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Abstract—Capacitance extraction and power grid (PG) anal-
ysis for IC design involve large-scale numerical simulation
problems. As the process technology becomes more complicated
and design margin is shrinking, the capacitance field solver and
power-grid matrix solver with high accuracy and capability for
handing large and complex structure are highly demanded. In
this invited paper, we present recent application of statistical and
AI methods in these two fields. The Markov-chain model and rel-
evant analysis are presented for developing an efficient technique
for handling conformal dielectrics in the floating random walk
based capacitance extraction. Then, two approaches reducing the
computational cost of a domain decomposition based power-grid
solver are presented. One employs supervised machine learning
while the other is inspired by the A∗-search algorithm.

I. INTRODUCTION

Accurate parasitic extraction is crucial to the success of

today’s high-performance IC design. 3-D capacitance field

solvers are greatly demanded to ensure the silicon success

of ICs, because the process technology becomes more com-

plicated and design margin is shrinking [1], [2], [3]. As

a product-proven technique for accurate capacitance solver,

the floating random walk (FRW) method is advantageous

in scalability, reliability and parallelism over the traditional

methods [4], [5], [6], [7], [8], [9]. In modern process tech-

nologies, conformal dielectrics are common although most

dielectrics are planar. The complex conformal dielectrics bring

a big challenge for efficient capacitance extraction [3]. The

current method adopted by FRW based solvers relies on pre-

characterizing transition cubes with special dielectric configu-

rations and pre-calculating a large amount of surface Green’s

function tables (GFTs) prior to the online capacitance extrac-

tion [4]. During the FRW procedure, the occurring transition

cube with complex dielectric configuration is converted to a

pre-characterized cube with some dielectric approximation.

This approach causes excessive offline computation of pre-

characterization and runtime memory cost (at least 2 GB),

and induces error at the same time.

On the other hand, modern VLSI design relies heavily on

efficient power grid analysis [10], [11], [12]. Because the

effect of voltage fluctuations becomes more significant, how

to retain the switching speeds and satisfy the noise margin

is challenging. This requests accurate and efficient simulation

of large-scale power grids. The direct methods for solving

sparse linear systems [13] cannot scale well with the problem

size for large-scale power grids, while iterative solvers [14]

often suffer from the instability of preconditioner. Among a

number of specialized methods, the domain decomposition

method (DDM) [11] is more suitable for practical usage, but

its efficiency should be further improved .

In this paper, we present recent progress in developing

accurate and efficient capacitance solver and PG matrix solver.

Statistical and artificial intelligence (AI) methods are borrowed

to resolve the challenges brought by the conformal dielectrics

and huge size of PG. Experimental results show that the

presented techniques improve the solvers’ accuracy and/or

reducing the computational cost. We hope these results are

inspiring to future research on large-scale simulation in EDA.

II. BACKGROUND

A. Floating Random Walk Method for Capacitance Extraction

The FRW method for capacitance extraction is derived from

the integral formula for electric potential [5], [15]:

u (r) =

∮
S

P (r, r(1))u(r(1))dr(1), (1)

where u(r) is the potential of point r and P (r, r(1)) is

called surface Green’s function. The domain enclosing r is

called transition domain, whose surface is S. P (r, r(1)) can be

regarded as a probability density function. With Monte Carlo

method, u (r) can be estimated by the mean of u(r(1)) values.

For computing the capacitances related to a master conduc-

tor i, a Gaussian surface Gi is constructed to enclose it (see

Fig. 1). According to the Gauss theorem and (1) for electric

potential one can derive the electric charge of conductor i [5]:

Qi =
∮
Gi

F (r)g
∮
S(1) ω(r, r

(1))P̃ (r, r(1))u(r(1))dr(1)dr, (2)

where F (r) is the dielectric permittivity at point r, P̃ (r, r(1))
is, probably different from P (r, r(1)), for sampling on S(1),
and ω(r, r(1)) is called weight value [5]. Thus, Qi can be

estimated as the stochastic mean of sampled values on Gi,

which is further the mean of sampled potentials on S(1)

multiplying the weight value. If the potential of a sample

point r(1) is unknown, (1) is substituted into (2) recursively.

