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Abstract— Fast and accurate predictions of a program’s
execution time are essential during the design space exploration
of embedded systems. In this paper, we present a novel approach
for efficient context-sensitive timing simulations based on the
LLVM IR code representation. Our approach allows evaluating
simultaneously multiple hardware platform configurations with
only one simulation run. State-of-the-art solutions are improved
by speeding up the simulation throughput relying on the fast
LLVM IR JIT execution engine. Results show on average over
94% prediction accuracy and a speedup of 200 times compared
to interpretive simulations. The simulation performance reaches
up to 300 MIPS when one HW configuration is assessed and it
grows up to 1 GIPS evaluating four configurations in parallel.
Additionally, we show that our approach can be utilized for
producing early timing estimations that support the designers in
mapping a system to heterogeneous hardware platforms.

I. INTRODUCTION

Non-functional properties, such as the execution time of

a program, are crucial aspects in the embedded systems

domain. During the early stages, fast timing estimations are

essential. In fact, system designers are often interested in

determining the most suitable System-on-Chip (SoC) platform

for their system or, in case of heterogeneous Multi-Processor

System-on-Chip (MPSoC) architectures, in determining how

to partition the application between different processing units.

In this particular setting, the selection of the most suitable

configuration usually depends on the timing requirements.

Predicting the execution time of a program for a target

hardware platform is a hard task. During the last decades, chip

manufacturers introduced new complex mechanisms to satisfy

the continuous request for higher computation capabilities

from the industry. Nowadays, common hardware platforms

are equipped with multiple superscalar processors (heteroge-

neous and multicore CPUs) that include complex mechanisms,

such as out-of-order execution, multiple level caches, smart

prediction units and others. All these mechanisms attempt

to improve the system performance but, at the same time,

they reduce the system analyzability. In fact, they appear too

complex to be modeled for timing analysis and, in most cases,

their documentation is not completely available due to intellec-

tual property restrictions. For this reason, measurement-based

timing analysis approaches are preferable to static analysis

because they are based on mere timing observations instead of

in-depth modeling of complex hardware mechanisms (which

is time-consuming and error prone).

Several analysis approaches try to address these intricate

issues. One of the preferred techniques for timing estimations

relies on system simulations. The different simulators can

Fig. 1. Fast design space exploration analyzing multiple hardware target
platform configurations or software MPSoC partitions.

be characterized by two main quantitative metrics: accuracy

and throughput. Among the simulation approaches, context-

sensitive simulations proved to be an attractive approach

generating rapid and accurate estimations. Context-sensitive

simulations also allow evaluating multiple program input data

and therefore considering run-time software variability.

In this paper, we present a new measurement-based method-

ology that allows executing fast and accurate context-sensitive

simulations for evaluating the execution time of software

programs on complex hardware platforms. The simulations

execute LLVM IR code, the compiler’s internal hardware

independent intermediate representation. As shown in Fig. 1,

the approach requires running the timing extraction phase for

information extraction only once for each hardware platform

configuration. Thereafter, multiple context-sensitive LLVM IR

simulations can be executed considering different input data

sets and hardware platform configurations. Our methodology

enriches the state-of-the-art by: 1) Improving the simulation

throughput utilizing the fast LLVM Just In Time (JIT) execu-

tion engine. 2) Defining a fully automatic and exact LLVM IR

to binary control flow graph mapping. These properties enable

our novel approach to offer a further evaluation capability.

High simulation throughput and accurate mapping enable to

execute fast simulations for producing early timing estimations

for the design space exploration of heterogeneous systems

considering complex MPSoCs.

The remainder of the paper is organized as follows: an

overview of related work is presented in Section II. Thereafter,

Section III describes the proposed approach workflow and

Section IV presents its evaluation. Section V introduces the

MPSoC analysis extension and finally, Section VI concludes

the paper with summary and future work.
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II. RELATED WORK

Multiple factors complicate the timing analysis of programs

considering different hardware platforms. In fact, the exe-

cution time of a program on a given target platform does

not depend only on the hardware characteristics of a system.

Timing estimation techniques need to consider as well all

the optimizations applied at compile-time and the specific

program input data. Compiler optimizations can substantially

change the high-level structure of a program depending on

their objectives. Also, varying the input data may determine,

at run-time, different control paths on the control flow graph

causing different timing behavior for the same executable.

