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Abstract— Routing is a key step in the FPGA design process,
which significantly impacts design implementation quality. Rout-
ing is also very time-consuming, and can scale poorly to very
large designs. This paper describes the Adaptive Incremental
Router (AIR), a high-performance timing-driven FPGA router.
AIR dynamically adapts to the routing problem, which it solves
‘lazily’ to minimize work. Compared to the widely used VPR 7
router, AIR significantly reduces route-time (7.1× faster), while
also improving quality (15% wirelength, and 18% critical path
delay reductions). We also show how these techniques enable
efficient incremental improvement of existing routing.

I. INTRODUCTION

Field Programmable Gate Arrays (FPGAs) have pre-

fabricated routing resources along with configurable switches

to interconnect them. This allows the routing resources to be

re-configured to implement different designs, but also means

the interconnect network has limited and restricted connectivity.

The interconnect network typically accounts for a majority of

delay, and 50%+ device area [1], [2]. As a result the routing

of signals through the network has a large affect on the final

design implementation quality (wirelength, power consumption

and critical path delay). Unlike Application Specific Integrated

Circuits (ASICs) where custom interconnect topologies can be

constructed, FPGA routing requires finding a legal embedding
of the design’s interconnect into the pre-fabricated network.

Routing also accounts for a large portion of FPGA CAD flow

run-time (41-86% in commercial and academic tools [3]) and

can scale poorly to very large designs due to high-fanout nets

and difficult to resolve congestion.

In the FPGA CAD flow there are no stages following routing

which can fix up routability or timing issues (e.g. no buffer

insertion or gate re-sizing). The only way for designers to

address these issues is to restructure their design’s logic (to

reduce congestion and/or improve timing), which is extremely

disruptive. It is therefore very important for FPGA routers

to be robust (find legal routings) and high quality (minimize

wirelength and delay).

An FPGA’s routing resources and switches are typically

modelled as a Routing Resource (RR) graph as shown in Fig-

ure 1, where conductors (wires/pins) and switches correspond

to nodes and edges respectively. The FPGA routing problem

is to find a large number of non-overlapping trees within the

RR graph which implement the design’s connectivity; while

simultaneously minimizing metrics such as wirelength and

critical path delay, all within reasonable run-time. This is a

challenging task given the large size of the RR graph1 and its

limited connectivity (sparseness).

The most successful FPGA routing techniques are based

upon the PathFinder negotiated congestion algorithm [4],
1Tens to hundreds of millions of nodes for modern FPGAs
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Fig. 1: Routing Resource Graph. Dotted and dashed arrows

represent configurable switches.

where multiple nets are allowed to use the same routing

resources. Such overused resources are said to be congested.

Allowing congestion prevents nets from blocking each other,

an important characteristic given the interconnect network’s

limited flexibility. To resolve congestion and arrive at a legal

solution nets are repeatedly ripped-up and re-routed while

modifying routing resource costs.

A variety of works have studied FPGA routing. Early

works focused on two-stage global-detailed routing [5] and

investigated heuristics for Steiner point selection to improve

quality [6]. However both were outperformed by single-stage

negotiated congestion routing [7]. Different criteria for ranking

paths during graph search were explored in [8], improving

quality at the cost of significantly higher run-time. [9] inves-

tigated methods to prune the search space and build good

initial ‘spines’ for high-fanout nets. More recently, CRoute

[10] proposed decomposing nets into independent connections

to reduce route-time. Unlike CRoute, our approach maintains

the natural net-based structure of the problem which improves

routing resource re-use, reduces redundant work during graph

search, and facilitates further net-based optimizations.

Another popular approach has been to exploit parallel

computing resources to speed-up routing [11], [12], [13], [14].

However these techniques have also faced scalability challenges

due to synchronization costs and load imbalances. Our approach

is complementary as it reduces the work required to route

individual nets, and particularly large high-fanout nets which

often limit parallel speed-up [11].