The computation can be imaged as a floating random walk

(FRW) procedure. The walk starts from the Gaussian surface,

and repeatedly jumps until reaching conductor surface. After

performing a number of walks, the stochastic mean of the

Gaussian surface
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Fig. 1. Two random walks starting from r (denoted by consecutive segments
with arrows) in the FRW method for capacitance simulation (2-D top view).
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weight values for the walks terminating at conductor j is

capacitance Cij between conductors i and j.

Each FRW includes a sequence of hops, each of which

is from the center of a transition cube T to a random

point selected following a certain surface Green’s function. In

practice, this random sampling is realized by first discretizing

T’s surface into 6n2 panels and obtaining the transition

probabilities to the panels, and then randomly choosing a panel

[4], [5]. Suppose u(Si) denotes the potential of the i-th panel’s

center. The potential of T’s center C is:

u(C) =
6n2∑
i=1

piu(Si), (3)

where pi is the transition probability to the i-th panel. Eq. (3)

is the discretized form of (1) and explains the random hops

in FRW method. Usually, the transition probabilities are pre-

calculated and stored as the tables (called GFTs) for transition

cubes with certain dielectric configurations [5]. By loading

GFTs before performing FRWs, one can execute hops quickly.

Several approaches for pre-characterizing the transition

cubes with multilayer dielectrics have been proposed [4], [5],

to deal with the stratified dielectrics in practical capacitance

extraction. However, they are not applicable to structures

with conformal dielectrics, for which the transition cubes

containing both horizontal and vertical variation of dielectrics

are involved. An approximate approach was proposed in [4]

for handling conformal dielectric. It pre-characterizes a so-

called eight-octant transition cube, of which each octant

contains a homogeneous dielectric (as shown in Fig. 2(a)),

with various configurations of dielectric permittivities. During

the FRW procedure, the transition cube with both horizontal

and vertical dielectric variation (occurring around conformal

dielectric, as shown in Fig. 2(b)) is approximated by the

eight-octant transition cube with the permittivity of each

octant obtained as the volume weighted average permittivity.

Then, the transition probabilities of this transition cube are

obtained from some pre-calculated GFTs for the eight-octant

transition cube and the linear interpolation calculation. This

approach exhibits satisfied accuracy for structures with con-

formal dielectrics, and is better than using a kind of “intrusive-

type” transition cubes to approximate the transition cubes

near conformal dielectrics [4]. However, pre-characterizing

these eight-octant transition cubes still consumes a lot of

computation and runtime memory. Notice that the GFT for

an eight-octant cube with permittivities ε1, ε2, . . . , ε8 is the

same as that for an eight-octant cube with permittivities

ε1/εmax, ε2/εmax, . . . , ε8/εmax, where εmax = max{εi}.
So, the cube can be characterized by the normalized per-

mittivities {εi/εmax}. One can only consider some discrete
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Fig. 2. (a) An eight-octant transition cube where each octant contains a
homogenous dielectric (the octants are numbered). (b) The cross-section view
of a conformal dielectric (in gray) and transition cubes (in blue) near it.

normalized permittivities. If the normalized permittivity ranges

from 0.5 to 1 with discretized step s, the number of possible

eight-octant configurations will be (0.5/s + 1)8 − (0.5/s)8.

Suppose s = 0.1 and each GFT needs about 30 KB storage

[4]. The memory cost for these eight-octant cubes’ GFTs will

be 38 GB. Considering the symmetry will reduce the number

of configurations, but the cost of GFTs is still about 2 GB.

If a smaller value of s is used to pursue higher accuracy, this

memory cost will become even larger.

B. Domain Decomposition Based Power Grid Analysis

We consider the DC analysis of power grid though the DDM

is also capable of simulating the transient analysis [11]. The

problem can be described using the nodal analysis as Ax = f ,

where A is the conductance matrix, x is the vector of node

voltages and f denotes the loads of current source. Suppose

that the power grid is partitioned into m subdomains by

reordering the variables in x. The nodes in the original system

are classified into interior nodes of subdomains and interface

nodes. So, the equation has the blocked sparse structure:

⎛
⎜⎜⎜⎝
A1 E1

. . .
...

Am Em

F1 · · · Fm AΓ

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

x1
...

xm

xΓ

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

f1
...

fm

fΓ

⎞
⎟⎟⎟⎠ . (4)

Here, the matrices A1, . . . ,Am correspond to the m subdo-

mains, and AΓ corresponds to the interface nodes. Matrices

Ei and Fi (i = 1, . . . ,m) reflect the connections between the

interface and the i-th subdomain.