In this setting, context-sensitive timing simulations have

proved to be a valid timing analysis technique for fast design-

phase exploration. The different timing estimations produced

by these techniques ensure a high level of accuracy, even when

analyzing complex hardware target platforms. The literature

reports that context-sensitive timing simulations are control

flow driven simulations that have been applied considering

multiple program abstraction levels. The highest abstraction

level for these simulations relies on the program’s source

code as shown in [1], [2], [3]. Source-level timing simulations

generally require two steps before simulating. Initially, timing

information is extracted for different parts of a program and

consequently, the information is annotated directly in the

source code. During the simulation, the produced annotation

allows considering target timing information depending on the

visited path in the control flow graph (CFG). In contrast, the

lowest simulation abstraction level relies on the target binary

representation of a program [4], [5], [6]. In this case, fast

simulations are executed by directly running the target binary

code on emulators on a fast host machine. During the simu-

lation, the emulator updates the timing estimation depending

on the visited control flow and fetches the associated timing

data from an external timing database. Finally, a third level of

simulation abstraction is based on the source code intermediate

representation (IR) of a given compiler. An example has

been presented in [7], where the authors rely on the LLVM

Compiler Infrastructure [8]. Similarly to binary simulations,

context-sensitive IR simulations need an IR execution engine

that determines the program flow path and that consequently

updates the timing estimation.

Binary-level context sensitive simulations can suffer from

undesired slow-down introduced by the necessary instruction-

set architecture (ISA) translation performed by the system em-

ulator [9]. This type of approaches fully relies on the emulator

support. Additionally, every simulation is limited to a specific

hardware platform configuration and to a predefined set of

compiler optimizations. Source-level and IR-level simulations

do not require ISA translations and, for this reason, they

may offer higher throughput. Source-level simulations directly

execute binary code compiled for a host machine, while IR-

level simulations execute the IR code in a sort of virtual

machine. Inevitably, both the approaches in these categories

require a mapping between the code binary representation and

the one that is utilized during the simulations. The mapping is

necessary reasons of accuracy. In fact, the timing information

is always extracted at the binary level via measurements. In

contrast, simulations are executed on a program abstraction

layer that may be based on a different CFG structure.

It is commonly easier to generate an IR to binary CFG map

than a source code to binary one. In fact, the source code does

not consider compiler optimizations at all. In contrast, the IR

code structure is the effect of the front end compilation process

and, after the middle end phase (or optimizer), it already

includes all the requested hardware independent optimizations.

Consequently, the IR structure is closer to the binary one and

easier to map. In [1] a complex source to binary mapping

is presented. The map is generated relying on the debug

information generated during the compilation. Unfortunately,

it is not always possible to rely on this information. The

compiler has to support it and, in some circumstances, it may

be inaccurate due to complex compiler optimizations (mainly

performed during the front end and middle end compilation

activities). In contrast, multiple methodologies [10], [11], [12]

show that easier algorithms, independent from the compiler

support, can be utilized to produce IR to binary mapping.

The new methodology we propose belongs to the IR

context-sensitive simulations category and it is inspired by the

simulation approach previously presented in [7]. The authors

implemented SIMULTime, a timing simulator based on the

interpretive LLVM IR execution engine for evaluating in par-

allel multiple SoCs and compiler optimizations configurations.

In contrast to this approach, we enrich the state-of-the-art by

proposing LLVM IR timing simulations based on the faster JIT

execution engine. In addition, we propose an improvement for

the IR to binary CFG mapping algorithm described in [10] by

making the algorithm fully automatic. With our improvement,

the algorithm produces exact mappings solving possible map-

ping ambiguities without expert supervision. High simulation

throughput and accurate mappings enable our methodology to

execute fast timing simulations and produce timing estimations

for the design space exploration of heterogeneous systems

considering complex MPSoC platforms.

III. SIMULATION METHODOLOGY

In this section, we initially present the fundamental building

blocks that compose the proposed LLVM IR context-sensitive

timing simulation methodology. Thereafter, we present the

simulation framework workflow, shown in Fig. 2, that allows

evaluating multiple SoC configurations.

