTIMIZED MAPPING

A. Intra Sub-array Parallelism
To efficiently exploit the computation resources and maxi-

mize in-memory parallelism of the accelerator while running

the proposed dynamic CA-DNN, each kernel fin(kh×kw×C)
is initially allocated to one single computational sub-array

as shown in Fig.4a. Therefore, kernel fout(N) will be first
mapped to N sub-arrays. For very large kernels, where the

kernel size exceeds the sub-array column size, the data orga-

nization of inputs and weights in the accelerator can be simply

tailored. In this way, number of required sub-array (Ns) can

be formulated as
⌈
(N×Rk)×np

Sr

⌉
, Rk =

kh×kw×C
Sc

. Where

Rk is the number of required sub-array’s rows per kernel

and Sr and Sc are sub-array size (row and column). np ∈

{2,4,8,..} represents the scaling coefficient for making copies
of kernels, where its minimum value is limited by 2 enabling

computation in one sub-array and its maximum is limited by

the maximum number of allocated sub-arrays. After mapping,

the sub-arrays can work individually but in parallel to process

bit-wise convolution through two consecutive steps delineated

in Fig.5, namely parallel AND computation and bitcount &
shift.

���

 	
��
���
�	
��
���

�	
��
���
�	
��
���

���

���

�	
��
���
�	
��
���

��

 	
��
���
�	
��
���

'�
'�

�

�

�
�

�
�

������

����� ���������

��

��

�
�
�

�

�

�	
��
���
�	
��
���

��

�	
��
���
�	
��
���

 	
��
���
�	
��
���

�������

 �

�	
��
���
�	
��
���

��
��

�	
��
���
�	
��
���

��

���

!��

 �

 �

Figure 4: (a) Intra sub-array parallelism and hardware mapping

methodology to generate output feature map, (b) Adaptive sub-

array pruning for saving in-memory resources. Ii-index can
be dynamically set by the controller to exclude a part of sub-

arrays from computation.

The key idea behind performing bit-wise convolution is to

exploit bulk bit-wise AND as a parallelizable operation, bit-
count, and bitshift to accelerate MACs in convolutional layers.
The AND-based convolution of k-bit fixed point integers has
been presented in [16]. There are some other layers in CNNs,

such as inception layer (directly taking image as inputs and

not necessarily quantized) and Fully-Connected (FC) layer.

These layer can be equivalently implemented by convolution

operations using 1× 1 kernels [16]. Thus, all layers could be
implemented by convolution computation by exploiting these

operations [10], [16]:

I ∗W =

M−1∑

m=0

N−1∑

n=0

2m+nbitcount(AND2(Cn(W), Cm(I))) (5)

Assuming I is a sequence of M -bit input integers (3-bit as

an example in Fig.5) located in input fmap covered by sliding

kernel of W , such that Ii ∈ I is an M -bit vector representing

a fixed-point integer. We index the bits of each Ii element
from LSB to MSB with m = [0,M−1], such that m = 0 and
m =M−1 are corresponding to LSB and MSB, respectively.
Accordingly, we represent a second sequence denoted as

Cm(I) including the combination ofm
th bit of all Ii elements

(shown by elliptic). For instance, C0(I) vector consists of
LSBs of all Ii elements “0110”. ConsideringW as a sequence

of N -bit weight integers (3-bit, herein) located in sliding
kernel with index of n = [0, N − 1], the second sequence
can be similarly generated like Cn(W). Now, by considering
the set of all mth value sequences, the I can be represented
like I =

∑M−1
m=0 2

mcm(I). Likewise, W can be represented

like W =
∑N−1

n=0 2
ncn(W). As shown in data mapping

step in Fig.5, C2(W)-C0(W) are consequently mapped to
the designated sub-arrays. Accordingly, C2(I) − C0(I) are

