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Benchmark Non-volatile and Volatile Memory Based Hybrid Precision 
Synapses for In-situ Deep Neural Network Training 

 
Abstract — Compute-in-memory (CIM) with emerging non-
volatile memories (eNVMs) is time and energy efficient for deep 
neural network (DNN) inference. However, challenges still 
remain for in-situ DNN training with eNVMs due to the 
asymmetric weight update behavior, high programming latency 
and energy consumption. To overcome these challenges, a hybrid 
precision synapse combining eNVMs with capacitor has been 
proposed. It leverages the symmetric and fast weight update in 
the volatile capacitor, as well as the non-volatility and large 
dynamic range of the eNVMs. In this paper, in-situ DNN training 
architecture with hybrid precision synapses is proposed and 
benchmarked with the modified NeuroSim simulator. First, all 
the circuit modules required for in-situ training with hybrid 
precision synapses are designed. Then, the impact of weight 
transfer interval and limited capacitor retention time on training 
accuracy is investigated by incorporating hardware properties 
into Tensorflow simulation. Finally, a system-level benchmark is 
conducted for hybrid precision synapse compared with baseline 
design that is solely based on eNVMs. 
 

I. INTRODUCTION 
Compute-in-memory (CIM) with emerging non-volatile 

memories (eNVMs) is a promising paradigm to accelerate the 

data-intensive computation of deep neural network (DNN) 

[1]-[4]. Here eNVMs are referred to as resistance-switching 

two terminal devices such as resistive random access memory 

(RRAM) or phase change memory (PCM) [5]. Although it has 

been demonstrated that CIM scheme is both time and energy 

efficient for DNN inference [1][2], challenges still remain for 

CIM based in-situ DNN training due to the following reasons: 

1) significant training accuracy degradation due to the 

nonlinear and asymmetric weight update behavior of eNVM 

devices [6]-[8]. 2) the high write latency and energy 

consumption compared to SRAM technologies.  

To enable reliable and efficient in-situ training, a hybrid 

precision synapse is proposed recently [9] [10], where 

eNVMs and capacitor are combined to leverage the non-

volatility and large dynamic range of the eNVMs, together 

with the symmetric and fast charging/discharging behavior of 

the capacitor. During the training phase, the gradients are 

accumulated on the capacitor. After certain number of training 

batches, the weights stored in the capacitor are read-out and 

transferred to the eNVMs to avoid data loss. Only the weights 

on the eNVMs are used for inference after the training. 

Software comparable in-situ training accuracy and promising 

energy efficiency have been reported for multi-layer 

perceptron (MLP) network on simple MNIST dataset with 

hybrid precision synapse [9] [11].  

However, whether this design is applicable to large-scale 

DNN training is questionable due to the limited data retention 

of capacitor when processing time is significantly increased. 

In this paper, in-situ DNN training architecture with hybrid 

precision synapse is designed for a larger convolutional 

neural network (CNN) on CIFAR-10 dataset. The hardware-

software co-simulation on Tensorflow platform is performed 

to evaluate the training accuracy, and then the system-level 

benchmark is conducted with modified NeuroSim simulator 

[12]. The results show that about 90% in-situ training 

accuracy can be obtained for CIFAR10 dataset, although the 

impact of capacitor retention becomes more severe when 

processing DNN. The energy efficiency of training system 

based on hybrid precision synapse is improved by at least 

3.11× compared with those using eNVMs based synapses. 

 

II. HYBRID PRECISION SYNAPSE FOR IN-SITU TRAINING 
As mentioned earlier, the nonlinear and asymmetric weight 

update behavior of eNVMs degrades the in-situ training 

accuracy. The expensive write operations to eNVMs leads to 

high training latency and poor energy efficiency. To alleviate 

these problems, capacitor based analog synapses such as 3-

transistor-1-capacitor (3T1C) cell design [13] is proposed. 

Although capacitor based analog synapse offers symmetric 

and fast weight update, it could not support the subsequent 

inference after the training due to its volatile nature.  

A hybrid precision synapse combines eNVMs and 

capacitor, as shown in Fig.1, which leverages the good 

linearity, fast programming of capacitor and the non-volatility, 

large dynamic range of eNVMs. The synaptic weight is 

divided into 2 parts: the first few bits of the weight has higher 

numerical significance and it is stored in the eNVMs, which 

is termed as high significance weight (HSW, WHSW). The last 

few bits of the weight have lower numerical significance and 

it is stored in the capacitor, which is termed as low 

significance weight (LSW, WLSW). Fig. 1 shows how 8-bit 

software weight is represented by 2-bit WHSW and 6-bit WLSW. 