We focus on developing the Adaptive Incremental Router

(AIR) which improves scalability and quality compared to

previous approaches. Our contributions include:

• ‘Lazy’ methods to improve routing scalability for large

designs and high-fanout nets (Section II),

• Techniques to adapt to the routing architecture and

design characteristics to improve quality and robustness

(Section III),

• An approach to efficiently improve the quality of an

existing routing (Section IV), and

• A comparison of our approach to several academic [15],

[10] and commercial [16] routers (Section V).
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II. LAZY ROUTING

Our routing algorithm is based upon PathFinder [4] as

implemented in VPR [15]. In large designs routing has been

found to scale poorly [3] due to the difficulty of resolving

congestion and routing high-fanout nets. To improve these

characteristics we focus on making the router as ‘lazy’ as

possible by avoiding unnecessary work.

Algorithm 1 outlines AIR’s netlist routing algorithm. The

algorithm operates over multiple routing iterations (Line 4).

During each iteration, connections are routed between each

net’s driver and sinks (Lines 6 and 7), potentially sharing rout-

ing resources with other nets. Once all nets have been routed

(Line 5), the routing resource costs are selectively increased

based on present and historical congestion (Line 14), with

the aim of reducing congestion during subsequent iterations.

This repeats until a legal routing is found (Lines 8 and 11),

or the design is deemed unroutable by hitting the iteration

limit (Line 4). Finally, the best legal routing found (if any) is

returned (Line 18).

Algorithm 1 AIR Netlist Router

Require: nets to route, α the maximum number of convergences
Returns: best routing found

1: function AIR ROUTE(nets, α)
2: best← ∅, curr ← ∅ � Best and current route trees for nets
3: convergences← 0 � Number of legal routings found
4: for iter ∈ 1 . . .max iters do
5: for net ∈ nets do
6: for sink ∈ UNROUTED SINKS(net, curr[net]) do � Incr. route
7: curr[net]← AIR ROUTE CONNECTION(net, curr[net], sink)

8: if IS LEGAL(curr) then
9: best← BEST ROUTING(best, curr) � Keep best routing

10: convergences← convergences+ 1
11: if convergences = α then � Convergence limit reached
12: break
13: RESET PRES FAC() � Reduce present congestion cost

14: UPDATE COSTS() � Update pathfinder costs
15: for net ∈ nets do � Prepare for incremental re-route
16: RIPUP ILLEGAL CONNECTIONS(current[net])
17: RIPUP DELAY DEGRADED CONNECTIONS(current[net])

18: return best

A. Incremental Routing

In PathFinder-based routers each net’s routing is represented

as a route tree: a tree of routing resources spanning from the

net’s driver (tree root) to each of its sinks (tree leaves). Each

path in the route tree (from root to leaf) corresponds to a net

connection (from driver to sink). To reduce wirelength it is

usually desirable for connections within the same net to share

some routing resources.

Traditional PathFinder-based routing algorithms rip-up and

re-route all nets every routing iteration. However in practise

many nets (or portions of nets) may have already been

legally routed. In such cases it is not strictly necessary to

re-route these connections. AIR exploits this by re-routing nets

incrementally on a per-connection basis. This ‘lazy’ approach

avoids redundantly ripping up (and then re-routing) the legal

portions of a net.2

First, a net’s current route-tree is walked to identify con-

gested sub-trees as shown in Figure 2a. Illegal sub-trees are

then pruned as shown in Figure 2b to leave only legal routing
2This is a much more fine-grained approach than [12], which only avoided

ripping-up completely legal nets.
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�

(a) Connection C → E is illegal
(used by another net).

A

B C

D F

G H

(b) Pruned route tree. Sinks G and
H must be re-routed.

