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Abstract—Convolutional Neural Networks (CNNs) have made

breakthroughs in various fields, while the energy consumption

becomes enormous. Processing-In-Memory (PIM) architectures

based on emerging non-volatile memory (e.g., Resistive Random

Access Memory, RRAM) have demonstrated great potential in

improving the energy efficiency of CNN computing. However,

there is still much room for improvement in the energy efficiency

of existing PIM architectures. On the one hand, current work

shows that high resolution Analog-to-Digital Converters (ADCs)

are required for maintaining computing accuracy, but they

dominate more than 60% energy consumption of the entire

system, damaging the energy efficiency benefits of PIM. On the

other hand, the characteristic of computing in the analog domain

in PIM accelerators leads to the computing energy consumption

is influenced by the specific input and weight values. However, as

far as we know, there is no energy efficiency optimization method

based on this characteristic in existing work. To solve these

problems, in this paper, we propose an energy-efficient quantized

and regularized training framework for PIM accelerators, which

consists of a PIM-based non-uniform activation quantization

scheme and an energy-aware weight regularization method. The

proposed framework can improve the energy efficiency of PIM

architectures by reducing the ADC resolution requirements and

training low energy consumption CNN models for PIM, with little

accuracy loss. The experimental results show that the proposed

training framework can reduce the resolution of ADCs by 2 bits

and the computing energy consumption in the analog domain by

35%. The energy efficiency, therefore, can be enhanced by 3.4×

in our proposed training framework.

I. INTRODUCTION

Recently, Convolutional Neural Networks (CNNs) have

made breakthroughs in various fields, such as image classifi-

cation and object detection. However, CNN structures become

more and more complex, with the amount of calculation and

the energy consumption increase dramatically.
Previous work has demonstrated the great potential of

Processing-In-Memory (PIM) architectures based on emerg-

ing non-volatile memory in improving energy efficiency in

CNN computing. Because PIM architectures have the ability

to complete the CNN computing in memory by convert-

ing convolution operations into analog-domain Matrix-Vector-

Multiplications (MVMs), data movements are greatly reduced

and energy efficiency can be enhanced by over 100× com-

pared with CMOS-based architectures [1].
Although PIM architectures can improve the energy ef-

ficiency of CNN computing, there is still much room for
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improvement. Firstly, in existing PIM accelerators, the resolu-

tion of ADCs has a crucial impact on accuracy and energy

consumption of the entire system. On the one hand, PIM

accelerators based on high-resolution ADCs can achieve high

accuracy in large scale datasets and CNN models. However,

the high-resolution ADCs severely damage the energy effi-

ciency improvement brought by PIM, for the reason that ADCs

occupy more than 60% energy consumption of the entire

system [2] and high-resolution ADCs consumes more energy

than low-resolution ADCs (e.g., the 8-bit ADC in [3] costs

8.66× energy than the 4-bit ADC in [4] for one conversion).

On the other hand, in order to reduce the overhead of ADCs,

researchers have proposed several PIM accelerators with low

precision interfaces. However, these work focuses on simple

algorithm models (such as MLP based on MNIST datasets) [5]

[6] or has high accuracy loss in large scale algorithms (e.g.,

Using 4-bit ADCs causes 8% accuracy loss on ResNet18 @

cifar10) [7]. Therefore, how to reduce the ADCs’ energy con-

sumption further, while ensuring the computing accuracy, is of

great importance for improving the overall energy efficiency

of the PIM accelerators.

Secondly, existing work does not consider the relationship

between calculated data values and computing energy con-

sumption. PIM accelerators perform MVMs in the analog

domain, and the energy consumption is related to the specific

data values. For example, in RRAM-based PIM accelerators,

high resistance state (HRS) and low voltage level (LVL) are

used to represent 0 in weights and input data, low resistance

state (LRS) and high voltage level (HVL) represent 1. The

LVL is usually set to 0V and the HVL is set to the NVM read

voltage (e.g., 0.15 ∼ 1V [8] [9]), resulting in different energy

consumption on different input values. Besides, in order to

minimize the calculation error caused by the resistance devi-

ations, the R ratio (i.e., HRS/LRS) needs to be large enough

(e.g., 10∼100 [1]). In other words, when applying the same

input voltage, the energy consumption gap between HRS and

LRS can reach one to two orders of magnitude. Therefore, it

is necessary and feasible to improve the energy efficiency of

analog computing by adjusting the distributions of inputs and

weights.