1 bit overlapping between WHSW and WLSW may exist if WLSW 

precision is increased to 7bit. During training, only the LSW 

is frequently updated with the fast charging/discharging of the 

capacitor. A significance factor F is defined to represent the 

numerical significance of the HSW. Therefore, the weight 

stored can be represented as W = F × WHSW + WLSW. In this 

paper, the significant factor is an integer power of 2, i.e. 2, 4, 

8…, so that the multiply operation can be conducted by 

shifting the WHSW. Besides, it is assumed that WHSW and WLSW 

are stored into separate arrays and the corresponding partial 

sums are added up digitally in the periphery.  

In the hybrid precision synapse, the HSW is stored in a 

regular 1-transistor 1-resistor (1T1R) memory cell. The 

capacitor synapse is based on the 3T1C cell design as 

proposed in [13]. Two more transistors called power gate 
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(PG) are added (compared with the original design [13]) to 

enable array level operation [11]. The LSW is programmed 

by charging or discharging the capacitor, which modulates the 

channel conductance of the transistor by tuning its gate 

voltage. During the charging phase, for example, a low 

voltage is applied to the gate of the PMOS transistor PG1 and 

a set of low voltage pulses are applied to the gate of the AG1 

through the gate control lines PG1 and WL1, respectively.  

Zero gate voltage is applied to the two NMOS to turn them 

off. The discharging step is conducted in a similar way by 

turning on the NMOS transistors.      

  Weight transfer from LSW to HSW is conducted 

periodically to prevent capacitor leakage. The WLSW is first 

read out and then converted to WHSW by shift F bit. Then, the 

eNVM synapses are programmed to the desired levels. The 

LSB weight will be reset to zero after weight transfer. Fig. 1 

illustrate the operations of a hybrid precision synapse.  
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Fig. 1 Illustration of a hybrid precision synapse and its operation. 

 

Fig. 2 shows the weight update curve of a capacitor synapse, 

where 128 conductance states (7bit) are stored in a 20fF 

capacitor. A foundry 28nm PDK is used here for SPICE 

simulation. The period of the charging/discharging pulse is 

0.4ns. By choosing the appropriate amplitude of the pulse, the 

capacitor voltage increment (decrement) is about 2mV 

between two adjacent states. A relative symmetric weight 

update curve is obtained.  

           
Fig. 2 Weight update curve of the capacitor for LSW. 

 

III. IN-SITU TRAINING ARCHITECTURE BASED ON 

HYBRID PRECISION SYNAPSE 
A. Overall training architecture design 
  Fig. 3 shows the overall training architecture design for 

hybrid precision synapse. A 3-layer CNN is used as an 

example. 4 phases are involved during the training: the 

forward pass (FP) for activation calculation, the backward 

pass (BP) for error calculation (EC) and the gradient 

calculation (GC), and the weight update (WU). For the GC 

phase, more specifically, the gradients are calculated for layer 

i with its input feature maps (IFMs) Ii and the error δi+1 from 

the deeper layer i+1. The error needs to be backpropagated to 

calculate the gradients of the shallower layers. In this 

architecture, FP, EC and GC for convolutional layers are all 

implemented with CIM. For the fully connected (FC) layers, 

the GC is conducted with digital multiplier while the other FP 

and EC steps are implemented with CIM. 

To support the training architecture, two types of arrays, 

transposable arrays (T-array) are used for the FP and the EC 

step while non-transposable array (NT-array) are used for the 

GC step. During FP, the output feature maps (OFM) of CNN 

layers are calculated by the T-array with row input. The 

activations are stored into the NT-arrays for the GC step. 

During EC, the error of the i th layer δi is computed by the T-

arrays with the error δi+1 as column input. The gradients of 

each training image will be stored in a global buffer, which is 

accumulated over the entire batch with 200 training images. 

The WU step occurs after each training batch. The 

accumulated gradients are read-out from the global buffer and 

applied to the capacitor synaptic arrays for weight update. 

After certain number of training images (termed as transfer 

interval), weight transfer occurs by reading the LSW weight 

stored in the capacitor and transferring it to the HSW by 

programming the eNVM synapse.  
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Fig. 3 Illustration of the training flow in a 3-layer CNN example.  