Fig. 2: Pruning of route tree connecting A to {D,G,H, F}
TABLE I: Lazy Routing Evaluation on Titan Benchmarks

(Normalized Geomean)

Routed WL Crit. Path Delay Route Time

baseline 1.00 1.00 1.00
incremental (δ = 16) 0.99 1.00 0.75

high fanout (β = 64 γ = 1.0) 1.00 1.03 0.75
high fanout (β = 64 γ = 0.9) 1.00 1.02 0.79
both (δ = 16 β = 64 γ = 1.0) 0.99 1.02 0.55
both (δ = 16 β = 64 γ = 0.9) 0.99 1.01 0.60

(Algorithm 1 Line 16). Second, the pruned net sinks are re-

routed during the next routing iteration (Algorithm 1 Line 6),

using the net’s remaining legal routing as potential branch

points.3

While incremental routing is primarily a run-time optimiza-

tion it can impact Quality of Results (QoR). In particular,

since PathFinder uses a present congestion cost, not ripping

up all connections may cause some timing critical nets to take

indirect routes to avoid inducing congestion. To alleviate this

we perform targeted delay-based rip-up (Algorithm 1 Line 17),

which forces timing-critical connections whose delay has

degraded (compared to previous iterations) to be re-routed even

if their routing was legal. Since these ripped-up connections are

timing critical they are re-routed with a focus on delay in the

following iteration, preventing the router from converging to a

poor critical path delay solution. Since only a small number

of critical connections are ripped-up, routing still converges

quickly to a legal solution.

For small nets the benefit of incremental routing is minimal,

so we apply incremental net re-routing only for nets beyond

a certain fanout threshold (δ). We empirically found δ =
16 performed best, although values between 1 and 512 all

performed well.

Table I compares the impact of incremental routing to

the baseline (where nets are always ripped up) on the Titan

benchmarks [3]. The results show that incremental routing

slightly improves wirelength and has no impact on critical

path delay, while reducing router run-time by 25%. Notably,

the run-time benefit is often more significant on large circuits,

with the largest benchmark (gaussianblur) completing 2.0×
faster.

B. High-Fanout Routing

High-fanout nets, which often span a large portion of

the device, are particularly time-consuming to route. AIR

routes nets one connection at a time (Algorithm 1 Line 7)

using Algorithm 2. To avoid wasting wiring, existing routing

(from a net’s previously routed connections) is added to the

3Note the router already stores route trees for each net, so no additional
memory is required for incremental routing.
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Fig. 3: High fanout routing from driver (s) to sink (t).

heap, allowing it be re-used as a branch-point for subsequent

connections (Algorithm 2 Line 7).

Algorithm 2 AIR Connection Router

Require: net being routed, existing route tree, target sink
Returns: updated route tree with branch to sink

1: function AIR ROUTE CONNECTION(net, route tree, sink)
2: path← ∅

3: if FANOUT(net) ≥ β and CRITICALITY(sink) < γ then
4: heap← INIT NEARBY ROUTING(route tree, sink)
5: path← FIND PATH FROM HEAP(heap, sink)

6: if path = ∅ then
7: heap← INIT FULL ROUTE TREE(route tree)
8: path← FIND PATH FROM HEAP(heap, sink)

9: UPDATE ROUTE TREE(route tree, path)
10: return route tree

Most designs have a small number of high-fanout nets, but

we found these few nets typically consume 12-34% of run-

time on the Titan benchmarks. For a high-fanout net with k
sinks placing the entire route tree into the heap causes the

router’s time complexity to grow as O(k2 log k), since the

O(k) routing must be added to the heap4 for each of the k
sinks. In practise, as shown in Figure 3, branching from parts

of the high-fanout net which are far from the target sink are

unlikely to lead to a lower cost path. Instead of pushing such

potential branch points into the heap, AIR uses an approach

derived from [17] and lazily puts only existing routing which

is spatially near the target sink into the heap (Algorithm 2

Line 4). This reduces the complexity of routing a high-fanout

net to O(k).5 We also exploiting this spatial information to

limit the router’s search space to a region which contains both

the previous routing and the target sink.

Unlike the FPGA routing architectures considered in [17],

modern FPGAs use uni-directional wires of differing wire-

lengths and varying connectivity for area efficiency and speed

[18]. These differences mean in some cases no path can be

found from the spatially nearby previous routing to the target

sink.6 In such cases we fall back to placing the full route tree

onto the heap (Algorithm 2 Lines 6 to 8). Since such instances

are rare, this maintains run-time efficiency in the typical case

while ensuring robustness.