In this paper, we combine the characteristics of CNN

computing and PIM accelerators, analyze and model the

energy consumption of PIM computing, propose an energy-

efficient quantized and regularized training framework for PIM

accelerators. The proposed training framework is composed of

a PIM-based non-uniform activation quantization scheme and

an energy consumption aware weight regularization method.

Our framework can improve the energy efficiency by reducing
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the ADC resolution requirements and training low energy

consumption CNN models for PIM with little accuracy loss.

The main contributions of this paper include:

i) We design a PIM-based non-uniform activation quantiza-

tion scheme, including quantization range optimization,

high-precision scale design, and non-uniform quantization

method. As a result, the quantization resolution of ADCs

can be reduced by 2 bits, with 70% energy consumption

reduction and comparable accuracy to traditional activa-

tion quantization methods.

ii) We propose an energy consumption aware weight regu-

larization method, consisting of an energy consumption

model for PIM and a weight regularization method used

in CNN training. The proposed weight regularization

method can reduce 35% analog computing energy con-

sumption by adjusting the distributions of inputs and

weights.

iii) Experiments show that the training framework can im-

prove 3.4× energy efficiency of PIM accelerators with

little accuracy loss. The equivalent energy efficiency is

9.02 TOPS/W, nearly 2.6 ∼ 4.2× compared with existing

work.

II. PRELIMINARIES AND RELATED WORK

A. CNN

CNNs mainly consist of convolutional (CONV) layers and

fully-connected (FC) layers. CONV layers realize the convo-

lution operation which is described as:

Ao(h,w, c) =

K∑
i=1

K∑
j=1

Cin∑
k=1

Ai(h+i, w+j, k)wc(i, j, k) (1)

where Ai and Ao represent the input feature map and output

activations, respectively. wc is a 3-dimensional convolutional

kernel with the size of K × K × Cin. The computations in

FC layers are similar to those in CONV layers.

B. PIM Architectures

In PIM architectures, crossbars based on emerging non-

volatile memory (NVM, e.g., RRAM) construct the basic com-

puting unit, as shown in Figure 1 (a). When applying the input

voltage vector V to the word-lines (WLs) of crossbars and

mapping the matrix values to the NVM conductance {gi,j},
then we can get the MVM results, which are represented by

the bit-line current I, as shown in Equation 2:

iout,k =

N∑
j=1

gk,jvin,j (2)

where vin,j and iout,k are the component of V and I, respec-

tively. By performing the analog domain calculations, matrix

data movements are eliminated, introducing energy efficiency

improvements.

However, because of the analog computing pattern of PIM

architectures, ADCs and DACs are used as interfaces between

crossbars and peripheral digital circuits. Researchers have

pointed out that the ADCs occupy more than 60% energy

consumption of the overall PIM architectures, which damage

the energy efficiency gains of PIM architectures [2]. To tackle

this problem, in the hardware level, some work proposed low

precision interface circuits design to substitute ADCs [5] [6].

But they only concentrate on small scale applications and

algorithms (e.g., FFT and four layers CNN). In the software

level, researchers design the low bit-width CNN for PIM

architectures to reduce the resolution requirement of ADCs,

which introduce additional accuracy loss overhead [7].

III. FRAMEWORK OVERVIEW

The overall quantized and regularized training framework

is shown in Figure 1 (a), which consists of a PIM-based

non-uniform activation quantization scheme (Section IV) and

an energy-aware weight regularization method (Section V).

The PIM-based non-uniform activation quantization scheme

includes quantization range optimization (Section IV.IV-B),

high-precision scale implementation (Section IV.IV-C), and a

non-uniform quantization method (Section IV.IV-D), and can

reduce ADCs energy consumption from 2 bits ADC resolution

reduction.

The energy-aware weight regularization contains crossbar

computing energy modeling (Section V.V-A) and weight reg-

ularization (Section V.V-B), which can reduce the ratio of

HVL on LRS (with high energy cost) by 41% and achieve

35% analog computing energy reduction.