316

5B-2

��
��
��
�

�������Input fmap
	��"#���"$�����%

� 	

 �
� 	

 �

kernel
	 �
	

0 -

-
�
1

���
��	
�	�
�		

��	
	��
��	
�	�

&�
	 �

&�
	 �

&�
	 �

m-bit n-bit
&�

	'
�

&�
	'

�
&�

	'
�

&�	 �
=12

&�	 �

&�	'�
&�	'�
&�	'�

&�	 �

Count

Shift

����

&�	'�(&�	 �
&�	'�(&�	 �
&�	'�(&�	 �

	��"��������")"*����

� 	 � �
� � � 	
	 � 	 �
� � � �
� � 	 	
� 	 � 	
� � � �

�

�
��
��
��
�

�������
� 	 � �
� � � 	
	 � 	 �
� � � �
� � 	 	
� 	 � 	

� � � �

	��"��������"+�,

� � � �

&�	'�
&�	 �
&�	 �
&�	 �

��
��
��
�

�������

� � � �
� � 	 �
� � � �
� � � �
� � � 	
� � � 	
� � � �
� 	 � �
� � � �

� � 	 �
� � � �

	 	 � � =12

-�2�

Figure 5: Mapping and computation of bit-wise convolver.

mapped in the following memory rows in the same way.

Now, computational sub-array can perform bit-wise parallel

AND2 operation of Cn(W) and Cm(I) as depicted in Fig.5.
The results of parallel AND operations stored within sub-array
will be accordingly processed using bit-counter. Bitcount is

then implemented using Count unit and passes the data to a

Shifter implemented by consecutive memory read and write

operations (FRC). As depicted in Fig.5, “0001”, produced by

in-memory adder is left-shifted by 3-bit (×22+1) to “1000”.

Eventually, in-memory bit-wise adder can produce the output

fmaps. Note that the bit-wise convolver supports different

configurations of weight and activation (<W:A>=< n:m >).

B. Adaptive and Recoverable Sub-array Pruning

In this subsection, we propose an adaptive and recoverable

sub-array pruning mechanism based on our proposed channel-

adaptive DNN structure to dynamically trade-off between

power, speed, latency, model size and accuracy of the accel-

erator. After hardware mapping of convolution kernels to the

computational sub-arrays based on mechanism explained in

previous subsection, the controller needs to internally store

only three indexes for the memory address corresponding

to the first pruned channel in different model sizes (i.e.

0.25x, 0.50x, and 0.75x.). Leveraging this mechanism, the

accelerator could be dynamically adjusted to exclude the

pruned kernels (sub-arrays) from computation according to

the predefined constraints. In this way, the accelerator can

save energy and achieve speed-up as compared with inefficient

direct mapping approaches typically used in different PIM

platforms. Fig.4b shows how such adaptive feature is applied

in the computational sub-arrays with an index-Ii. For example,
the platform can readily prune 25% of the computational sub-

arrays considering index-I1.

V. EVALUATION RESULTS

A. Platform Setup

We configure our in-memory accelerator with a 512Mb

total capacity and 256×512 memory sub-array organized in
a H-tree routing manner. For the simulations, we developed

an extensive bottom-up evaluation framework. For the device

simulations, NEGF and LLG with spin Hall effect equations

were taken to model SOT-MRAM bit-cell [17], [10]. At circuit

level, we develop a Verilog-A model for 2T1R bit-cell, which

can be used along with interface CMOS circuits in Cadence

Spectre. We used 45nm NCSU PDK library [18] to assess the

presented circuit designs and obtain the performance metrics.

At architectural level, based on the device-circuit results, we

first extensively modified NVSim [19] by developing specific

PIM library. The simulator can change the configuration files

of NVSim (.cfg) according to the model size and various

memory array organization. Then, we develop a behavioral

simulator in Matlab that assess the energy and latency param-

eters that the accelerator consumes to run CA-DNNs. Besides,

we integrated our mapping optimization algorithm to increase

the throughput w.r.t. the available resources. Here, we use

ResNet20 with 8-bit quantized convolutional layers to test on

CIFAR-10 dataset.