Furthermore, unlike [17] (which only considered routability),

we observed some degradation in timing performance, since

high-fanout timing-critical connections will have less flexibility

to find low delay routes. For each connection we calculate its

criticality: the ratio of connection slack to the associated timing

constraint [19]. We then route all timing critical high-fanout

4O(k log k) work
5Only a constant number of RRs are added to the heap per sink.
6For instance if the spatially nearby wire has limited connectivity to block

pins and is heading in the wrong direction.

TABLE II: Impact of Router Lookahead and Base Costs on

Titan benchmarks (Normalized Geomean)

Routed WL Crit. Path Delay Route Time Peak Memory

classic 1.00 1.00 1.00 1.00
map 0.98 0.91 5.94 1.00

classic length 0.93 0.99 0.76 1.00
map length 0.92 0.91 0.89 1.00

connections (those with criticality > γ) using the full previous

route tree (Algorithm 2 Line 3).

Table I also shows the impact of high fanout routing.

Compared to the baseline, high fanout routing (high_
fanout β = 64 γ = 1.0) reduced run-time by 25% while

slightly degrading critical path delay. On large designs the

run-time improvement can be more dramatic (up to 2.0×
on directrf). Setting an active criticality threshold (γ < 1)

improves delay, at the cost of a small reduction in run-time

improvement.

Finally, Table I shows the impact of both lazy routing

techniques together (both); run-time is reduced by 40% (up

to 5.2× on directrf). These results show that AIR’s lazy

routing approach significantly improves run-time and yields

more significant improvements on larger designs, showing its

enhanced scalability.

III. ADAPTIVE ROUTING FOR QUALITY & ROBUSTNESS

In addition to routing lazily to minimize work, AIR also

adapts to the nature of the routing problem by creating a routing

architecture aware lookahead and dynamically adjusting how

it searches for paths based on congestion.

A. Router Lookahead

AIR’s connection router (Algorithm 2 Lines 5 and 8) uses an

A*-like search algorithm [20], with a predictive lookahead7 to

estimates the cost (delay and congestion) of reaching the target

sink through the current node being explored. This guides the

router to quickly find a low cost path to the target. The VPR 7

router lookahead (which we call the classic lookahead) makes

simplifying assumptions which may not hold true on modern

FPGA architectures, like the Stratix IV-like architecture used in

this section. In particular, it assumes different wire types (e.g.

wire lengths) do not interconnect, and all wire types connect

to block pins. The classic lookahead can therefore mislead the

router on modern architectures, harming delay and wirelength.

AIR uses a new lookahead based on an enhanced version

of [18], which adapts to the targeted routing architecture. The

new lookahead uses an undirected Djikstra-based search to

quickly profile a large number of different routes through the

RR graph. As shown in Algorithm 3, this search is performed

for a handful of sample locations, and every wire type and

orientation (vertical or horizontal). This produces the delay

and congestion costs to travel different horizontal and vertical

distances. This data is reduced into a concise map of the routing

network by making the common assumption of translational

invariance in the FPGA routing network, so only differences

in position need to be stored.

The first two rows of Table II show the impact of the

different lookaheads on the Titan benchmarks. First, compared

to the classic lookahead, the new map lookahead achieves

much better quality; reducing critical path delay by 9% and
7Akin to a heuristic lower bound, but not strictly admissible.

340

5C-2



L4

L16

Fig. 4: Stratix IV-like hierarchical routing architecture with short (L4) and long (L16) wires. Long wires are only accessible via short wires, and do not
directly connect to block pins.