The computational flow of the proposed training framework

is shown in Figure 1 (b). Compared with traditional training

methods, we optimize the uniform quantization with quanti-

zation range optimization and high-precision scale implemen-

tation. For each layer, in the forward phase, the input data and

weights are quantized by the optimized uniform quantization.

Then the quantized inputs and weights are used to calculate

the output activation and the energy consumption indicator.

The outputs are quantized by the PIM-based non-uniform

activation quantization scheme and the energy consumption

indicator is added to the final loss. Because all the above

computational operators are derivable, the standard back-

propagation algorithms can be used in the backward phase

of the proposed training framework.

IV. PIM-BASED NON-UNIFORM ACTIVATION

QUANTIZATION SCHEME

As mentioned in Section I, high resolution ADCs cause a

heavy energy burden in PIM accelerators, while low resolution

ADCs introduce larger quantization error and bring higher

accuracy loss. To handle these problems, we propose the

PIM-based non-uniform activation quantization scheme, which

contains quantization range optimization, high-precision scale

implementation, and non-uniform quantization, as shown in

Figure 1. Based on this activation quantization scheme, we can

reduce the ADC resolution requirements without any accuracy

loss, and can further improve the computing energy efficiency.

A. Traditional Activation Quantization Method

Existing activation quantization methods used in CNN con-

sist of the following three parts:

1) Quantization scale determination: Firstly, the maxi-

mum of the input vector absolute value |xin| is used as

the quantization range. Then, the minimal value α which

is an integer power of 2 and can cover the quantization

range is found as a scaling parameter for next steps. The
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Fig. 1. (a) The overall quantized and regularized training framework. (b) Computational flow of the proposed training framework (only list one layer)

calculation formula of the scaling parameter α is shown

in Equation 3.

α = 2�log2(max(|xin|))� (3)

2) Linear uniform quantization: Firstly, linear scaling is

used to map the input vector xin to the interval [-1, 1].

Then, a k-bit uniform quantization is performed as shown

in Equation 4.

xq,out = Qk (xin, α, k)

= round
((

2k−1 − 1
) xin

α

) α

2k−1 − 1

(4)

where xq,out is the quantization results.

3) Gradient back-propagation: Because the gradients of

the function round equal to zero at continuous points,

straight-through estimator (STE) [7] is used to generate

gradients to the input vector xin.

B. Quantization Range Optimization

In the traditional activation quantization method, the quanti-

zation range is determined by the maximum of the input vector

absolute values. However, the maximum of absolute values

is susceptible to individual extreme data and can not reflect

the overall data distribution. Figure 2 (a) implies less than

5% data appear in the interval (max/4,max], which means

using the maximum as the quantization boundary “wastes”

75% quantization bit width. Referring to [10], we can assume

the activation data distribution is close to a Gaussian distri-

bution. In Gaussian distribution, 3σ criterion is often used in

anomaly detection on account of the probability of normal data

appearing in [μ− 3σ, μ+3σ] is 99.73%. Inspired by this, we

use [−|μ|−3σ, |μ|+3σ] as the new quantization range instead

of choosing the maximum value, which can cover > 97%
data as shown in Figure 2 (a). Besides, Figure 2 (b) shows

that the quantization range size is reduced to 25% after using

the optimized quantization range. Therefore, the quantization

range optimization method can reduce the requirements for

ADCs resolution in PIM architectures.

Similar to the activation quantization method in [11], the

proposed quantization range optimization method adopting a

dynamic update method to the quantization range. However,

our method determines the quantization range by the statistical

characteristics of the data distribution, which means the pro-

posed method can be independent of parameterized clipping

and network training and can be applied to the weights.

C. High-precision Scale Implementation

Limited by the binary digital computing, the scaling pa-

rameter in traditional quantization methods must be an integer

power of 2, which brings two problems. On the one hand, the

integer power of 2 makes the scale calculated by Equation 3

larger than the actual scale (at most 2×), but the precision k in

Equation 4 is unchanged, resulting in the increase of quanti-

zation error. On the other hand, in the training phase, different

inputs require different scales. Traditional quantization meth-

ods choose the maximum scale as the scaling factor, causing

high quantization error. To settle down these two problems,

we propose PIM-based high-precision scale implementation.

