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Abstract— Recent works have shown that certain classes of
emerging memory technologies lend themselves to organizations
that offer equally dense access support for patterns with mul-
tiple strides, such as row-column memories. However, with few
exceptions, these prior works have only considered such multi-
orientation memories (MOMs) and MOM-caching techniques in
the context of traditional processor architectures. In this work,
we explore the potential for leveraging the capabilities of MOMs
to present multiple concurrent views of data organization within
the memory hierarchy as a means to offload and overlap inter-
kernel marshalling, a range of data layout transformations, and
even lazy construction of derivative data structures to work per-
formed by the MOM-capable memories and caches themselves.
We demonstrate the potential of MOM-offloading to improve
performance and reduce data movement for select computation
patterns and describe the application of the approach to broader
classes of processing in memory workloads.

I. INTRODUCTION

Data structures with logically multidimensional layouts

are ubiquitous, from 2D matrices and record tables to N-

dimensional abstract graph embeddings. However, for reasons

of both history and simplicity, commercial ISAs require the

projection of these structures into a single-dimensional address

space and the physical structure of traditional memories is

heavily optimized to prefer accesses aligned along that same

dimension, e.g. with cache line, row buffer, and other locality-

optimization effects. However, several new types of emerging

memories inherently lend themselves to crosspoint organiza-

tions wherein the physical symmetry of the underlying mem-

ory array opens up opportunities for equally optimized access

in two simultaneous directions. We term these memories multi-
orientation memories (MOMs), and several recent works have

explored both MOMs and how to integrate them with and into

caching systems [1], [2], [3] and memories [4], [5].

While prior work on MOMs has exploited scenarios

wherein different regions of code expressed different orienta-

tion preferences to the same multi-dimensional data structure

(e.g. row versus column access across queries to an in-memory

database), we propose to do something more radical: We

will utilize the separable indexing capabilities of MOMs that

allow for different indexing to row and column data within

a 2D cache tile to enable the co-location, within a single 2D

cache tile, of two distinct software data structures occupying

disjoint memory ranges for the special cases where each data

structure is a differently realized view of the same data or

a subset thereof. While this may seem a narrow restriction,

many codes in certain domains do perform explicit transforms.

For instance, the reorder function in the Intel DNNL [6]

is frequently invoked to transform output orderings between

groups of convolutional and other layers in order to allow each

collection of kernels to operate in its preferred dimensional

ordering. Similar explicit transforms exist in HPC workflows

among independently developed workflow portions. Moreover,

while software targeting a MOM-enabled platform can simply

elide 2D transpose operations and operate in column orien-

tation, higher dimensional transforms will still require some

reordering effort, even when mapped to MOMs.

By allowing software to request hardware support for im-

plementing a reorganizing relationship between specific pairs

of memory regions, when the system grants such a request

(i.e. the specific capacity and organizational restrictions are

supported by the cache in question) the reordering kernel can

be elided in its entirety and loads and stores to the reordered

region can be accessed as soon as all elements of the source

data layout are in or have passed through the 2D cache.

Our approach will allow, for cache-resident data structures, a

potentially zero-copy realization of the reordering kernels that

are otherwise needed to perform explicit transforms to realize

alternative data views. For non-cache-resident structures, our

proposed mechanism will lazily perform the necessary copies

on writeback, when a 2D cache tile is evicted, without involv-

ing the processor in data reorganization tasks. By restricting

the complexity of multi-address indexing to deeper levels of

the cache and providing software managed ordering between

the accesses to the output data location and its cache-driven

transformation, we can keep near-processor memory interfaces

simple and only add complexity to the access and fill latencies

of less timing-sensitive deeper caches.

To the best of our knowledge, this is the first work to

explore utilizing the secondary access dimensions of a MOM

to perform address virtualization across producer-consumer

pairs where each expects to operate on a logically distinct

data structure. While prior works [5] have proposed extensions

to main memory for accelerating layout transformations, they

have done so by adding new transformation engines to the

memory system, rather than by utilizing features naturally

supported by MOMs. The contributions of this work include:

• Characterization of opportunities for reordering support

via in-memory mechanisms with regard to their suitabil-

ity for MOM-based acceleration.

• A mixed-orientation multi-address representation for
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shared producer-consumer buffers that can completely

eliminate many intra-cache copy operations.

• An analysis of the bandwidth reduction opportunities

possible when replacing explicit software reordering code

with MOM-based multi-mapping buffers. We show that

our approach can reduce memory traffic by between 20-

50%, on average.