Fig. 2. Multiple JIT-based simulations can be executed considering different
input data and reusing TDBs and IR-binary mappings previously generated.
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A. Implicit Hardware Modeling

The proposed methodology belongs to the measurement-

based timing analysis approaches. Measurements can either

be extracted directly by running an application on a target

platform or, if the hardware is not available, on an accurate

simulator. Complex programs can be stimulated differently

with multiple input data sets. Due to the complexity of pro-

grams and the wide range of possible input data, it is not fea-

sible to measure every possible path in the CFG and consider

every input data value. Under the assumption that programs

spend most of their time in loops and recurring functions,

we identified the V IV U(n, k) (virtual inlining and virtual

unrolling) context mapping function [13] as an appropriate

method for implicitly modeling complex hardware platforms

and their mechanisms via measurements. Accurate timing

descriptions of loops and blocks of code can be expressed

considering complex stateful hardware resources such as cache

memories, pipelines, branch predictors, and others.

This mapping relies on the analysis of an interprocedural

CFG that describes the structure of a complete program.

Execution paths on this graph can be expressed via call strings.

A call string contains the concatenation of all the labels of the

call edges (traversed edges while visiting the basic blocks).

A context in the program is described by a sequence of pairs

consisting of a non-recursive call edge and the recursion count.

A call string may theoretically be infinite due to recursion or

unbounded loops in the program and, consequently, it may

be necessary to determine an infinite number of contexts.

For this reason, the V IV U(n, k) mapping function utilizes

two parameters to reduce this number. The first parameter n
limits the maximum recursion count to consider. The second

parameter k limits the number of elements in a context.

For a specific binary executable, it is possible to generate

multiple timing databases (TDB) arranging the extracted mea-

surements according to the VIVU mapping function. A TDB

contains timing information for a specific hardware target

configuration and for a specific set of compiler optimizations.

A selected simulator can query at run-time one or multiple

TDBs and consequently update the timing predictions. Both

simulation performance and accuracy are influenced by the

configuration of the n and k parameters. High values for both

parameters ensure high accuracy but limited simulation speed

and, vice versa, low values improve the speed by sacrificing

the accuracy. Depending on the simulation objective, it is

necessary to determine a tradeoff between them.

B. IR to Binary CFG Mapping

Our methodology requires an IR to binary CFG mapping

mechanism. This is a common requirement for approaches that

are not directly based on the software binary representation.

Errors or incomplete mapping results can lead to a reduced

prediction accuracy. From the large number of mapping ap-

proaches available in the literature, we decided to utilize for

this delicate task the mapping algorithm presented in [10].

This algorithm allows producing exact mappings relying on

two simple numerical metrics that are flow value and nesting

level. Unfortunately, the algorithm is not fully automatic. In

fact, it can fail in case the graphs contain ambiguities. An

ambiguity arises when nodes in similar positions have the

same metrics values. Fig. 3 shows an ambiguity example

problem, where nodes in similar positions have the same

flow value (F) and nesting level (N). The solution provided

by the authors in [10] requires the support of an expert to

disambiguate these cases. They expect that an expert solves

the ambiguities by inspecting and consequently comparing

the code contained in both the IR and binary blocks. This

can be a hard and expensive task, especially in case of large

applications. In this regard, we conducted some experiments

and we observed that mismatches introduced by an expert can

reduce the estimations accuracy by 40%.

Considering the importance of this task, we propose an

extension to the algorithm that makes it fully automatic.

The extension allows producing exact mappings even in case

of complex applications. We propose to replace the expert

knowledge with information extracted from both binary and

IR traces. Traces contain visited control flow paths during the

execution of a program. Therefore, we decided to utilize bi-

nary and IR traces generated with the same program input data

in the disambiguation task. The TDB generation procedure

requires extracting multiple binary traces and they can be re-

utilized. IR traces containing an ordered list of visited basic

block labels can be quickly generated by JIT executing prop-

erly instrumented IR code. Generating the necessary IR traces

introduces a minimal overhead in the complete methodology

but it is fundamental in ensuring high accuracy.