In the PIM accelerators, MVMs are carried out in the analog

domain as shown in Figure 1 (a). Compared with existing
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327



����4

����4 ���4 ���4

���4

����4

����4

����4

���4 ���4

���4

����4

����4

����4 ���4 ���4

���4

����4

����4 ����4 ����4

���4

���4

����4

����4

����4

����4

���4

���4

����4

����4

����4 ����4

���4

���4

����4

����4

����4 ���4 ���4

���4

����4

�4

��4

��4

��4

��4

���4

����������� ��������������� �������������� �������������� ������������ ��� 5 6�!�

��
��
��
��
��
�	�



�
�����
��
� ��
� ��
��� ��
��� ��
��� ��
��� ��
�

�����

������

������

������
����� ����� �����

�����
����� ����� ����� ����� ����� �����

�

�

��

��

��

��

��

��
� ��
� ��
��� ��
��� ��
��� ��
��� ��
�

�

��
�
��
��

�
��

�  ��!��

"�#

"$#

%�& '�()* ����+ ���4 ���	��	�
 ,���
%�& '�(-�)* ����+ 7��4 ���	��	�
 ,���
%�& ./.6�0)* ����+ 7��4 ���	��	�
 ,���

��� � �����	�� 
 � � �
%�&'�() %�&./.6�0)

Fig. 2. (a) The percentage of activation data in different ranges w.r.t. different
CNN layers in a well-trained VGG-8 model. (b) The quantization range sizes
in different layers.

work, we use an RRAM with adjustable resistance instead of

a resistor as the load resistance. After that, we can transfer

the bit-line current with different ranges to a fixed voltage

range by adjusting the load resistance gs, which is equivalent

to achieve high scaling parameter other than an integer power

of 2.

Besides, in the typical CNN training phase, one mini-batch

data is trained at a time because of the storage limitation. Dif-

ferent mini-batch data bring different scales during training.

The instability of the scaling parameter may cause severe jitter

and non-convergence during training. In order to alleviate the

jitter and non-convergence in the training phase, we introduce

the momentum smoothing method. After a new quantization

scaling parameter is generated, it is weighted summed with

the previous scaling parameter. Then we can get a smoothed

quantization scaling parameter, as shown in Equation 5(m
denotes the momentum coefficient).

α← mα+ (1−m) (|mean(vin)|+ 3std(vin)) (5)

D. Non-uniform Quantization

Since the activation data in CNNs are close to the Gaussian

distribution [10], uniform quantization causes large quan-

tization error compared with non-uniform quantization, as

shown in Figure 3. But non-uniform quantization brings non-

uniform results, and the quantized results can not be directly

used for computing. For example, in Figure 1 (a), the non-

uniform quantization quantifies Q to 001 and 1.5Q to 010,

but (Q + Q = 2Q) �= (001 + 001 = 010 = 1.5Q). Thus,

additional uniform mapping is required after non-uniform

quantization for correct computing. In the CMOS-based com-

puting architectures, the uniform mapping will cause extra area

and energy overhead, and non-uniform quantization cannot

improve hardware performance compared with uniform quan-

tization. Therefore, non-uniform quantization implementation

in CMOS-based computing architectures does not bring any

benefits in energy consumption.
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Fig. 3. Quantization error distributions under different quantization methods
(i.e., 4-bit uniform quantization, 5-bit uniform quantization, and 4-bit non-
uniform quantization)

Different with CMOS-based computing architectures, in

PIM architectures, the activation quantization is executed by

ADCs. From Figure 3, non-uniform quantization can reduce

1 bit ADC resolution compared with uniform quantization

without accuracy loss, and ADC overheads grow exponen-

tially with resolution [12]. Therefore, adopting non-uniform

quantization can reduce ADC energy overhead and improve

overall energy efficiency. In our design, we realize the non-

uniform quantization and uniform mapping by non-uniform

ADCs and multiplexers (MUXes) in PIM accelerators.

In order to determine the specific non-uniform quantization

method in non-uniform ADCs, we construct a transformation

function which makes the transformed input data obey uniform

distribution. Besides, it has been proved mathematically that

the cumulative distribution function (CDF) can be used as

such transformation function [13]. Moreover, for the activation

data with approximate Gaussian distribution, we use Sigmoid

function, i.e., f(x) = 1/(1+e−x), to approximate the CDF of

activation data. In the circuits design level, the non-uniform

ADCs can be implemented by generating different reference

voltage levels from adjusting the capacitance and the divider

resistance value in SAR ADCs or Flash ADCs, with little area

and energy overhead.