II. BACKGROUND AND RELATED WORK

In this section, we provide the background on the abstract

MOM model, fundamental hardware considerations for im-

plementing specific classes of MOMs and MOM-caches, and

discuss related approaches for providing transform accelera-

tion and fast access to non-contiguous data elements.

A. Multi-Orientation Memory (MOM) Systems

Fig. 1 depicts an abstract view of a MOM system. A MOM

either implements an ISA-exposed logically multi-dimensional

address space, or imposes one atop the underlying linear

space by treating particular patterns (e.g. specific strides)

as if they were densely co-located. The defining feature of

MOMs is main memory and/or caches that are capable of

containing data in and serving requests for multiple logical

(dense) orientations at the same time. In the scope of this

paper, we will primarily focus on the specific opportunities

made available by physically 2D memories (e.g. crosspoint

memories built with ReRAM [7] or STT [8]) that may not

be available with implementations whose multi-dimensionality

is only logical in nature. More specifically, in a logically

2D cache, in addition to the challenges of data duplication

across orientations, the presence of a line in a one of the

two supported dense orientations does not immediately imply

that the same data is currently available in the other dense

orientation. We discuss the tradeoffs in supporting an exposed

versus an implicit multi-dimensional interface in Section IV.

Orientation Fig. 1 depicts the logical multi-orientation over-

lay for a linear address space. Different colored squares

represent different forms of adjacent data along different

dimensions. Unlike a one-dimensional address space where

only data of contiguous addresses are adjacent (blue squares),

adjacent data in a MOM’s address space can have non-

contiguous addresses (other colored squares, usually some

fixed stride apart). In this paper, we use “row” orientation

to refer to the special case of contiguous data with unit stride

(“O0” in Fig. 1). In some previously proposed MOMs [2],

[1], there is a hardware-dependent stride that defines a fixed

preferred second dimension, or the unit of transfer directly

corresponds to the resources of a physically 2D tile [1], and we

refer to data along this hardware-dependent dimension to be

“column” oriented (e.g. the orange squares when the row size

of this address space is hardware-dependent, “O1” in Fig. 1).

Hardware and Technology Support for MOMs Regardless

of how it is achieved, a MOM system must include a memory

that appears to provide data in different orientations with

roughly similar cost. Directly using gather-scatter operations

on top of traditional DRAM would allow for emulating multi-

orientation access, but such a system would exhibit highly

asymmetric properties among accesses to different orienta-

tions. Texture caches [9], [10] exploit tiled locality, which
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Fig. 1. Abstract view of a MOM system

is multi-dimensional. However, they are generally read-only

and have high latencies for all accesses. Recent papers have

proposed memories that provide MOM capability directly by

data shuffling on DRAMs [3], or leveraging the inherent

physical symmetries of some two-terminal emerging memory

technologies in crossbar configurations [2], [1] to freely allow

reads and writes to data along either row or column orien-

tations. Both approaches have shown substantial performance

benefits when applied to MOM-tuned applications.

MOM Caching Recent works [3], [2], [1] that have evaluated

architectures with MOMs have also proposed cache hierar-

chies that can cache oriented data. We refer to all such caches

as MOM-caches, regardless of their implementation specifics

(e.g. whether in-cache data is only logically or physically con-

tiguous in multiple orientations). While regular SRAM caches

using orientation metadata to virtualize multi-orientation sup-

port have been more broadly proposed [3], [2], [1], this work

relies on physically multi-dimensional caches [1] in order

to realize transformations between software-defined source-

destination pairs of orientation preference. Compared with

prior physically-2D caching, we relax the constraint that the

vertical (“column”) stride be fixed as a memory configuration

parameter and thereby enable dynamic formation of tiles

wherein row-locality in the source dimension is maintained

while simultaneously constructing column locality in the de-

sired output ordering.
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Fig. 2. MOM data layout of an IMDB table

B. Applications with Strong Affinities for MOMs

MOMs are particularly appealing for applications with

highly structured multi-dimensional data that does not have a

single dominant access orientation. For example, in-memory

database (IMDB) applications have access patterns that vary

by query, the same matrix may be accessed as the left matrix

in one computation and the right matrix in the next, etc. Fig. 2

shows an example of a MOM-aligned data layout proposed in

Wang, et al. [2], where tuples for a mixed OLTP/OLAP in-

memory database are stored consecutively in row orientation,
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and fields are stored consecutively in column orientation.