The fully automatic mapping process requires two con-

secutive phases. Initially, the original mapping algorithm is

executed and eventual ambiguities are identified. During the

second phase, which is executed only in case of ambigui-

ties, the information extracted from the traces is utilized for

adjusting incomplete mappings. Fig. 3 shows an example of

mapping adjustment. In the first phase the original algorithm

correctly succeeds in mapping the IR basic blocks Ik and Iz
but it fails for the other two blocks because of an ambiguity

(graphically represented by a question mark). Therefore, in

the second phase, the ambiguity is solved relying on path

information extracted from traces (gray path). Initially the

algorithm decides to associate Ix with Bx and consequently

it completely solves the ambiguity associating the remaining

node Iy with By .

Map decision

First / Second step
Ambiguity

Fig. 3. IR to binary mapping ambiguity problem and suggested trace-based
solution: IR and binary traces are automatically compared to solve possible
initial algorithm ambiguities.
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C. IR Simulation Code Annotation

The LLVM IR code is organized in compilation modules

that collect program information. Modules describe functions

and global variables that are contained in a program. Each

function, in turn, contains at least an entry basic block

followed by potential ones. As shown in the left part of Fig. 4,

every basic block is identified by a label. Each basic block

contains, in a strict order, zero or multiple Phi-instructions

and zero or multiple instructions followed by a terminator

instruction. The IR instructions are human-readable and they

are expressed in the static single assignment form (SSA).

The LLVM IR syntax does not consider a function call

instruction as a basic block terminator. In contrast, the V IV U
mapping theory considers these instructions as initiators of

edges in the context call strings. Consequently, during the

TDB generation, where an interprocedural CFG is consid-

ered, every function call instruction represents a basic block

terminator. In order to ensure high-level timing estimations

accuracy, it is important to consider this discrepancy while

running context-sensitive timing simulations.

Our approach allows executing fast JIT-based context-

sensitive timing simulations by executing annotated LLVM

IR code. We only annotate the IR code used during the

simulations. We do not annotate the optimized IR code that

is provided in input for the back end compilation. The right

side of Fig. 4 shows how we propose to annotate the simula-

tion code considering the terminator instructions discrepancy

problem. The annotation is performed by running an addi-

tional optimizer pass we created on the previously generated

optimized IR. The annotation consists of an IR function call

that, at run-time, forces the IR execution engine to update

the timing prediction values by querying the necessary timing

databases. The function is implemented in an IR library linked

to the simulation code. The annotation can be inserted in

two possible locations: at the beginning of the basic block

instructions immediately after the possible Phi-instructions (if

any), and after every function call instruction. The former

location helps managing the case where a basic block is

entered, the latter manages instead the case where a basic

block execution is resumed after a function call returns.

D. Workflow

The proposed methodology workflow requires four distinct

interconnected phases. The phases are shown in Fig. 2 and

they are identified by circled roman numerals. The workflow

starts with the compilation phase I , which has to be executed

only once. The front end and the middle end (respectively

called clang and opt in LLVM) generate the IR code. The back

Fig. 4. IR simulation code annotation: Annotation function calls are inserted
at the beginning of the BBs and after every function call instruction.

end (llc) and linker terminate the cross-compilation producing

one binary executable for target configuration (target platform,

hardware dependent optimizations and memory mapping).

Consequently, the analysis phase II can be started to produce

essential information for the timing simulations. The analysis

has to be conducted for all the hardware target configurations

but only once per program. Its objective is to generate all

the necessary TDBs and the associated IR to binary CFG

mappings in three main activities. Initially, timing traces are

extracted directly from the hardware platforms. One TDB

per hardware target configuration is generated analyzing the

traces and applying the previously described V IV U function

mapping. In parallel, the necessary exact IR to binary CFG

mappings can be generated. Both the program representa-

tions are analyzed and consequently the previously described

extended mapping algorithm is executed. The third phase

III starts with the annotation of the IR code. Relying on

the IR-Binary mapping files generated during the previous

phase, an additional opt pass allows inserting the necessary

instrumentation in the IR file designed for the simulation. This

operation is specific for a set of configurations and it has to be

repeated every time the set changes. Once the annotated IR has

been generated, we run additional passes to further optimize

the IR simulation code. These passes improve the simulation

performance considering the host machine architecture where

the simulations will be executed.

At the end of the third phase, all the necessary information

for running JIT-based contex-sensitive simulation has been

generated. The timing simulations IV are executed via lli, an

LLVM tool that directly executes IR code. The simulations

can start selecting the lli JIT execution engine and providing

in input both the necessary generated TDBs and the annotated

IR code. During its execution, the simulator updates the timing

predictions by fetching relative time values from the TDBs

according to the IR annotation. Multiple fast simulations can

be executed considering different input data.