B. Energy Consumption Estimation

The bulk bit-wise AND and its write-back operations are

considered as crucial sources of energy consumption in our

MRAM accelerator. Therefore, we first report the number

of required AND Ops for processing input fmaps. Fig. 6a

illustrates the break-down of AND Ops in the platform in

different convolutional layers. Correspondingly, the latency is

also proportional to the computing requirement as discussed

here. Fig.6b reports the energy consumption of ResNet20’s

convolutional layers divided into four different regions AND-
compute AND-WB, bitcount-shift, and add operations

under different model sizes. Note that the energy consumption

of Shifter and Bit-Counter are plotted together in Fig.6b. Here,

we can observe how adaptive sub-array pruning technique

reduces the number of operations and accordingly energy con-

sumption by cutting off the idle sub-arrays from computation

as explained earlier. We observe that, 0.25x model achieves

∼2.7× reduction in energy consumption compared with 1.0x

model sacrificing the accuracy as explained later.

���	 ��
�	 ����	 ����	
���������

�

�

�

�

�
��
��
���
�
��
��
��

�
��
��

��� !�"#�
!�"#�
!�"#�
!�"#$
!�"#�
!�"#%
!�"#

!�"#&
!�"#
!�"#��
!�"#��
!�"#��
!�"#��
!�"#�$
!�"#��
!�"#�%
!�"#�

!�"#�&
!�"#�
'! ���	 ��
�	 ����	 ����	

���������

�

��

���

���

���

���
("

�)
*+
�!
�"
��
�
��
��
"�
,�
�-
.�

����/������
������
0��/��"���1�2�
3��

�	����

����$��-

���
	

&��&��-

Figure 6: (a) Break-down of no. AND operations in con-

volutional layers of ResNet20 w.r.t. model size, (b) Energy

distribution under different configurations.

C. Memory Storage Requirement

Fig.7 shows breakdown of the accelerator’s memory storage

to run full-precision and 8-bit quantized ResNet20 model for

CIFAR-10 under different model sizes. It can be observed that

by adjusting the channel-width, the required memory storage

is different. Besides, Fig.7 shows the memory storage and

accuracy trade-off of our PIM platform. Based on this, 8:0.50x

network achieves 10.6× reduction in memory storage com-

pared with the 32-bit network while sacrificing the accuracy

by 4.2%.

317

5B-2

��4���	 &4���	 &4��
�	 &4����	 &4����	
���������

�

���

�

���

�

��

�)
+�
��
�)
3*
��
,

�.

&�

&�

&%

&

 �

 �

�/
/�
)3
/+
�,5

. ���5
��
�

 ���5
��$�� & �&5

����
&%� 5
���%� &��%5

���
�

Figure 7: The accelerator’s required memory storage and

accuracy trade-off for different model sizes. (8:0.75x denotes

8-bit quantized ResNet20 with 0.75x model size.)

D. Area Overhead

To estimate the area overhead of MRAM platform, three

main hardware cost sources must be taken into consideration.

First, add-on transistors to SAs connected to each BL. Second,
the modified MRD overhead; we modify each WL driver

by adding two more transistors in the typical buffer chain.

Third, the Ctrl’s overhead to control enable bits; ctrl generates

the activation bits with MUX units with 6 transistors. We

considered the area of shifter and counter units as a part of Ctrl

area. Overall, the presented processing-in-MRAM platform

imposes 7.9% overhead to main memory die. Fig.8a reports

such area overhead breakdown. Moreover, Fig.8b profiles

the area distribution of different convolutional layers of the

ResNet20 based on number of required computational sub-

arrays for processing a single image with various model sizes.

It also reports the energy consumed by each model size while

taking different number of sub-arrays. Based on this, we can

observe that how adaptive sub-array pruning mechanism can

save energy by dynamically cutting down the number of sub-

arrays.