MOMs directly address the needs of such IMDBs by enabling

both row-dominant (OLTP) and column-dominant (OLAP)

accesses to the same table, as well as allowing column-

oriented reads to specific fields in comparison-based filtering

queries to exist alongside row-oriented readouts of matching

data from the same tables. Our proposed approach goes further

in also accelerating some view realization operations on such

tables to produce derivative table organizations.

In similar fashion, MOMs can enable more direct im-

plementations of linear algebra operations to achieve the

efficiencies of more complex code transformations by allowing

equally dense column and row oriented accesses to MOM-

aligned data. As has been previously noted [3], a broad range

of applications, including key-value stores, graph processing,

and graphics, can potentially derive benefits from MOMs and

MOM-caching by exploiting simultaneously dense accesses

to both multiple fields within a memory object and the same

field across many memory objects beyond the obvious case of

IMDBs. However, no widely used compiler infrastructures or

codebases currently target MOM models or provide memory

allocators designed to align with the logical-physical mapping

requirements of proposed rigid row-column MOMs or other-

wise pack data in multiple simultaneous access localities.

C. Related Work

Symmetric and Transpose Memories In addition to two-

terminal technologies such as STTRAM [11], [12], PCM [13],

[14] and ReRAM [7] that, in crosspoint topologies, can

perform read and write operations via either of the vertical

or horizontal crosspoint wire sets [8], the possibility of sym-

metric access has also been explored in other technologies

and array structures. For example, FeFET [15] memories have

been proposed with symmetric access capabilities [16], as have

multi-layer SRAMs built with monolithic 3D integration [17],

and symmetric access DRAMs [18] and SRAMs [19].

Access Pattern Locality The most direct benefit of MOMs

is that they can provide spatial locality in multiple simulta-

neous access stride orientations. Many previous works aim

to improve performance by increasing data locality through

other means. Various compiler optimizations, such as layout

optimizations [20], [21], [22], [23], [24], loop reordering and

tiling [25], [26], [27], [28], etc. improve data locality by co-

aligning data layout and access patterns in a cache-favorable

fashion. Recent works have provided hardware support for

more diverse data locality by allowing caching of non-unit-

stride data within a single cache line [3], [2], [1], and

have demonstrated considerable performance benefits when

combined with proper compiler optimization. However, no

previous work has attempted to use MOM-caching to map

multiple distinct address ranges into the same physical cache

tile.

III. MOTIVATION AND CHARACTERIZATION

A. Typical transformation in applications

Many applications with multi-dimensional data structures

have dense access patterns corresponding to particular data

layouts and the cost of performing a data layout transformation

can be preferable to performing sparse accesses. Typical trans-

formations include matrix transpose, dimension reordering on

high dimensional matrices, joining/splitting data structures,

etc. For example, in scientific applications with multiple com-

putation kernels, each computation kernel has a preferred data

layout to get maximum data locality or reuse and accelerate

the computation, and input data to these computation kernels

must be transformed to the preferred layout if it is not already

ordered in alignment with that kernel. Database applications

also exhibit data transformation, where different views are

realized across content from one or more tables.

In this work, we focus on Intel’s DNNL reorder primitive

as a case study. The reorder primitive transforms the order

of dimensions of a multi-dimensional matrix from a producer

order to a consumer order. In DNNL, computation kernels

have been optimized with respect to specific source dimension

orders, and require input data to these kernels to be layed out

as such. For a network with multiple layers where a previous

layer’s output is fed to the next layer (e.g. as in deep neural

networks), if the produced data from the previous layer is in a

different layout than the next layer’s requirement, a reorder is

invoked. We choose to focus on the DNNL reorder primitive

because the explicit reordering can be easily isolated, and the

kernels represent various forms of reordering and tiling in high

dimensional data that provide broad coverage of real-world

transformation examples.

B. Overhead of transformation

While performing transformations in general improves the

performance by accelerating the computation that consumes

the data being transformed, it is not without its costs. For

instance, matrix transpose prior to performing matrix mul-

tiplication is generally seen as cost-effective, as the cost of

the transpose is amortized beneath the more asymptotically

expensive matrix multiplication. However, the same argument

would not be present for matrix addition, as the costs of

transposition and addition would be similar.

To characterize the performance overhead of layout trans-

formations, we profile the performance of 11 examples from

DNNL. Fig. 3 shows the fraction of time spent in reorder

kernels as opposed to computation kernels for these examples.