Eq. (4) can be rewritten as(
AD E
F AΓ

)(
xD

xΓ

)
=

(
fD

fΓ

)
, (5)

where AD is the blocked diagonal matrix including A1, . . . ,

Am. From the first equation, xD can be expressed as

xD = A−1D (fD −ExΓ) . (6)

Substituting (6) into the second equation of (5), one obtains

(AΓ − FA−1D E)xΓ = fΓ − FA−1D fD , (7)

from which xΓ can be solved. Notice that A−1D will not be

explicitly computed. Due to the block diagonal property the

computation is decomposed into solving the smaller equations

with coefficient matrices A1, . . . , Am. This can be easily par-

allelized, which is the reason why the DDM based approach

is practical for large-scale power grid analysis.

The matrix A is symmetric positive definite (SPD) and

matrix Ai (i = 1, . . . ,m) inherits this property. Therefore, the

solution of each subdomain equation is realized by Cholesky

factorization of Ai followed by forward/backward substi-

tutions. This direct method is robust, but it often suffers

from large memory consumption caused by fill-ins during

factorization. The memory issue may not be pronounced, if

the subdomain is small enough. However, to restrict the size

of interface which affects the non-parallel part in the solution

of (7), the size of Ai cannot be very small.

III. MARKOV-CHAIN ANALYSIS FOR HANDLING

CONFORMAL DIELECTRICS WITH FRW BASED SOLVER

We use Markov-chain analysis, in form of discrete random

walk, to derive a special property of the transition probabilities
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for the eight-octant transition cube. Then, we develop a

technique generating the eight-octant cube’s transition proba-

bilities on the fly. It largely saves memory cost and improves

accuracy for handling conformal dielectrics without, sacrifice.

A. Markov-Chain Model Pre-characterizing Transition Cube

Suppose the dielectric configuration of an eight-octant tran-

sition cube T is given. With the finite difference method

(FDM), one can numerically compute the transition proba-

bilities pi in (3) for T [5]. The key point is to obtain the

relationship between the potentials of T’s center C and the

potential of T’s surface points.

Lemma 1. With a suitable FDM grid on the eight-octant
cube, a discrete random walk (DRW) method can be applied
to express the electric potential of the cube’s center C in
terms of potentials on cube’s surface, i.e. (3). Specifically, the
probability that the DRW walker starting at C finally reaches
panel i is the transition probability pi in (3).

Proof. For the eight-octant transition cube, the FDM grid is

formed by first dividing the cube into equal-sized cells [see

Fig. 3(a)], where n is an even number, and then attach one

unknown of potential to each cell’s center. For each surface

panel, an unknown of potential is also set at panel’s center. The

grid lines along the x, y, and z axes connect these unknowns

as shown in Fig. 3(b), and intersect the interfaces of octants

at interface grid points. For each inner or interface grid point

Gj , the finite difference equation [5] can be converted to:

u(Gj) =
∑

k∈Ngb(j)

pj,ku(Gk), (8)

where Ngb(j) denotes the set of indices of Gj’s neighbor grid

points. The coefficients pj,k in (8) are all positive and their

sum equals 1 [5]. Similar to the DRW methods for power grid

analysis [10] or thermal analysis [16], we can interpret (8) as

a random walk step from Gj to its neighbor grid point. Notice

that the center point C is not a grid point. So, an additional

equation is introduced according to [17]:

u(C) =
∑8

k=1
εk

ε1+ε2+ε3+ε4+ε5+ε6+ε7+ε8
u(Nk), (9)

where N1 ∼N8 are C’s adjacent inner grid points from the

eight octants respectively, and ε1 ∼ ε8 are the corresponding

permittivities of the eight octants. The coefficients in (9)

also form a set of probabilities, so that a random walk step

from C to Nk can be defined. With (8) and (9), the DRW

procedure starting from C and terminating at surface points

(a) (b)

Fig. 3. The FDM grids for an eight-octant transition cube, where red dashed
lines outline the octants. (a) The cube is evenly divided into n×n×n cells.
Si and Sj are two examples of surface panel’s center. (b) The top view of the
eight-octant cube with the FDM grids imposed. Black points are grid points.
C is the cube’s center, and N1 ∼ N4 are its four neighbor grid points (the
other four neighbor grid points coincide with them in this view).

Si is well defined. According to the stochastic meaning of (3),

the probability that the walker finally reaches Si (or panel i)
is the transition probability pi in (3).