IV. JIT-BASED SIMULATION EVALUATION

A first objective of our evaluation is determining the simu-

lation throughput speedup that JIT-based simulations provide

compared to the interpretive ones. We expected a substantial

speedup maintaining the high-level of accuracy intrinsic in

context-sensitive simulations. For this purpose, we initially

cross-compiled the Mälardalen benchmarks [14] for the ARM

Cortex-A15 processor included in the TI EVM-K2E hardware

platform [15]. Thereafter, timing traces have been extracted

directly from the target via the non-intrusive TRACE32 tracer

[16]. Two timing databases per benchmark, V IV U(20, 20)
and V IV U(∞,∞), have been generated following the proce-

dure previously described. Thereafter, the different simulation

throughputs resulting from simulations based on the interpreter

execution engine and the faster JIT have been compared. These

results are shown in Fig. 5. The speedup achieved considering

the two different timing databases configurations confirms

the speed benefit of running JIT-based simulations instead of

interpretive simulations. Our measurements show an average

speedup of 73 for TDB V IV U(20, 20) configuration and

45 for TDB V IV U(∞,∞), while the accuracy is unaltered

(error percentage lower than 6%). The maximum simulation
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JIT-Based Simulation Speedup

Fig. 5. Observed single SoC simulation throughput speedup comparing JIT
and interpretive simulations.

throughput value has been observed for the fdct benchmark

fetching timing information from the TDB V IV U(20, 20).
In this specific case, the JIT-based simulation achieved a

throughput value of 302 MIPS (millions simulated ARM

instructions per second) on a normal host machine with an

Intel Core i5 CPU 750 at 2.2 GHz.

A second objective of our evaluation is assessing the ben-

efit of evaluating multiple hardware platforms in parallel by

executing only one JIT-based simulation. An improvement in

the simulation throughput represents an essential prerequisite

for the later presented MPSoC simulations. For this reason,

we decided to evaluate the simulation throughput considering

four complex SoCs that include four distinct ARM processors:

TI EVM-K2E [15], TI Hercules RM57LHDK [17], Xilinx

ZedBoard Zynq-7000 [18] and Hitex LPC4350 [19]. Respec-

tively, the included ARM processors are: Cortex-A15, Cortex-

R5, Cortex-A9 and Cortex-M4. Simulating the Mälardalen

benchmarks with different data sets, we have been able to

determine for each of them the most performant SoC. The

results for six significant benchmarks considering only TDBs

V IV U(20, 20), are plotted in Fig. 6. For all of them, we ob-

served that increasing the number of configurations to analyze

in parallel implies an increment in the simulation throughput

(for both V IV U configurations). The highest reached sim-

ulation speed has been observed evaluating in parallel four

hardware SoC for the fdct benchmark. In this case, the

maximum simulation speed has been 1.13 GIPS. On average,

0

200

400

600

800

1000

1200

compress duff expint fdct fft1 jfdctint

M
IP

S

A15

A15, R5 

Evaluated SoCs:

A15, R5, M4, A9

A15, R5, M4

Fig. 6. Simulation throughput increase in case multiple configurations are
evaluated in parallel in one simulation.

simulating four configurations in parallel showed a simulation

speed of approximately 210 MIPS which represent a speedup

of 140% compared to single configuration simulations.

V. MPSOC EARLY TIMING ESTIMATIONS

The results collected during the evaluation of the JIT-based

simulations show that the proposed methodology ensures

significant simulation throughput and highly accurate results.

The simulation throughput is preserved even when multiple

SoCs are evaluated in parallel. Therefore, in addition to the

previously described workflow, we show that the proposed

methodology can be utilized during the early design space

exploration activities, producing early estimations for the ex-

ecution time of heterogeneous applications considering differ-

ent MPSoC mappings. Below, we first show how to generate

MPSoC timing estimations and then exemplary results.