On average (geomean), 10% of execution time is spent as

reordering overheads. This shows that there is an opportunity

for performance improvement with acceleration to reorder

kernels. Since layout transformation only moves data around

without modification or performing calculation, we can natu-

rally relieve the processor of such a task by offloading it to

the memory system and, further, perform the transform with

memory-level, rather than processor-level parallelism. More

specifically, in this work, we propose performing the layout

transformation with physically 2D last-level caches, where, for

two of the three offload models considered, the transformation

overhead can be elided.

C. Hardware overhead to support reordering in a 2D cache

There are several challenges to perform reordering in the

memory system. First, the memory system has to calculate

the address mapping of pre-reorder (source) addresses to post-

reorder (destination) addresses. Second, since the memory
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Fig. 3. Fraction of time spent in reorder among kernel sequences using DNNL

system operates on data of cache line granularity, it requires

support for an efficient gather operation if data in destination

cache lines comes from multiple source cache lines. To

address the first challenge, some address calculation unit will

be required to perform a physical to physical translation.

However, 2D memories already inherently support multiple

indexing functions. To address the second challenge, we

propose using physically 2D caches. We leverage this multi-

orientation property so that the data is written to the substrate

in one orientation with cache lines of data in the pre-reorder

layout, and data is read out from the substrate in the other

orientation with cache lines of data in the post-reorder layout.

Fig. 4 illustrates an example of the proposed data layout

transform with physically 2D caches. In this example, a 3D

matrix with dimensions X, Y and Z, is being reordered from

ZYX (X is the dense dimension) to YXZ (Z is the dense

dimension), and the cacheline size is 4 elements of this matrix.

The elements are always denoted as (Z,Y,X) regardless of

ordering. As illustrated, the source layout in the memory has

dense data on the X dimension, and each cacheline transferred

from the memory to LLC will have 4 consecutive elements

in the X dimension. Under a normal decode for LLC, the

cacheline with elements (0,0,*) maps to the set 0, (0,1,*)

to set 1, ..., (3,2,*) to set 12. To gather the Z dimension,

we first use the modified address calculation unit to change

the cache decode of source address ( 1 ). In this example,

instead of using the ZY as index, we use YZ as index, which

puts (1,0,*) in set 1 instead of set 4, and (0,1,*) in set 4

instead of set 1. With the column read capability of a 2D

substrate, we can now read a column cacheline out of the

cache, and the previous source decode has prepared the data

so that the column cachelines has consecutive elements in

the Z dimension. To provide data in YXZ order, we read

the data out of the 2D cache in column, and assign the

corresponding YXZ destination address ( 2 ). The destination

address is generalized as a starting address for the destination

(Dst) plus YXZ, denoted as Dst:YXZ. The upper level caches

of the system is agnostic of the 2D cache transform, and keep

simple address decoding. The Dst:YXZ will be decoded as

a normal cacheline with Z as the block offset, X as the set

index, and Dst:Y for tag.

Based on the parameters of reordering, different hardware

support is required. For example, if the address calculation

uses only numbers that are powers of 2, it can be achieved

with simple bit mapping, while non-power of 2 numbers

will require adder and/or multiplier operations. We classify

the transform cases into 5 categories based on the hardware

L1 Cache with data in destination layout

2D-LLC transform waySource layout in memory
X=0 X=1 X=2 X=3

Z=
0

Y=0 (0,0,0) (0,0,1) (0,0,2) (0,0,3)

Y=1 (0,1,0) (0,1,1) (0,1,2) (0,1,3)

Y=2 (0,2,0) (0,2,1) (0,2,2) (0,2,3)

Z=
1

Y=0 (1,0,0) (1,0,1) (1,0,2) (1,0,3)

Y=1 (1,1,0) (1,1,1) (1,1,2) (1,1,3)

Y=2 (1,2,0) (1,2,1) (1,2,2) (1,2,3)

Z=
2

Y=0 (2,0,0) (2,0,1) (2,0,2) (2,0,3)

Y=1 (2,1,0) (2,1,1) (2,1,2) (2,1,3)

Y=2 (2,2,0) (2,2,1) (2,2,2) (2,2,3)

Z=
3

Y=0 (3,0,0) (3,0,1) (3,0,2) (3,0,3)

Y=1 (3,1,0) (3,1,1) (3,1,2) (3,1,3)

Y=2 (3,2,0) (3,2,1) (3,2,2) (3,2,3)

Set Data

0 (0,0,0) (0,0,1) (0,0,2) (0,0,3)