Algorithm 3 Map Lookahead Creation

1: function BUILD MAP LOOKAHEAD( )
2: map← INIT MAP INF() � Initialize all entries to ∞
3: for loc ∈ SAMPLE LOCS do � Each sample location
4: for w ∈WIRE TY PES do � Each wire type (e.g. length)
5: for c ∈ {CHANX,CHANY } do � Each wire orientation
6: ref node← PICK REF NODE(loc, w, c)
7: costs← DJIKSTRA FLOOD FROM(ref node)
8: for x ∈ 1 . . .W do � Each horizontal position
9: for y ∈ 1 . . . H do � Each vertical position

10: dx, dy ← |loc.x− x|, |loc.y − y| � Position difference
11: delay ← MIN(costs[x][y].delay,map[w][c][dx][dy].delay)
12: cong ← MIN(costs[x][y].cong,map[w][c][dx][dy].cong)
13: map[w][c][dx][dy].delay ← delay
14: map[w][c][dx][dy].cong ← cong

15: return map

wirelength by 2%, and does not increase the peak memory

footprint. However route-time increases by nearly 6×. The

high route-time will be alleviated by adjusting the base costs

as discussed in the following section.

Critical path delay improves since the map lookahead’s

profiling captures the effects of hierarchy in the FPGA

interconnect network. As illustrated in Figure 4, modern FPGAs

often have high-speed long wire sub-networks which are only

accessible from a subset of the more plentiful short wires

[21], [2]. Figure 5 shows the delay estimates produced by the

lookaheads for various distances starting from a short wire

when targeting a Stratix IV-like architecture similar to Figure 4.

In Figure 5a the classic lookahead assumes all connections use

the same type of short wire, leading delay to increase rapidly

with distance. In contrast, Figure 5b shows the map lookahead’s

delay estimate increases much more slowly, particularly at

longer distances. The map lookahead captures the effect of

using fast long wires to traverse long distances (even when

starting from a short wire).

These differences guide the router to make different choices

for timing critical long distance connections. The classic

lookahead guides the router to immediately drive towards the

target using the short-wire network (since it does not understand

faster paths may exist). The map lookahead instead guides the

router to search the short-wire network more thoroughly to

find a way onto the faster long wire network early, improving

delay over long distances.

B. Wire Base Costs

The lookaheads also provide congestion/resource cost es-

timates to guide the router’s search process. The congestion

cost estimates produced by the different lookaheads for various

distances are shown in Figure 6. Figures 6a and 6b show the

classic lookahead’s congestion cost estimates for short and

long wires respectively. Interestingly, these shows it is much

cheaper to travel an equivalent distance using long rather than

short wires – even though the long wires are much larger

and rarer routing resources.8 This cost difference biases the
8This derives from the original VPR formulation [1], which used a single

(uniform) base resource cost for all wire lengths.

TABLE III: Normalized Impact of Exploration Limit on VTR

benchmarks (> 10K primitives, Normalized Geomean)

Wmin
Route Time

(find Wmin)
Routed WL

(1.3 ·Wmin)
Crit. Path Delay

(1.3 ·Wmin)
Route Time

(1.3 ·Wmin)

static 1.00 1.00 1.00 1.00 1.00
dynamic 0.98 1.11 1.00 1.00 0.98

router to prefer using the long wire network even for non-

timing-critical connections. Since the map lookahead also has

a stronger preference for using long wires for timing-critical

connections this leads to significant congestion in the long

wire network. While this congestion will eventually resolve

through congestion negotiation, it is a slow process: requiring

connections to be repeatedly ripped-up and re-routed over many

routing iterations.

To address this issue we scaled the wire base costs to be

proportional to each wire’s length. The resulting congestion

cost estimates for long wires produced by the map lookahead

are shown in Figure 6c. These costs make long wires more

expensive than short wires, particularly when used to travel

distances shorter than their length.9 This guides short distance

and non-timing-critical connections to use the more plentiful

short wires.