A. Workflow Extension

In order to produce timing estimations for heterogeneous

systems, an additional activity is required in the simulation

workflow. This step is represented in Fig. 2 H and identified

by gray shapes. The basic idea for producing MPSoC timing

estimations is to execute LLVM IR context sensitive simula-

tions considering multiple TDBs, one per hardware/software

partition. Depending on the partition schema, the JIT-based

simulation selects the appropriate TDB to query for updating

the timing estimation. Currently, our methodology can ana-

lyze synchronous heterogeneous systems and it neglects the

synchronization time between the processors. An analyzable

heterogeneous system is composed of functional units (FU),

collections of functions, that can be mapped to different

processors included in an MPSoC.

The additional activity consists in a new annotation pass.

This pass annotates the simulation IR code forcing at run-time

the JIT execution engine to visit a specific TDB depending on

an input configuration. The configuration specifies the hetero-

geneous partitions and the FUs. Each FU has to be assigned

to one of the processors in an MPSoC. The configuration

can be generated either by hand or from a model-driven

development tool as MATLAB/Simulink in a similar way the

authors showed in [20]. In the second case, the model has to

be annotated and the auto-generation source code process has

to produce one function for each component in the model.

B. Exemplary Evaluation

We evaluated the MPSoC analysis extension with a practical

example. We considered a system composed of four intercon-

nected ARM Cortex processors: A9, A15, M4 and R5. We

created a software application combining different Mälaralen

benchmarks listed in in Table I. The selected benchmarks

differ in characteristics and source lines of code (SLOC). The

table also describes the software application and its partition.

The FUs execution order is: FU1 → FU2 → FU3 → FU4.

The complete application has been compiled for all four the

processors and the workflow has been followed generating

the IR simulation code. We propose two different ways for

producing the TDBs to consider during the simulations. A

TDB can be generated from traces extracted from the complete

execution of a program or only from traces belonging to
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TABLE I
HETEROGENEOUS APPLICATION STRUCTURE AND SYSTEM PARTITIONS

Functional
Unit SoC Processor Benchmarks SLOC

FU1 TI EVM-K2E Cortex-A15
bsort100 128
cnt 267
crc 128

FU2 TI RM57LHDK Cortex-R5
fac 27
fdct 239
fft1 219

FU3 Hitex LPC4350 Cortex-M4
fibcall 72
insertsort 92
janne complex 64

FU4 Xilinx Zynq-7000 Cortex-A9
matmult 163
minver 201
ns 535

TABLE II
AVERAGE HETEROGENEOUS SIMULATION VALUES AND PREDICTIONS

Tracing
Approach VIVU Simulation

Time (ms) MIPS % Error

Complete
Trace

(20, 20) 397.931 69.98 26.71
(∞,∞) 585.88 47.60 26.91

Trace
Partitions

(20, 20) 403.852 68.96 8.89
(∞,∞) 591.72 47.07 9.31

the appropriate partition. The first possibility results easier,

simple end-to-end tracing, but it may entail inaccuracy due

to inappropriate timing values for some contexts. The second

one is expected to be more accurate but time consuming in

the tracing procedure.

The results of our evaluation are collected in Table II. Four

different TDBs have been created: we extracted the neces-

sary timing traces considering both the techniques previously

described and, for each tracing technique, we generated two

TDBs setting the V IV U parameters to (∞,∞) and (20, 20).
Executing the simulations on a normal host machine, their

execution completed always in less than one second. When

the simpler tracing method is utilized, the percentage of

error for the MPSoC timing estimation is around 26%. The

error drastically drops to 9% in case the traces are extracted

considering the system partitions.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a new approach designed for

supporting the early design space exploration activities in the

development of embedded systems. Fast and accurate timing

estimations of the execution time of a program considering

multiple complex hardware target platforms can be assessed

by only one simulation. These timing estimations are produced

by executing LLVM IR context-sensitive simulations. The

simulations rely on the fast JIT execution engine and an on

exact IR to binary CFG mappings. The timing estimations

are highly accurate, with an error percentage lower than 6%,

and the simulation throughput, up to 302 MIPS, is preserved

even in the case of multiple SoCs being evaluated in parallel.

These two properties allow producing early timing estimations

and exploration of different software application’s mappings

to complex heterogeneous MPSoC platforms.

Prospectively, we intend to improve the MPSoC analysis

by also considering asynchronous heterogeneous systems. The

extension will allow analyzing more complex scenarios where

shared stateful hardware resources and scheduling events

influence the timing performance of a system.
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