MUXes are leveraged to map low precision non-uniform

quantization results to high precision uniform quantized data.

In the training phase, we add a uniform mapping module

to simulate the function of MUXes after the non-uniform

quantization. After getting the well-trained CNN model, we

can also determine the output of the uniform mapping module

in each layer. In the deployment, the select signals of MUXes

are connected with the output of the non-uniform ADCs, while

the input signals are set as the output of the additional uniform

mapping module.

Combining the above two parts, the proposed non-uniform

quantization method implemented by non-uniform ADCs and

MUXes can be expressed as Equation 6:

x̂q,out = Q̂k (xin, α)

= Q2k

(
f−1

(
clip

(
r
(
f
(
η xin

α

)
2k
)
,1,2k − 1

)
2k

)
α

η
, α

)
(6)

where f , r and Q denote sigmoid, round and uniform

quantization. η is a parameter used to adjust the distribution.
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V. ENERGY AWARE WEIGHT REGULARIZATION

Restricted by the immature manufacturing process, the

computing frequency is ∼ 100 MHz in the existing PIM accel-

erators, and it is hard to make further dramatic improvements.

Besides, in order to ensure the PIM computing reliability, R

ratio is large enough (e.g., 10 ∼ 100), causing a huge energy

consumption gap among different conductance states and input

voltage levels. Existing work focuses on mapping a well-

trained CNN model on PIM architectures, ignoring the fact

that different data values bring different energy consumption.

To further enhance the energy efficiency of PIM architectures,

it is necessary to model the relationship between computing

data values and energy consumption, and design an energy-

efficient CNN training method considering the relationship

model.

A. Energy Consumption Model

As mentioned in Section I, PIM architectures perform

MVMs in the analog domain. The input data, weights, and

MVM results are represented by the input voltage on the word-

line (Vi), cell conductance (gij), and current on the bit-line

(Ij), respectively. According to the Trans-impedance amplifier

(TIA) sensing model [14], the energy consumption of each

MVM result in PIM can be calculated by Equation 7.

Ej =

N∑
i=1

V 2
i gijt, Ij =

N∑
i=1

Vigij (7)

where Ej denotes the energy consumption for generating Ij ,

and t represents the clock cycle of the analog computing.

Equation 7 gives the energy consumption of a single MVM

in crossbars. Noticing that the differences between energy

consumption expression and output current expression are

Δt and the exponent of Vi. Therefore, we can derive the

calculation formula of energy consumption by modifying the

CNN computing formula. Besides, we also take the mapping

relationship between algorithm parameters (i.e., weights and

input data) and analog computing parameters (i.e., DAC full-

scale voltage output VFS and crossbar conductance parameter

g determined by the RRAM resistance and the load resistor)

into consideration. Because the mapping relationship is pro-

portional, we can get the energy consumption model shown

in Equation 8:

E=φ

((
x

αx

VFS

)2
,
w

αw

g

)
t=V 2

FSgtφ

((
x

αx

)2
,
w

αw

)
(8)

where x, w, and φ denote the input data, weights, and

the computing function, respectively. αx and αw are the

quantization scale for x and w.

B. Weight Regularization

Considering the overall energy consumption in the loss

function, we propose an energy consumption aware weight

regularization method, which is expressed as:

L = Ls + λV 2
FSgt

L∑
l=1

φl

((
xl
αxl

)2
,
wl

αwl

)
(9)

Ls is the softmax loss. λ is a coefficient. φl denotes the

computing in layer l. xl, wl, αxl
, and αwl

are the input data,
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Fig. 4. (a) The proportion of different situations before/after weight reg-
ularization. (b) The normalized energy consumption of different situations
before/after weight regularization

weights, and the corresponding quantization scale in layer l,
respectively.

C. Optimization Results

In the PIM architecture, the input voltage level determines

whether the energy consumption closes to zero or not, and the

R ratio determines the difference of the energy consumption

between HRS and LRS under the same voltage. HVL on LRS

has the highest energy consumption and HVL on HRS con-

sumes more energy than other two situations. The optimization

results of the weight regularization are shown in Figure 4.

The results show that the proposed method can reduce the

proportion of HVL on LRS and HVL on HRS by ∼ 41% and

the total computing energy consumption by ∼40%.