 

B. Array level design 
  The general principles for array design follow that was 

proposed in [14]. The N-bit IFM is split into single bit input 

for N cycles. Shift and add is conducted for multi-bit input 

and multi-bit output. The partial sum current (Ipsum) is sensed 

by the analog-to-digital converter (ADC) implemented by 

multi-level sense amplifiers (MLSA, a group of current mode 

sense amplifier). To represent the negative weight, there is a 

dummy column that is tuned to intermediate conductance 

(Gmax + Gmin)/2 in each array. The actual partial sum value is 

obtained by subtracting the partial sum digits from regular 

columns and that from dummy column. 

  The schematic of the eNVM T-array is shown in Fig. 4(a), 

where one more transistor is added to each 1T1R memory cell 

to enable transposable read-out. The gates of the two access 

transistors are controlled by a horizontal word line (WL-H) 

and vertical word line (WL-V), respectively. During the FP 

0 20 40 60 80 100
20

30

40

50

60

70

C
on

du
ct

an
ce

 (�
s)

Time (ns)

Programming pulses 
T = 0.4ns

423

6B-4



 

 

(Fig. 4(b)), the IFMs are applied to the WL-H by the 

horizontal switch matrix (H-switch matrix) to turn on the 

corresponding rows while the WL-V are fully turned on by 

the vertical switch matrix (V-switch matrix) to connect the 

memory cells to the grounded SL. The BL is connected to the 

MLSA by mux and is precharged to sense the Ipsum along the 

column. During the EC step, the error δi+1 from the deeper 

layer i+1 is input at the WL-V through the vertical switch 

matrix and the WL-H is applied with a high voltage to fully 

turn on the access transistor. In this step, the SL is connected 

to the CSAs by mux to sense the Ipsum along the row for a 

transposed read-out. The BL is grounded in this step, as 

illustrated in Fig. 4 (c). For the NT-array design of eNVM 

synapses, regular 1T1R memory cell is used. In this paper, the 

array size is 128 × 128.  

  During programming, the eNVM cells are programmed 

row-by-row. the H-switch matrix turned on the WL-H of the 

row to be programmed while a high voltage is applied to the 

WL-V by V-switch matrix. The programming pulse is applied 

to either the SL or BL while the other is grounded, depending 

on the polarity of the programming voltage.  

  T-array for capacitor synapse follows a similar design, 

where two more access transistors are added, as shown in Fig. 

5(a). Similarly, the H-switch matrix and V-switch matrix are 

for the FP and EC step in BP. Compared with the T-array 

design for eNVM synapse, two more switch matrices: the PL 

switch matrix and WL switch matrix are added to program the 

capacitor synapse. The control wires for capacitor 

programming are not shown in Fig. 5(a). The NT-array design 

for capacitor synapse is shown in Fig. 5(b). Only WL switch 

matrix and PL switch matrix are needed. In the NT-array, two 

capacitors are grouped to store an 8-bit activation where 4bits 

are stored in each capacitor. The reason to use two capacitors 

is that it is difficult to store 8-bit (256 states) into one 

capacitor, which is limited by the voltage step between 

adjacent states.   

C. Chip level design 
  The chip level architecture design is shown in Fig. 6. Since 

eNVM synapse and capacitor synapse are separated, there are 

two types of processing element (PE) in the system: the PE 

that contains T arrays for FP and EC (T-PE), and the PE that 

contains the NT-arrays for the GC step of CNN layers (NT-

PE). Then the T-PE groups the T-arrays of eNVM synapse and 

capacitor synapse to form a “super” array. For example, if the 

HSW is 2 bit and LSW is 6 bit, 2 eNVM arrays (with 1 bit per 

cell) and 1 capacitor (with 7 bit per cell with 1 bit 

overlapping) array are grouped. Each T-PE contains 9 “super” 

arrays corresponding to the 3×3 filter [15]. During the FP (or 

EC), the IFMs (or the error) are delivered to each array from 

the input buffer. The output partial sums from the eNVM 

arrays and the capacitor array are first added up according to 

the significance factor F. Then, the partial sum output from 

the different “super” arrays are added up (if they are of the 

same output neuron) and stored into the output buffer to be 

transferred outside the PE. The NT-PE contains NT-arrays 

based on capacitor synapse to store the activations of each 
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Fig. 4 (a) T-array design for eNVM synapse. (b) Array level operation in forward pass. The red lines are wires with a high voltage applied. 