� �� $� %� &� ���
����6�7��)�����0�3))3+�

����	

���	

��
�	

���	

��
��
��
��
�

&�

���

���

�$�

�%�

�&�

���

���

�$�

("
�)
*+
�!
�"
��
�
��
��
"�
,�
�-
.

(a) (b)
Figure 8: (a) Breakdown of area overhead of the accelera-

tor, (b) Trade-off between area and energy consumption for

different model sizes.

VI. CONCLUSION

In this work, we first propose a CA-DNN which can

dynamicly adjust model size at runtime without retraining.

Experiments on CIFAR-10 and ImageNet both validate the

effectiveness of CA-DNN. Then we develop a PIM accelerator

for the CA-DNN and validate it on CIFAR-10 dataset by using

ResNet20 model. We further comprehensively analyze the

trade-off between the accuracy and the hardware parameters,

eg., energy, memory, and area overhead.

ACKNOWLEDGMENTS
This work is supported in part by the National Science

Foundation under Grant No.1740126, No.1908495,
No.1931871 and Semiconductor Research Corporation
nCORE

REFERENCES

[1] K. Simonyan et al., “Very deep convolutional networks for large-scale
image recognition,” arXiv preprint arXiv:1409.1556, 2014.

[2] K. He et al., “Deep residual learning for image recognition,” in IEEE
CVPR, 2016, pp. 770–778.

[3] I. Hubara et al., “Quantized neural networks: Training neural networks
with low precision weights and activations,” The Journal of Machine
Learning Research, vol. 18, no. 1, pp. 6869–6898, 2017.

[4] E. L. Denton et al., “Exploiting linear structure within convolutional
networks for efficient evaluation,” in NIPS, 2014, pp. 1269–1277.

[5] S. Han et al., “Learning both weights and connections for efficient neural
network,” in NIPS, 2015, pp. 1135–1143.

[6] W. Wen et al., “Learning structured sparsity in deep neural networks,”
in NIPS, 2016, pp. 2074–2082.

[7] G. Hinton, O. Vinyals, and J. Dean, “Distilling the knowledge in a neural
network,” arXiv preprint arXiv:1503.02531, 2015.

[8] P. Chi et al., “Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in ACM
SIGARCH Computer Architecture News, vol. 44, no. 3. IEEE Press,
2016, pp. 27–39.

[9] S. Li et al., “Drisa: A dram-based reconfigurable in-situ accelerator,”
in Proceedings of the 50th Annual IEEE/ACM International Symposium
on Microarchitecture. ACM, 2017, pp. 288–301.

[10] S. Angizi et al., “Imce: energy-efficient bit-wise in-memory convolution
engine for deep neural network,” in 23rd ASP-DAC. IEEE Press, 2018,
pp. 111–116.

[11] J. Yu et al., “Slimmable neural networks,” arXiv preprint
arXiv:1812.08928, 2018.

[12] S. Ioffe et al., “Batch normalization: Accelerating deep network training
by reducing internal covariate shift,” in ICML, 2015, pp. 448–456.

[13] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” Citeseer, Tech. Rep., 2009.

[14] J. Deng et al., “Imagenet: A large-scale hierarchical image database,”
in CVPR. IEEE, 2009, pp. 248–255.

[15] S. Li et al., “Pinatubo: A processing-in-memory architecture for bulk
bitwise operations in emerging non-volatile memories,” in 2016 53nd
DAC. IEEE, 2016.

[16] S. Zhou et al., “Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients,” arXiv preprint
arXiv:1606.06160, 2016.

[17] X. Fong et al., “Spin-transfer torque devices for logic and memory:
Prospects and perspectives,” IEEE TCAD, vol. 35, 2016.

[18] (2011) Ncsu eda freepdk45. [Online]. Available:
http://www.eda.ncsu.edu/wiki/FreePDK45:Contents

[19] X. Dong et al., “Nvsim: A circuit-level performance, energy, and
area model for emerging non-volatile memory,” in Emerging Memory
Technologies. Springer, 2014, pp. 15–50.

318

5B-2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