VI. EXPERIMENT RESULTS

A. Experiment Setup

We test the proposed training framework on three types of

CNN models: LeNet [15], VGG-8 [16], and ResNet-18 [17].

All experiments are evaluated on the Cifar-10 dataset [18].

We change the network structure of ResNet-18 by reducing

the number of the channel to a quarter of the original for

faster training. The PIM architecture we used refers to [2],

which is composed of crossbars with the size of 256 × 256.

We model the crossbar computing energy according to the

RRAM data from [9] (HRS, LRS, and read voltage are 150

KΩ, 30 KΩ, and 0.15V) and the system frequency is set to

100MHz. For the ADC part, we use the data from [3] (8-bit,

4mW @ 1.1GS/s), [19] (6-bit, 1.28mW @ 1GS/s), and [4]

(4-bit, 0.7mW @ 1GS/s), and for the DAC part, we use the 1-

bit DAC design mentioned in [12]. Besides, we synthesize the

digital circuit modules at 45nm technology node with 500MHz

using Cadence Encounter� RTL Compiler.

B. Energy Consumption and Accuracy Results

Table I shows the accuracy and energy consumption of

PIM architectures compared with existing work [7]. On the

one hand, under the premise that CNN parameters have the

same precision, our framework improves > 10% classification

accuracy with lower energy consumption as shown in the last

two lines. On the other hand, the proposed training framework

can achieve a comparable accuracy compared with the floating

baseline, but brings > 70% energy conduction (equivalent to

3.4× energy efficiency improvement).
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TABLE I
ACCURACY AND ENERGY CONSUMPTION UNDER DIFFERENT SITUATIONS

(THE NUMBERS FOLLOWING A AND W ARE THE PRECISION OF

ACTIVATIONS AND WEIGHTS)

LeNet VGG-8 ResNet-18

Accuracy Energy/nJ Accuracy Energy/nJ Accuracy Energy/nJ

float baseline 0.7448 - 0.9336 - 0.8887 -

[7]

A8W4 0.7499 1683 0.9308 2115889 0.8785 19767

A6W4 0.7463 408 0.9243 458193 0.8756 4517

A4W4 0.6375 154 0.1887 140889 0.7412 1563

Ours A4W4 0.7467 142 0.9286 138793 0.8655 1500
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Fig. 5. The normalized energy consumption of each part (A6W4(6): ex-
isting work with traditional quantization method; Opt.1: optimized by non-
uniform quantization scheme; Opt.1+2: optimized by non-uniform quantiza-
tion scheme and energy-aware weight regularization)

C. Performance Analysis

Figure 5 shows the energy consumption of each part,

which is normalized to the results of traditional quantization

methods. According to the results, we know that the proposed

non-uniform quantization scheme can reduce 65% energy

consumption of the entire system. The reduction mainly comes

from using low resolution ADCs (i.e., the power of 4-bit ADCs

is 54.68% of 8-bit ADCs), which reduce 70% ADC energy

consumption. It is worth mentioning that this improvement

is not only due to the low power of ADCs, but also to the

reduction of calculation cycles after the quantization. Besides,

additional MUXes bring ∼ 3% extra overhead. The weight

regularization method can reduce 35% crossbar computing

energy consumption, which accounts for 3% of the total

energy.

In a word, the proposed training framework can enhance the

energy efficiency by ∼3.4×. The equivalent energy efficiency

of the computing units (e.g., RRAM computing banks) is

9.02TOPS/W, nearly 2.6 ∼ 4.2× compared with existing work

[1] [2] [7].

VII. SUMMARY AND CONCLUSIONS

In this paper, we propose an energy-efficient quantized

and regularized training framework, consisting of a PIM-

based non-uniform activation quantization scheme and an

energy-aware weight regularization. The proposed training

framework can reduce the ADC resolution by 2 bits and the

analog computing energy by 35%, and therefore improves the

energy efficiency up to 3.4× compared with existing work.

The equivalent energy efficiency of the computing units is

9.02TOPS/W.

ACKNOWLEDGMENTS

This work was supported by National Key Research and

Development Program of China (No. 2017YFA0207600), Na-

tional Natural Science Foundation of China (No. 61832007,

61622403, 61621091), Beijing National Research Center for

Information Science and Technology (BNRist), and Beijing In-

novation Center for Future Chips. Chen’s work was supported

by the Beijing Academy of Artificial Intelligence under Grant

BAAI2019QN0402.