The impact of using length-scaled base costs on the two

lookaheads is shown in the last two rows of Table II. With

length-scaled base costs the map lookahead (map_length)

significantly improves route-time, so it is 11% faster than

the original classic lookahead. The classic lookahead’s run-

time (classic_length) is also improved, but the relative

improvement is smaller. For both lookaheads the length-scaled

base costs reduce routed wirelength by 7-8%.10

C. Adapting to Congestion

To reduce run-time the VPR router has historically restricted

the search space for each connection to a fixed bounding box

region derived from net’s driver and sink locations. However

this can make it difficult to resolve congestion, since it forms

a hard limit which may prevent a connection from avoiding

congestion, as shown in the left of Figure 7. To avoid this,

AIR dynamically expands the search limit when a net uses a

routing resource adjacent to a bounding box edge as shown in

the right of Figure 7. This ensures no hard limit restricts how

far nets can move out of the way to alleviate congestion.

Table III shows dynamic bounding boxes improve minimum

routable channel width (Wmin) by 2% on the VTR benchmarks

[15] for a moderate increase in minimum channel width search

time, and slightly reduces run-time in the less congested fixed

channel width case.
9With the previous uniform base costs using an L16 wire to move 8 units

was half the cost of using 2 L4 wires. Using length-scaled base costs the L16
wire is twice as expensive as using 2 L4s, which is intuitively consistent as
half the L16 wire would be unused.

10This indicates VPR 7 sub-optimally allows short distance connections to
use long wires. This was also independently identified and fixed by [10].
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(a) Classic L4 (b) Map L4

Fig. 5: Lookahead delay estimates from short

wires.

(a) Classic L4 (b) Classic L16 (c) Map Length L16

Fig. 6: Lookahead congestion estimates from short (L4) and long (L16)

wires.
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Fig. 7: Dynamic bounding box example.

IV. MULTI-CONVERGENCE ROUTING

During negotiated congestion routing, the router tries to

resolve congestion while minimizing the impact on critical

path delay. However in highly congested designs the critical

path may be detoured to resolve congestion. To improve this

behaviour AIR can perform multi-convergence routing. Instead

of returning the first legal routing found, the router attempts to

re-route critical connections to improve critical path delay. This

may result in new congestion which could cause a huge amount

of re-routing in a traditional negotiated congestion router.

However AIR’s incremental routing approach (Section II) keeps

this well controlled.

When a legal routing is found (Algorithm 1 Line 8), the best

routing is then updated11 (Algorithm 1 Line 9). In preparation

for the rip-up and re-routing of delay sub-optimal connections

we adjust the costs of using routing resources by resetting the

present congestion cost of currently-used resources to its low

initial value (Algorithm 1 Line 13), and maintain the historical

congestion costs which guide the router away from using

previously congested resources. This allows timing critical

connections to focus on finding low delay routes while still

considering historically congested areas. Incremental re-routing

then rips-up delay sub-optimal connections (Algorithm 1

Line 17). Once re-routing is ‘kicked-off’ in this manner any

resulting congestion is naturally handled by incremental re-

routing, and less critical (but newly congested) connections

will be detoured away to resolve congestion. Finally, the best

legal routing found is returned (Algorithm 1 Line 18).

Figure 8 shows the impact of multi-convergent routing on

the large VTR benchmarks at various levels of routing stress.

We can make several interesting observations.

Firstly, independent of multi-convergence routing, increasing

channel width improves delay, wirelength, and run-time. The

additional routing resources mean the router does not need to

detour as drastically to resolve congestion.

11If it has lower critical path delay, with wirelength as a tie-breaker.

Fig. 8: QoR impact of multiple routing convergence on the

large (> 10K primitives) VTR benchmarks.

Secondly, multi-convergence routing improves critical path

delay and wirelength in high stress settings at or near Wmin.

For instance, compared to a single convergence, allowing two

convergences reduces critical path delay at Wmin by 2.3%.

However these gains diminish as channel width increases.

Allowing more than two routing convergences offers minimal

quality benefit.

Thirdly, multi-convergence routing is run-time efficient,

with subsequent convergences increasing run-time by far less

time than the initial convergence (which routed the entire

netlist). For instance, at minimum channel width the second

convergence only increased overall route-time by 30%. The

run-time overhead of multi-convergence routing also decreases

in less stressful routing conditions (where it offers less benefit).