Lemma 1 connects the transition probability to a Markov-

chain model, i.e. DRW procedure. So, Markov-chain analysis

can be utilized to reveal a special property associated with the

eight-octant cube’s transition probabilities.

B. Efficient Treatment of Conformal Dielectrics

The special property of eight-octant cube’s transition prob-

abilities is as follows.

Theorem 1. For two panel center points Si and Sj in different
octants of an eight-octant transition cube T, if they have
symmetric positions with respect to T’s center C, the transition
probabilities to them, namely pi and pj , satisfy:

pi

εi
=

pj

εj
= 8p̄i∑8

i=1 εi
, (10)

where εi and εj are the permittivities of the octants containing
Si and Sj , respectively. ε1∼ε8 are the permittivities of T, and
p̄i denotes the transition probability from C to Si in a single-
dielectric cube with same FDM discretization as T.

Its proof can be accomplished based on analyzing the

Markov chain model in DRW, i.e. the the probability of a

walker reaching two symmetric points on different octant

surfaces. Due to page limit, we omit it here. Theorem 1 implies

the following statements for an eight-octant transition cube T,

(1) The sum of transition probabilities to the surface of an

octant is proportional to the octant’s dielectric permittivity;

(2) For a given octant of T, the transition probabilities to its

surface are constant multiplies of those for a single-dielectric

transition cube.

So, we can obtain the GFT for any eight-octant transition

cube from the GFT for a single-dielectric transition cube. The

latter can be pre-calculated analytically [15] and is always

needed. This enables the on-the-fly generation of the accurate

GFT for an eight-octant transition cube. In practice, we first

randomly choose an octant following the probabilities propor-

tional to the eight octants’ permittivities. Then, for selecting a

point on the chosen octant’s surface we just follow the single-

dielectric GFT. This approach induces no precharacterization

computation or memory cost.

We have implemented this technique based on RWCap3

[18]. The improved algorithm is referred to as RWCap4,

and used to simulate several cases of VLSI structures with

conformal dielectrics. All experiments are carried out on a

Linux server with Intel Xeon E5-2650 2.0 GHz CPU.

Case 1∼2 are based on Case 1 (180-nm technology) and

Case 4 (45-nm technology) in [5] by adding a conformal

dielectric around the three wires in M2 layer (see Fig. 4).

(a) (b)

Fig. 4. A portion of test cases’ cross-section view. The coating conformal
dielectric has the same permittivity as its adjacent dielectric. (a) Case 1, based
on Case 1 in [5]. The thickness of conformal dielectric is 40nm. (b) Case 2,
based on Case 4 in [5]. The thickness of conformal dielectric is 5nm.
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Case 3∼6 include 3 parallel wires in M2 layer and 10

crossing parallel wires in M3 layer. The M2 wires are coated

by different conformal dielectrics and embedded in stratified

dielectrics. The size of each wire is 45nm×400nm×90nm. The

spacing between wires is 45nm for Case 3∼5 and 28nm for

Case 6. For Case 5, there are multiple conformal dielectrics.

For Case 1∼6, one of the M2 wires is set as the master

conductor and its capacitances are extracted. The termination

criterion for the FRW algorithm is 0.5% 1-σ error on the

total capacitance. The cases are simulated with the proposed

algorithm and the golden-standard tool Raphael [19] based on

FDM. The results are listed in Table I. From it we see that the

on-the-fly sampling scheme on eight-octant transition cubes

ensures good accuracy. Besides, RWCap4 consumes about 50

MB memory, same as RWCap3. This means the proposed

approach does not cost extra memory. More experiments are

carried out to compare the runtime of RWCap3 and RWCap4.

The results reveal that the latter is only a little bit slower.

TABLE I
THE COMPUTATIONAL RESULTS FOR THE SIX CASES WITH

CONFORMAL DIELECTRICS

Case RWCap4 Raphael

#walk #hop Time(s) Cap.(fF) Error Cap.(fF)

Case 1 103K 52.5 3.74 2.060 0.5% 2.050
Case 2 48K 52.9 1.24 0.401 0.5% 0.399
Case 3 67K 68.9 2.09 0.104 -1.0% 0.105
Case 4 72K 82.4 2.73 0.106 0.9% 0.105
Case 5 65K 67.4 2.14 0.104 -1.0% 0.105
Case 6 34K 38.6 0.56 0.161 1.2% 0.159

The experimental results validate that the proposed tech-

nique avoids the pre-calculation and runtime memory cost for

characterizing the eight-octant transition cubes. Moreover, the

improved FRW algorithm is more accurate than the approach

in [4] as no interpolation computation is needed.