1 (1,0,0) (1,0,1) (1,0,2) (1,0,3)

2 (2,0,0) (2,0,1) (2,0,2) (2,0,3)

3 (3,0,0) (3,0,1) (3,0,2) (3,0,3)

4 (0,1,0) (0,1,1) (0,1,2) (0,1,3)

5 (1,1,0) (1,1,1) (1,1,2) (1,1,3)

6 (2,1,0) (2,1,1) (2,1,2) (2,1,3)

7 (3,1,0) (3,1,1) (3,1,2) (3,1,3)

8 (0,2,0) (0,2,1) (0,2,2) (0,2,3)

9 (1,2,0) (1,2,1) (1,2,2) (1,2,3)

10 (2,2,0) (2,2,1) (2,2,2) (2,2,3)

11 (3,2,0) (3,2,1) (3,2,2) (3,2,3)

Set Tag Data

0 Dst:Y=0 (0,0,0) (1,0,0) (2,0,0) (3,0,0)

1 Dst:Y=1 (0,1,1) (1,1,1) (2,1,1) (3,1,1)

2 Dst:Y=2 (0,2,2) (1,2,2) (2,2,2) (3,2,2)

3 Dst:Y=0 (0,0,3) (1,0,3) (2,0,3) (3,0,3)

Destination Decode

So
ur

ce
 d

ec
od

e
1

2

Fig. 4. Illustration of transform with 2D LLC

overhead: 1) power of 2 cacheline stride, 2) power of 2 gather

stride, 3) non-power of 2 cacheline stride, 4) non-power of 2

gather stride, 5) others.

For the first category, consecutive data in a cacheline stays

the same during reorder, hence no gather is required, and only

hardware to implement the virtualized address calculation is

required. On top of that, the stride of source address between

consecutive cachelines in the destination layout is power of 2

multiple of cacheline size. For example, the dimensions of the

source is 4x2 cachelines, and the destination is 2x4 cachelines,

and we denote the source cacheline addresses as 0, 1, ..., 7,

then the correponding source address in the destination layout

order is 0, 2, 4, 6, 1, 3, 5, 7, which can be calculated by

simply swapping the second and the third bit of the cacheline

address. For the second category, while the stride between

source addresses in destination layout is still a power of 2

multiple of cacheline size, the consecutive data in a cacheline

in destination layout comes from data in multiple cachelines

in the source layout, and a gather is required. In this work, the

gather is done naturally with the careful data placement in the

2D memory substrate, hence the additional hardware overhead

beyond that needed for a physically 2D cache is small. For the

third category, the reorder granularity is larger than or equal

to the cacheline size as in the first category, except that the

stride between source addresses is not a power of 2 number.

This category requires an additional multiplier and adder to

calculate the destination address. For the fourth category, the

reorder granularity is smaller than cacheline size, and the

stride between source addresses is a multiple of cacheline size

but not a power of 2 number. This category can still benefit

from the physically 2D cache gather from category 2 since

elements from different source cachelines are still aligned, but

requires the multiplier and adder from category 3 to calculate

the addresses.

The fifth category includes other cases, where the stride

on source address in destination layout is not a multiple

of cacheline size. This means that even with the careful

placement of source cachelines in 2D cache, the consecutive

elements of the destination cacheline cannot naturally fall in

the same column cacheline, and data from multiple row or col-

umn cachelines are required piece up an entire cachline with

consecutive data in destination layout. Additional hardware
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such as buffers, shifters, and even scratch pads are required

to perform reordering, and we consider such approaches too

expensive to consider for the scope of this paper.

Fig. 5 shows the classification of reorder kernels from

DNNL based on the hardware overhead level. It is shown

that about 7% of the kernels falls under the 1st category, 19%

under the 2nd, 7% under the third, 15% under the fourth, and

52% under the fifth. In this work, we only focus on the reorder

kernels from the first 4 categories, which covers about half of

the reorder kernels.

IV. TRANSFORM-CAPABLE CACHE ARCHITECTURES

We consider three distinct ways in which a physically-2D

MOM cache can be used to perform orientation transforma-

tions. In all cases, we consider MOM support only in the last

level cache, but discuss different degrees of accessibility, or-

dering, and expression of the transform to be applied between

software and hardware structures.