AIR’s lazy routing optimizations (Section II) greatly reduce

the work performed when a routing is almost legal, keeping

the run-time overhead of multi-convergent routing low.

It is interesting to note that multi-convergence routing with

delay-based rip-up accomplishes many of the same goals as

the delay-targeted routing approach of [22]. In particular, it

reduces the often chaotic impact of routing congestion on

critical path delay at narrow channel widths. AIR’s multi-

convergence routing should be more run-time efficient as it

lazily re-routes only the relevant connections in the netlist. In

contrast delay-targeted routing re-routes the full netlist from

scratch multiple times in search of an appropriate delay target.

Furthermore, multi-convergence routing naturally extends to
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TABLE IV: AIR Quality & Performance (Relative to VPR 7+)

Benchmark
Netlist

Primitives
Clocks Routed Wirelength

Routed CPD
(clock geomean)

Route Time

gaussianblur 1,860,332 1 � �
bitcoin_miner 1,062,214 2 11,625,559 (0.87×) 0.96 (0.71×) 25.4 (0.23×)

directrf 934,809 2 � �
sparcT1_chip2 766,899 1 7,331,842 (0.87×) 19.00 (0.94×) 8.5 (0.18×)
LU_Network 630,446 19 5,994,360 1.26 53.6 (0.11×) �

LU230 568,406 2 17,887,915 (0.90×) 9.89 (0.61×) 19.1 (0.06×)
mes_noc 549,051 9 5,130,647 (0.84×) 9.74 (0.91×) 10.4 (0.08×)

gsm_switch 491,990 4 6,451,664 (0.87×) 5.20 (0.71×) 5.7 (0.12×)
denoise 344,210 1 3,784,910 (0.87×) 865.37 (0.92×) 5.8 (0.15×)

sparcT2_core 288,477 1 4,547,421 (0.88×) 18.81 (1.00×) 4.5 (0.16×)
cholesky_bdti 256,234 1 2,562,460 (0.85×) 9.73 (0.74×) 5.5 (0.15×)

minres 252,736 2 2,703,947 (0.81×) 5.97 (0.81×) 3.3 (0.11×)
stap_qrd 237,356 1 2,568,845 (0.86×) 7.70 (0.75×) 4.2 (0.19×)
openCV 212,900 1 3,244,912 (0.83×) 10.13 (0.62×) 7.0 (0.16×)
dart 202,481 1 2,390,767 (0.85×) 13.43 (0.88×) 3.0 (0.16×)

bitonic_mesh 191,815 1 3,871,068 (0.80×) 13.68 (0.86×) 5.9 (0.14×)
segmentation 168,637 1 1,985,817 (0.87×) 859.82 (0.92×) 3.1 (0.15×)
SLAM_spheric 125,687 1 2,117,661 (0.86×) 86.04 (0.94×) 3.3 (0.13×)

des90 109,960 1 2,079,998 (0.81×) 12.11 (0.83×) 3.4 (0.18×)
cholesky_mc 108,575 1 1,219,835 (0.83×) 7.69 (0.82×) 2.4 (0.19×)

stereo_vision 93,205 3 664,153 (0.84×) 3.28 (0.91×) 0.8 (0.14×)
sparcT1_core 91,592 1 1,328,912 (0.89×) 8.54 (0.77×) 1.9 (0.15×)

neuron 90,858 1 854,946 (0.83×) 6.12 (0.90×) 1.4 (0.18×)

GEOMEAN 286,994.4 1.6 3,110,836.5 (0.85×) 12.82 (0.82×) 5.0 (0.14×)

Normalized values relative to VPR 7+ in brackets; Run-time in Minutes; WL in grid tiles; CPD in ns;
� AIR time-out (> 48 hrs); � AIR unroute; � VPR 7+ time-out (> 48 hrs); � VPR 7+ unroute;

TABLE V: AIR & Academic Router Comparison

Routed
Wirelength

Routed CPD
(worst clock)

Route
Time

VPR 7+ 1.00 1.00 1.00
CRoute [10] 0.89 0.95 0.30

AIR 0.85 0.81 0.15

Normalized geomean of mutually routable benchmarks

multi-clock designs where there is no longer a single delay

target.