REFERENCES

[1] P. Chi et al., “Prime: A novel processing-in-memory architecture for
neural network computation in reram-based main memory,” in 2016

ACM/IEEE 43rd Annual International Symposium on Computer Archi-

tecture (ISCA), June 2016, pp. 27–39.
[2] Z. Zhu et al., “A configurable multi-precision cnn computing framework

based on single bit rram,” in Proceedings of the 56th Annual Design
Automation Conference 2019. ACM, 2019, p. 56.

[3] H. Chen et al., “A >3ghz erbw 1.1gs/s 8b two-sten sar adc with
recursive-weight dac,” in 2018 IEEE Symposium on VLSI Circuits, June
2018, pp. 97–98.

[4] B. Nasri et al., “A 700 μw 1gs/s 4-bit folding-flash adc in 65nm cmos
for wideband wireless communications,” in 2017 IEEE International

Symposium on Circuits and Systems (ISCAS), May 2017, pp. 1–4.
[5] B. Li et al., “Merging the interface: Power, area and accuracy co-

optimization for rram crossbar-based mixed-signal computing system,”
in 2015 52nd ACM/EDAC/IEEE Design Automation Conference (DAC),
June 2015, pp. 1–6.

[6] L. Xia et al., “Switched by input: Power efficient structure for rram-
based convolutional neural network,” in 2016 53nd ACM/EDAC/IEEE
Design Automation Conference (DAC), June 2016, pp. 1–6.

[7] Y. Cai et al., “Low bit-width convolutional neural network on rram,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, pp. 1–1, 2019.
[8] M. Chang et al., “19.4 embedded 1mb reram in 28nm cmos with

0.27-to-1v read using swing-sample-and-couple sense amplifier and self-
boost-write-termination scheme,” in 2014 IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC), Feb 2014, pp.
332–333.

[9] Y. Lin et al., “Demonstration of generative adversarial network by intrin-
sic random noises of analog rram devices,” in 2018 IEEE International
Electron Devices Meeting (IEDM), Dec 2018, pp. 3.4.1–3.4.4.

[10] D. Lin et al., “Fixed point quantization of deep convolutional networks,”
in International Conference on Machine Learning, 2016, pp. 2849–2858.

[11] J. Choi, Z. Wang, S. Venkataramani, P. I.-J. Chuang, V. Srinivasan,
and K. Gopalakrishnan, “Pact: Parameterized clipping activation for
quantized neural networks,” arXiv preprint arXiv:1805.06085, 2018.

[12] A. Shafiee et al., “Isaac: A convolutional neural network accelerator with
in-situ analog arithmetic in crossbars,” in 2016 ACM/IEEE 43rd Annual
International Symposium on Computer Architecture (ISCA), June 2016,
pp. 14–26.

[13] S. Han, H. Mao, and W. Dally, “Deep compression: Compressing deep
neural networks with pruning, trained quantization and huffman coding,”
arXiv preprint arXiv:1510.00149, 2015.

[14] L. Xia et al., “Stuck-at fault tolerance in rram computing systems,” IEEE
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8,
no. 1, pp. 102–115, March 2018.

[15] Y. LeCun et al., “Comparison of learning algorithms for handwritten
digit recognition,” in International conference on artificial neural net-
works, vol. 60. Perth, Australia, 1995, pp. 53–60.

[16] S. Wu et al., “Training and inference with integers in deep neural
networks,” arXiv preprint arXiv:1802.04680, 2018.

[17] K. He et al., “Deep residual learning for image recognition,” in Proceed-
ings of the IEEE conference on computer vision and pattern recognition,
2016, pp. 770–778.

[18] K. Alex et al., “Learning multiple layers of features from tiny images,”
Citeseer, Tech. Rep., 2009.

[19] K. D. Choo, J. Bell, and M. P. Flynn, “27.3 area-efficient 1gs/s 6b sar
adc with charge-injection-cell-based dac,” in 2016 IEEE International
Solid-State Circuits Conference (ISSCC), Jan 2016, pp. 460–461.

330

5B-4



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.6
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize false
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.01)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