Sequentialized access with inaccessible intermediate 2D
tiles as transform engines (Simple-Explicit) In the most

restricted model, software would specify two memory regions

and the transformation between them, reserving a fixed quan-

tity of 2D cache tiles to use as transformation engines for

that particular pair. In this model, the transformation occurs

explicitly, via software invocation, and cannot begin until the

entire source region has been generated. Each 2D cache tile

would be extended with an address generation unit and then

1) load in the relevant rows from the traditional portions of

the cache memory system (row-wise gather), 2) when all rows

within a given tile have been populated, write the data from

column-aligned cache blocks into row-oriented cache blocks

in their destination region via single-cache-block transfers

into the traditional portions of the last-level cache. In this

model, there is no potential for zero copy, and thus the

only direct benefits of the 2D cache memory are 1) cheaper

implementation of the gather operation at the 2D tile level than

a traditional gather or scratchpad solution, and the associated

non-involvement of the processor in the data reorganization,

similar to previously proposed transform accelerators [4],

[5], 2) because no fine-grained software access ever occurs

directly to elements of the 2D tiles, there are limited concerns

about latency or hardware cost in implementing more complex

address calculations (i.e. generating addresses over a known

range of multidimensional offsets, even for non-power-of-2

strides, is substantially simpler than performing the reverse

operation) and 3) the 2D tiles can also be allocated as a

set of non-transforming 2D cache blocks for more traditional

caching without substantial hardware overhead. While the tile-

level transform operations can be parallelized with respect to

each other, accesses to the destination region cannot safely

proceed until all transforms have occurred.

The other two models we consider trade off either hardware

or interface complexity to enable implicit rather than explicit

transformations. Both models have a different software inter-

face requirement than the aforementioned explicit transform

model, in that, rather than having to wait for the transformation

to complete before accessing the destination memory region,

the only requirement is that all cache lines in the source region

have been flushed to the last-level cache before accesses to

the new region begin. Both approaches rely on augmenting

2D tiles with dual addressing scheme support such that reads

from the destination memory region, filtered by range at the

cache controller, will naturally access columns of data written

in row-orientation into to the source region, likewise selected

for non-standard inter-row stride by range comparison at the

cache controller.

Derived multi-dimensional addresses (Complex-Implicit)
Physically 2D memories can provide their most unique bene-

fits, i.e. zero copy capabilities, when they allow co-locating

two reorderings of the same data structure that logically

exist in different memory ranges within the same physical

cache block. For power-of-2 inter-cacheline strides, support-

ing such simultaneous access capabilities is straightforward

and represents minimal costs over previously proposed row-

column memory arrays in terms of configurable bit selec-

tion within addresses. However, supporting non-power-of-two

inter-cacheline strides (See 3rd and 4th bars in Figure 5) could

require prohibitively expensive address calculation mecha-

nisms (e.g. integer division/modulo operators) that would be

impractical for many implementation scenarios. That said,

with some degree of HW-SW co-design, it may not be

necessary to support arbitrary non-power-of-2 strides in order

to achieve reasonable coverage of inter-kernel transformations.

For instance, if the non-power-of-2 behavior is related to the

use of small (e.g. 3x3) kernels, then the supporting a limited

set of specific, small, non-power-of-2 indexing components

may be viable for some platforms.

Exposed multi-dimensional address interface (Simple-
Implicit) If we can change the way that addresses are ex-

pressed between the processor and caches and among cache

layers, for addresses within the specified transformational

regions, then dual addressing for arbitrary non-power-of-2

strides can be performed with substantially reduced hardware

costs, relative to the previous approach. Rather than having to

derive the dimensional addresses from a traditional memory

address, if the data request is transmitted as a base and a vector

of indices, generating the relevant cache fields requires only

multiplication and addition, for non-power-of-2 strides, and

only configurable bit selection for power-of-2 strides. While

explicit acknowledgement of the multidimensional nature of

data layout is, in some sense, the most natural way of

expressing an access to a MOM, it is also the least backwards

compatible. This approach would require ISA extensions and

alterations of the inter-cache fill request representation in

order to be able to support both traditional (linear) memory

space requests and MOM-specific base+index-vector memory
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requests. In practice, we would expect that ISA support would

only extend to a finite number of explicitly specified memory

dimensions (to limit the size of a given request to some-

thing comparable to existing linear addresses), and that any

additional logical dimensions would have to be consolidated

with respect to the generated accesses (e.g. A[I][J][K][L]

represented as A[IJ][K][L] in an ISA supporting a maximum

of 3 explicit dimensions).