V. EXPERIMENTAL RESULTS

To evaluate AIR’s effectiveness we compare it to the routers

from VPR 7+ [3], CRoute [10], and the industrial Intel Quartus

18.0 router [16]. For a fair run-time comparison experiments

used the same Intel Xeon Gold 6146 based system, and all

algorithms were run serially. All tools are evaluated using the

Titan FPGA benchmarks [3] and a Stratix IV-like architecture,

which are representative of modern FPGA usage. To isolate

the effect of the VPR 7+ and AIR routers, identical packings

and placements12 and routing architectures are used, while

wirelength and Critical Path Delay (CPD) metrics are calculated

by VPR 8 [23].

Table IV compares AIR and the VPR 7+ router. On average,

AIR significantly improves wirelength and critical path delay

(CPD) by 15% and 18% respectively compared to VPR 7+,

while run-time is drastically reduced (7.1× faster).

Table V compares AIR and CRoute’s improvements relative

to VPR 7. Note that CRoute results are from [10] which uses

a different CAD flow for packing and placement – making it

impossible to perfectly isolate the impact of the routers. With

that caveat, the results show AIR’s circuit implementations

operate 17% faster and use 5% less wirelength than CRoute’s.

This was achieved while also completing routing 2.0× faster,

and routing 2 more benchmarks (21 vs 19) than CRoute.

Finally, following the methodology from [3], we can compare

AIR with the industrial Intel Quartus 18.0 router. Quartus

results use Quartus’ packing and placement which are higher

quality/more routable than those produced by VPR [3]; as a

result a perfect quality comparison can not be made. Despite

routing from a lower quality placement, Table VI shows AIR

completes routing 4.3× faster than the Quartus router – further

illustrating its scalability. While the circuits routed by AIR use

27% more wirelength and operate 23% slower, this is due to

the lower quality placement being used. This can be confirmed
12Generated by VPR 8 at iso-Quartus place-time.

TABLE VI: AIR & Quartus Comparison

Routed
Wirelength

Routed CPD
(clock geomean)

Route Time

Quartus 18.0 1.00 1.00 1.00
VPR8 Place + AIR 1.27 1.23 0.23

Normalized geomean of mutually routable benchmarks

TABLE VII: AIR Congestion Oblivious vs Congestion Free

Routed
Wirelength

Routed CPD
(worst clock)

Congestion Oblivious (min. delay) 1.00 1.00
Congestion Free (legal) 0.86 1.00

Normalized geomean of routable benchmarks

by comparing the quality of the initial routing (congestion

oblivious and routed for minimum delay), and final legal

routing (congestion free) produced by AIR.13 Table VII shows

the final legal routings produced by AIR do not degrade critical

path delay or wirelength. In fact, wirelength improves since

non-critical connections are re-routed for wirelength.

VI. CONCLUSIONS

We have presented AIR, the Adaptive Incremental Router,

which uses a variety of techniques to improve router run-time

and quality. AIR is a lazy router which avoids unnecessary

work by re-routing nets incrementally and using spatial

information to select only the relevant portions of route trees

when routing high fanout net connections. AIR also adapts

to the routing problem it is solving by adjusting per net

search limits for congestion and building a lookahead which

captures the characteristics of the target FPGA architecture.

These techniques make it feasible to efficiently perform multi-

convergence routing which improves the quality of existing

routings, particularly in the presence of significant congestion.

Compared to the VPR 7 router, AIR runs 7.1× faster while

reducing wirelength by 15% and critical path delay by 18%.

AIR also produces higher quality implementations than a recent

academic router [10], while reducing run-time by 2.0×. Finally,

compared to the industrial Quartus router, AIR completes

routing 4.3× faster while maintaining or improving quality.

Given AIR’s efficient run-times and high quality it is used

as the default router for VPR 8, and hence available as open-

source software [24].
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