The grey lines are the wires that are grounded. (c) Array level operation in the error calculation in backward pass.  
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Fig. 5 (a) T-array design for capacitor synapse used in FP and EC step. (b) NT-array design for capacitor synapse used in GC step. 
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layer for the later GC step.  

  In the tile level, four PEs are grouped in this design. The 

tile level input buffer stores the IFMs and deliver them to the 

PEs within the tile. The output partial sum from PEs can be 

added up in the tile level accumulation unit if they are of the 

same output neuron. 

  The partial sum output from tiles will first be sent to the 

chip level accumulation unit to be added up (if needed) and 

the output will then be sent to the ReLU unit and Maxpooling 

unit to get the activations. The output activation is stored into 

the global buffer temporarily and then delivered to the tiles of 

the next layer for processing. Digital multipliers are also used 

on the chip level for the GC step for FC layers. 

D. Mapping scheme for training 
  For FP, the convolutional kernels can be mapped into the 

memory arrays with the novel mapping method proposed in 

[15] (as shown in Fig. 7) while the FC layers are mapped with 

the conventional mapping method mentioned in the same 

reference. The IFMs will be sent to the corresponding array 

as row input to get partial sum. The output partial sums from 

these k×k arrays are added up to get the final output. Array 

partitioning is needed if the kernel size is large. The same 

mapping scheme can be used for EC step except that the error 

is delivered to each array as column input for transposed 

computation. 

  For the GC step of a convolutional layer, the IFMs of this 

convolutional layer is regarded as the convolutional kernel 

and stored into the capacitor-based NT-arrays. Using the 

conventional mapping in [15], the IFM pixels of the same 

channel are unrolled into a long bar and mapped along a 

column of the memory array, as shown in Fig. 8. Similarly, 

the error pixels in channel k is unrolled into a long bar and 

delivered to the NT-array as input to compute the gradients of 

the kth CNN kernel. For example, in Fig. 8, the gradients of 

the blue kernel is obtained by convolution of the blue channel 

of the error with the IFM of layer i.  

 

IV. BENCHMARK METHODS 
A. Training accuracy 
  The in-situ training accuracy is evaluated by incorporating 

the hardware properties into the software simulation in 

Tensorflow. The WAGE code [16] is modified to incorporate 

the nonlinear and asymmetric weight update behavior of the 

eNVM device as illustrated in [6]. The capacitor leakage is 

considered by multiplying a retention ratio to the LSW after 

each batch. The weight, activation, error and gradient are all 

quantized to 8-bit during the training. With the VGG-8 

network in WAGE, software baseline training accuracy ~91% 

is obtained for CIFAR-10 dataset after 150 training epoch.  

B. System level performance estimation 
  The system level performance benchmark is conducted 

with modified NeuroSim simulator at 32nm node [14]. 

RRAM with 1-bit per cell (1-bit RRAM) and 2-bit per cell (2-

bit RRAM) are considered for HSW in the hybrid precision 

synapse. The device parameters used in the simulation are 

listed in TABLE I, which is obtained from the experiment data 

in [17]. For 1-bit RRAM, N RRAMs are grouped to represent 

an N-bit WHSW. 2-bit RRAM can reduce the area cost due to 

the higher storage capacity in each cell but it suffers from 

more write-verify cycles and therefore higher latency and 

energy consumption as suggested by [17]. 

  The training architecture based on solely digital eNVM 

synapses is used as the baseline, which means for 8-bit weight, 

8 1-bit RRAM cells (or 4 2-bit RRAM cells) are used in T-

array. The IFM of each layer will also be stored into the 

RRAM based NT-array for the GC. Analog RRAM with high 

cell precision (e.g. 8bit) is not considered here due to its 
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asymmetry weight update behavior and poor training 

accuracy (see Section V.A).  

V. RESULTS AND DISCUSSIONS 
A. Training accuracy 
  First, the impact of weight transfer interval on training 

accuracy is studied without considering the capacitor leakage. 

The results are plotted in Fig. 9. When the weight transfer 

interval is small, the amount of gradients accumulated at LSW 

is small. Therefore, a large portion of the LSW is eliminated 

when dividing the significance factor before adding them to 

the HSW. With different HSW bit precision, the training 

accuracy is slightly different when the weight transfer interval 

is smaller than 15K images. Since 2-bit HSW + 6-bit LSW 

shows the highest training accuracy, in the rest of the paper, 

only this configuration is considered. It can also be noted that 

all of the three HSW configurations can achieve ~91% 

training accuracy when the weight transfer interval is large, 

i.e. 20K images. 