TABLE I
EASE OF HARDWARE SUPPORT FOR DIFFERENT EXECUTION MODEL /

REORGANIZATION COMPLEXITY PAIRINGS

Simple-Explicit Complex-Implicit Simple-Implicit

Po2 cache-line Bit remapping Bit remapping Bit remapping

Po2 gather Address gen. MAC Bit remapping Bit remapping

Non-Po2 cache-line Address gen. MAC Integer Div. Address gen. MAC

Non-Po2 gather Address gen. MAC Integer Div. Address gen. MAC

Table I provides an overview of the tradeoffs among each of

the three in-cache transformation models. Depending on the

relative importance of workload coverage, address generation

costs, backwards compatibility, and data movement reduction,

each of the three models is a plausible alternative for specific,

restricted domains.

A. Software interface

Whether using an implicit or explict transformation, there

are several key software requirements to employ a transform-

capable cache. Since the transforms are applied to physical

addresses, both the source and destination region must be

allocated within the same large-page or segment-based allo-

cation. Software must register these regions in advance via a

system-level request interface, similar to those proposed for

other region-based semantic filtering approaches [29]. Such

requests may be rejected dynamically based upon competing

requests for resources from other programs or threads, lack of

support within the particular cache for the selected strides or

data sizes, or other constraint violations. It is assumed that,

when a registration request is rejected, a software fallback will

be used instead. However, more complex schemes exposing

the particular reasons for rejecting a registration of a source-

destination-transform tuple could be employed that allow for

adaptive selection of subregions to be transformed in order

to match the capacity or occupancy challenges of a particular

system at runtime.

For the Simple-Explicit execution model, transform-barrier

APIs must be used to separate the writing of the source format,

the transformation, and operations on the destination format.

The flushing of any source region lines from the L1 and L2

caches will be performed implicitly when the transformation

is explicitly invoked. For both implicit models, writing of the

source region need only be separated from operations on the

destination via a flush-source API call. In all three models,

an alternative to flushing is to disable caching of lines in the

source region except at the last level cache. Note that lines in

the destination region could remain cacehable in both cases.

We assume that both APIs will be simultaneously supported,

but that only one would be in use at a time for a given source-

destination pair, depending on the read-write or write-only

nature of the generation of data within the source region.

TABLE II
SIMULATED CACHE CONFIGURATION

Block Size 64B

L1 32KB, 4-way associative, traditional 1D SRAM

L2 256KB, 8-way associative, traditional 1D SRAM

L3 1MB/core, 8-way associative, 2D

128KB per transform way

While supporting 2D transform memory directly at the L1

would remove the need for any cache flushing concerns, the

technologies that currently offer physically 2D cache blocks

are poor matches for both the latency and endurance demands

of an L1 cache, even before the additional complexity of multi-

indexing is considered.

V. METHODOLOGY

A. Benchmarks

We use the Intel DNNL [6] reorder primitive kernels to

evaluate the effectiveness of 2D-LLC reorder. These reorder

kernels perform dimension reordering of 4D and 5D data

(including batch and channel dimensions), including transfor-

mation into blocked format (similar to tiling). Each invocation

of reorder consists of a series of smaller reordering kernel

applications, wherein each of these smaller kernels operates

on data sizes less than 128KB, which can be mapped to

a single way in the 2D-LLC during reorder transform. The

evaluated JIT-generated reorder kernels are numbered with

ordering from low to high hardware cost as described in

section III.

B. Cache Simulation

We use an in-house, trace-driven cache simulator for model-

ing the memory transfers performed in a 3-level cache system

with a traditional 1D SRAM private L1 and L2 (agnostic

of 2D properties) and a physically 2D L3 (as the reorder

transformation engine) to evaluate the effectiveness in transfer

reduction of the proposed scheme. Traces extracted from the

execution of DNNL reorder operations are used to drive the

cache simulation. We extend an initial model of column access

based on the 2D physical cache tiles in George, et al. [1] with

additional multi-indexing and transform support mechanisms.

Each way supports only 1 column gather granularity, and only

1 way of the 2D L3 is used for reorder for any given kernel.

For a 64 byte cacheline, based on element sizes, there are

5 possible granularities: 64x1 byte, 32x2 bytes, 16x4 bytes,

8x8 bytes, 4x16 bytes, 2x32 bytes. In this work we use an 8-

way 2D L3 that can support all of them. We simulate address

decode capability for non-power-of-2 strides for both source

and destination regions, which is cost-practical under the first

and third execution models and covers roughly half of the

kernels examined (category 1 through 4). Table II shows the

parameters of the simulated cache hierarchy.