  Fig. 9(b) compares the training accuracy achieved by 

hybrid precision synapse with state-of-the-art analog RRAM 

devices (TaOx/HfOx [18], AlOx/HfO2 [19], Ag: α-Si [20]). 

Here 8-bit weight is stored in single analog RRAM. It can be 

concluded that hybrid precision synapse achieves better in-
situ training accuracy than analog RRAM synapses because 

of the significantly improved symmetry in the weight update. 

  
           (a)                        (b) 

Fig. 9. (a) The training accuracy vs. weight transfer intervals with 

different HSW bit precision (b) Comparison between hybrid 

precision synapse and analog RRAM synapses. 

 

  Fig. 10 (a) shows the in-situ training accuracy with 

capacitor leakage. The effect of capacitor leakage is modeled 

as the batch retention ratio, which is defined as the ratio 

between the weight before and after a training batch. Batch 

processing time, leakage current and the capacitance 

determines the batch retention ratio. With about 1.92ms batch 

processing time, average leakage current of 0.267pA and 20fF 

capacitance, the batch retention ratio is about 0.9 by ΔVcap = 

Ileakage_avg Δt / Ccap, assuming the WLSW is proportional to the 

voltage of the capacitor Vcap. Only the leakage for the WLSW 

is considered in the simulation as the weight transfer interval 

is a few thousands images in this paper. The leakage in the 

NT-arrays that store activations are not considered because 

the longest life time of the activations is the same as the time 

that one image stays in the pipeline. With a weight transfer 

interval of 20K images, the training accuracy decays as 

retention ratio is increased. It can be explained by the fact that 

the gradients of older batches suffer from more severe 

decaying with a larger transfer interval. When the transfer 

interval is reduced to 4K or 8K, it is observed that the training 

accuracy first gets improved when the retention ratio is 

reduced then it starts to drop when retention ratio is further 

reduced. It can be attributed to the fact that the gradients of 

each batch suffer from less decaying with such small transfer 

interval. Besides, the retention ratio has similar effect as the 

decay rate in Momentum, which is a hyper-parameter. 

Therefore, training accuracy fluctuates as the retention ratio 

(hyper-parameter) changes.   

  Due to the process variation, the retention ratio of each 

capacitor is different. The impact of retention ratio variation 

on training accuracy is studied by generating individual batch 

retention ratio for each capacitor from Gaussian distribution 

and then clipped to values between (0,1]. The standard 

deviation σRET is normalized to the mean value of the 

retention ratio. From Fig. 10 (b), when the transfer interval is 

4K and 8K images, the training accuracy drops from about 

91% to less than 89.5% and 88.5 %, respectively, as σRET is 

increased to 30%. It can be attributed to more capacitors at 

the distribution “tail” with poor retention when σRET is large. 

However, for larger transfer interval 20K image, a slight rise 

of the training accuracy is first observed before it drops to 

about 89.6%. The slight accuracy rise can be explained by the 

fact that the portion of capacitors with high retention ratio 

(>0.9) is increased as σRET rises slightly, which helps improve 

the training accuracy according to the results in Fig. 10(a). 

However, when σRET is large, the capacitors with poor 

retention ratio degrades the training accuracy. From the 

results in Fig. 10, it can be concluded that the impact of 

capacitor leakage on training accuracy is small and it can be 

alleviated by adjusting the weight transfer interval. 

  
(a)                       (b)  

Fig. 10 (a) The training accuracy with different batch retention ratios.  

(b) The training accuracy vs. retention ratio variation. 

 

B. System level performance benchmark 
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TABLE I. The Device Parameters Used in the Simulation 

 Capacitor 
synapse 

1-bit RRAM  
[17]  

 2-bit RRAM 
[17]  

RON 16.1kΩ 21kΩ 7.35kΩ 

ROFF 46.5kΩ 500kΩ 500kΩ 

Cell size ~2000F2 31F2 31F2 

Reset pulse width 0.4ns 200ns 200ns 

Reset pulse 

amplitude 

High: 0.41V 

Low: 0V 
3.8V 3.8V 

Reset pulse number 
128 (7-bit)  

/16 (4-bit) 
1 1 

Set pulse width 0.4ns 100ns 100ns 

Set pulse amplitude 
High 1V 

Low: 0.6V 
2.1V 2.1V 

Set pulse number 
128 (7-bit)  

/16 (4-bit) 
1 10 
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  With the device parameters in TABLE I, system level 

benchmark results are summarized in TABLE II. The energy 

consumption and latency here are for a training batch (200 

images). From the results, first, training systems based on 

hybrid precision synapse show lower energy consumption 

than those are solely based on RRAM synapses. It can be 

explained by the following reasons: 1) Less energy 

consumption in FP as less arrays need to be read out. For 

example, for hybrid precision synapse with 1-bit RRAM as 2-

bit HSW, only two RRAM arrays and one capacitor arrays are 

needed to be read. But for 8-bit weight with 1-bit RRAM, the 

weight needs to be stored in 8 RRAM arrays. Therefore, more 

energy is consumed for the digital RRAMs. 2) Less write 

energy consumption to store the activations of each layer into 

the NT-arrays for in-memory gradient calculation. For hybrid 

precision synapse, the activations are stored into the capacitor 

arrays and the programming energy for capacitor is low. For 

RRAM synapse, the programming energy consumption is 

high, especially for 2-bit RRAM because write and verify 

pulses are needed. Therefore, it is noted that energy efficiency 

is improved by 3.11× and 4.44× for hybrid precision synapse 

with 1-bit RRAM and 2-bit RRAM as the HSW, compared 

with the two baselines, respectively. 

  As for the latency, the training systems solely based on 

RRAM shows much higher latency due to the latency for 

storing the activations into NT-arrays, especially for writing 

2-bit RRAM with write-verify. The area cost for hybrid 

precision synapse is similar to that of 1-bit RRAM although 

the cell area of the capacitor synapse is significantly larger 

than a RRAM cell. It can be attributed to the facts that the area 

of an array is dominated by the periphery circuits and that the 

capacitor synapse can store multiple bits in one cell.  

 

VI. CONCLUSIONS 
  In this paper, in-situ DNN training architecture with hybrid 

precision synapse is designed and system level benchmark is 

conducted. First, by incorporating hardware properties into 

Tensorflow simulation, it is concluded that hybrid precision 

synapse can achieve about 90% training accuracy even when 

considering the data retention degradation and variation of the 

capacitor. NeuroSim benchmark reveals that training systems 

based on hybrid precision show significantly lower latency 

and energy consumption than those solely based on eNVMs 

with similar area cost.  

 

ACKNOWLEDGEMENTS 
This work is supported by ASCENT, one of the 

SRC/DARPA JUMP research centers and SONY research.  

 

REFERENCES 
[1]. P. Chi et al., "PRIME: A novel processing-in-memory architecture for 

neural network computation in ReRAM-based main memory," ACM/IEEE 
International Symposium on Computer Architecture (ISCA), 2016. 

[2]. A. Shafiee et al., "ISAAC: A convolutional neural network accelerator 

with in-situ analog arithmetic in crossbars," ACM/IEEE International 
Symposium on Computer Architecture (ISCA), 2016. 

[3]. L. Song, X. Qian, H. Li and Y. Chen, "PipeLayer: A pipelined ReRAM-

based accelerator for deep learning," IEEE International Symposium on High 
Performance Computer Architecture (HPCA), 2017. 

[4]. M. Cheng et al., "TIME: A training-in-memory architecture for 

RRAM-based deep neural networks," in IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, vol. 38, no. 5, pp. 834-847, 

2019.  

[5]. S. Yu and P. Chen, "Emerging memory technologies: recent trends and 
prospects," in IEEE Solid-State Circuits Magazine, vol. 8, no. 2, pp. 43-56, 

2016. 
[6]. X. Sun and S. Yu, "Impact of non-Ideal characteristics of resistive 

synaptic devices on implementing convolutional neural networks," in IEEE 
Journal on Emerging and Selected Topics in Circuits and Systems, vol. 9, no. 
3, pp. 570-579, 2019.  

[7]. P. Chen et al., "Mitigating effects of non-ideal synaptic device 

characteristics for on-chip learning," IEEE/ACM International Conference 
on Computer-Aided Design (ICCAD), 2015, pp. 194-199. 