VI. EVALUATION

We evaluate the memory transfer reduction of using 2D-

LLC as a reorder engine against using a CPU as the reorder

engine. The source data is assumed to reside in the main

memory, hence when CPU is used as the reorder engine, data
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Fig. 6. Transfer size reduction with 2D LLC as reorder engine

will have to be loaded from the memory to the CPU, gathered

in CPU (via vector register operations), and then the CPU

would write the destination data to L1. For fair comparison,

the transfer size for 2D-LLC as a reorder engine also includes

the traffic of gathered destination data from 2D-LLC to L1.

For each of the kernels evaluated, we show the transfer size

reduction between L3 and main memory, L2 and L3, and L1

and L2. Since 2D-LLC as a transform engine does not incur

data traffic between L1 and CPU, the transfer reduction on

this link is always 100%, and we do not show this data in the

result graphs since it is always 1.

Fig. 6 shows the transfer size reduction on kernels with

hardware overhead from category 1 and 3. While different in

hardware cost, these kernels have the same behavior in the

sense that they all read cachelines from a source region and

write cachelines with the same data to a different position in

the destination region. Since all loaded source data has been

written to the destination region, the total size of transfer for

source and destination regions is the same.

We can see that for these kernels, the transfer size reduction

is always near 0.5. With CPU reordering, the partial writes

from registers to L1 require the destination cachelines to be

loaded to L1 first, and this requires both source and destination

data to be read from memory to L1. For data transfer between

L1-L2, and L2-L3, the 2D-LLC transform does not require

source data to be transferred, and this reduces the transfer size

by the source data size. For transfer between L3-memory, the

0.5 reduction comes from 2D-LLC providing entire cachelines

of data at once, which removes the requirement of loading an

explicit copy of the destination region from memory.

For kernels number 3, 4 and 7, the transfer reduction

between L1 and L2 increases slightly over 0.5 due to L1

writebacks when performing CPU transforms. Without source

region data in the L1, 2D-LLC is free from L1 caching

problems as long as the destination region is cache resident.

Fig. 7 shows the transfer reduction result of kernels with

hardware overhead from category 2. It can be observed that

there is more variation in the transfer size reduction compared

to the previous case. This is because data loaded from the

source region are gathered to form cachelines in the destina-

tion region, and the evaluated kernels do not always perform

the reorder for the entire destination (split destination region

for parallelization). Hence the size of the source data may be

larger then that of the destination data, and for kernels 8, 24,

25 and 26, each cacheline in the destination requires data from

2 cachelines in the source (32B from each), which results in

1/3 traffic reduction in the L3-memory transfer, and 2/3 traffic

reduction in the L1-L2 and L2-L3 traffic. Kernels 21, 22, and
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Fig. 8. Transfer size reduction with 2D LLC as reorder engine

23 gather data from 16 cachelines to destination, hence the

traffic reduction is 1/17 and 16/17 for L3-memory and L1-

L2, L2-L3 respectively. Note that, compared to multiple CPU

cores running such kernels for parallelism, the 2D-LLC would

reduce memory transfer to each of the cores at the same time.

On average, the L1-L2 traffic and L2-L3 traffic are reduced

by about 0.59, and the L3-memory traffic is reduced by about

0.33.

Fig. 8 shows the transfer size reduction for kernels with

hardware overhead from category 4. These kernels shows more

varying situations, with different source region size used to

gather into destination region cachelines. In general, when the

use of source region data is sparse, the L1-L2 and L2-L3

traffic reduction is high, and the L3-memory reduction is low.

On average, the L1-L2 and L2-L3 transfer size is reduced

by about 0.7, and the L3-memory transfer size is reduced by

about 0.2.

VII. CONCLUSION

In this paper, we have described approaches for innately

supporting transform operations through modest extensions of

previously proposed 2D cache tile address generation. Our

proposed changes do not require redesign of the fundamental

2D cache tiles themselves, allowing their continued use as

MOM caches when not performing dimensional reordering,

view realization, or other data layout transformation tasks. We

characterize the coverage across observed classes of trans-

form that will be possible with different levels of hardware

investment in address calculation and different associated

possibilities for performing zero-copy transforms by virtue

of simultaneously addressing two distinct physical memory

ranges within a single 2D cache tile. Using these zero-

copy capabilities, we demonstrate that up to 50% of memory

transfer operations can be elided by moving to an in-cache

2D transform approach for a range of reordering operations

performed in the Intel DNNL [6] library that have compatible

capacity and stride constraints.
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