[8]. G. W. Burr et al., “Large-scale neural networks implemented with non-

volatile memory as the synaptic weight element: Comparative performance 
analysis (accuracy, speed, and power),” IEEE International Electron Devices 
Meeting (IEDM), 2015, pp. 4.4.1-4.4.4. 

[9]. S. Ambrogio et al., “Equivalent-accuracy accelerated neural-network 
training using analogue memory,” Nature, vol. 558, no. 7708, p. 60, 2018. 

[10]. X. Sun, P. Wang, K. Ni, S. Datta, and S. Yu, “Exploiting hybrid 

precision for training and inference: A 2T-1FeFET based analog synaptic 
weight cell,'' IEEE International Electron Devices Meeting (IEDM), 2018. 

[11]. Y. Luo, P. Wang, X. Peng, X. Sun and S. Yu, "Benchmark of 

ferroelectric transistor based hybrid precision synapse for neural network 
accelerator," in IEEE Journal on Exploratory Solid-State Computational 
Devices and Circuits. doi: 10.1109/JXCDC.2019.2925061 

[12]. X. Peng, S. Huang, Y. Luo, X. Sun and S. Yu "DNN+NeuroSim: An 
end-to-end benchmarking framework for compute-in-memory accelerators 

with versatile device technologies," IEEE International Electron Devices 
Meeting (IEDM), 2019. 
[13]. Y. Li et al., “Capacitor-based cross-point array for analog neural 

network with record symmetry and linearity,'' IEEE Symposium on VLSI 
Technology, 2018. 
[14]. P.-Y. Chen, X. Peng, and S. Yu, “NeuroSim: A circuit-level macro 

model for benchmarking neuro-inspired architectures in online learning,'' 

IEEE Transactions on Computer-Aided Design of Integrated Circuits and 
Systems, vol. 37, no. 12, pp. 3067-3080, Dec. 2018. 

[15]. X. Peng, R. Liu and S. Yu, "Optimizing weight mapping and data flow 

for convolutional neural networks on RRAM based processing-in-memory 
architecture," IEEE International Symposium on Circuits and Systems 
(ISCAS), 2019. 

[16]. S. Wu, G. Li, F. Chen, and L. Shi, “Training and inference with integers 
in deep neural networks,'' 2018, arXiv:1802.04680.  

[17]. S. Yin, et al. “Monolithically integrated RRAM and CMOS based in-

memory computing for efficient deep learning,” IEEE Micro, 2019.  
[18]. W. Wu, et al. "A methodology to improve linearity of analog RRAM 

for neuromorphic computing." IEEE Symposium on VLSI Technology, 2018. 

[19]. J. Woo, et al. "Improved synaptic behavior under identical pulses using 
AlOx/HfO2 bilayer RRAM array for neuromorphic systems." IEEE Electron 
Device Letters, 37.8 (2016): 994-997. 

[20]. S. H. Jo, et al. "Nanoscale memristor device as synapse in 
neuromorphic systems." Nano Letters, 10.4 (2010): 1297-1301. 

TABLE II. The System Level Benchmark Results (32nm Node) 
 Hybrid cell 

(1bit RRAM) 
Hybrid cell 

(2bit RRAM) 
Sole RRAM 

(1bit RRAM) 
Sole RRAM 

(2bit RRAM) 
Chip Area 300.7 mm2 289.0 mm2 294.6 mm2 215.7 mm2 

Total Energy 
consumption 97.72 mJ 89.76 mJ 305.75 mJ 397.38 mJ 

Energy FP 28.21 mJ 23.10 mJ 62.28 mJ 41.81 mJ 

Energy BP-EC 27.46 mJ 22.48 mJ 60.62 mJ 40.70 mJ 

Energy BP-GC * 39.72 mJ 39.72 mJ 177.41 mJ 300.92 mJ 

Write energy BP-GC 0.28 mJ 0.28 mJ 77.45 mJ 234.55 mJ 

Read energy BP-GC 39.44 mJ 39.44 mJ 99.96 mJ 66.37 mJ 

Energy WU** 2.33 mJ 4.46 mJ 5.44 mJ 13.95 mJ 

Latency/Batch 1.92 ms 1.92 ms 8.21 ms 32.74 ms 
Energy efficiency 

(TOPS/W) 3.83 4.17 1.23 0.94 

*  The energy consumption for storing the activations is included 

** The energy consumption for weight transfer is included for hybrid precision synapse. It is averaged 

to each batch  
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