IV. AI METHODS FOR DDM POWER-GRID SOLVER

To reduce the memory cost and runtime of the DDM based

power-grid solver, two AI inspired techniques are presented.

A. The Matrix Reordering Problem

In the parallel DDM for power grid analysis, factorizing

the subdomain matrices are the major work. To reduce its

cost, we consider the matrix reordering problem: Given a
sparse SPD matrix Ai, find a row permutation P such that
the number of nonzeros (or the amount of work required to
compute) in the factorization of PAiP

T is minimized. It is

equivalent to finding an order of the nodes in the undirected

graph corresponding to the sparse matrix. As this is an NP-

hard problem, heuristics are used to reduce fill-ins. Three basic

strategies exist [20]: (1) ordering the nodes with minimum

degree first and its variants, (2) nested dissection which

recursively partitions the graph with node separators, (3) band

reduction which constrains nonzeros to a small band region

around the diagonal. The representative of the first strategy

is the AMD algorithm [21], while that of the second is metis
[22]. The reverse Cuthill-McKee algorithm belongs to the last

one, used for matrices generated from structural mechanism

problem. Although AMD is the most widely-used, the optimal

ordering algorithm varies case by case. Consequently, there is

a strong need to develop an efficient approach to automatically

choose the optimal ordering algorithm in practice.

B. A Supervised Learning Based Approach

We propose a supervised learning based approach to im-

prove the solution of subdomain matrices. It is composed of

several steps. Firstly, a set of subdomain matrices collected

from large-scale power grid analysis are tested with different

matrix orderings. According to the fill-in reduction or peak

memory usage the optimal ordering method is labeled for each

matrix. Then, the set is spitted into two subsets, one as the

training set and the other as the testing set. With the training

set, two supervised learning methods based on support vector

machine (SVM) and multilayer perception neural network

(MLP-NN) respectively, are developed to train two possible

classifiers for choosing the optimal ordering method. The

simplicity of the classifier ensures less computation in the

inference. Finally, the classifiers are used to infer the better

ordering for a specified test matrix.

Support vector machine (SVM) is a widely used machine-

learning technique for classification. It computes an optimal

hyperplane to separate two groups of labeled data. If the sets of

data to discriminate are not linearly separable, the kernel trick

can be used. It maps the original data to a higher dimensional

space presumably making the separation easier. After this

mapping the inner product in the original space needs to be

changed to a new one, which is called kernel function and

used for training the SVM classifier. Alternatively, MLP-NN

can also be used for classification. With linear transfomation

and nonlinear activation function, MLP-NN maps inputs into

outputs. It uses the error backpropagation to train parameters,

and the softmax function at the output layer for classification.

Our idea is to automatically select the best matrix ordering

algorithm from the three discussed in last subsection, via a

well-trained machine learning classifier. The key points in-

clude the training data with labels, the representation of a data

(subdomain matrix here), and the technique for classification.

For the training data, we can obtain them from industrial

design of power grid, with the help of our industrial partner.

Then, we shall test these matrices with different ordering

approaches to get the label. For our problem, the number of

fill-ins and memory usage during the Cholesky factorization

are the two criteria for judgment.

To make the proposed approach useful for the power grid

analysis, its runtime efficiency at the inference stage is of

major concern. The representation of a test data affects the

efficiency. In the problem, data is the subdomain matrix,

whose dimension is larger than several thousands. Instead of

directly depicting the matrix we consider its graph counterpart.

Each matrix corresponds to an undirected graph, and the

property of graph affects the choice of fill-reducing ordering.

So, we use a couple of features from the view point of graph

to represent the matrix data.

The following list summarizes a number of important

features which can capture the major characteristics of a

undirected graph (subdomain matrix).

• Nn: the number of nodes (matrix dimension);

• Ne: the number of edges (number of nonzeros in matrix);

• avg d: the average degree of a node;

• density: the density of sparse matrix, i.e. 2Ne

Nn(Nn−1) ;
• max d: the maximum degree of a node;
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• min d: the minimum degree of a node;

• diameter: the maximum distance between two nodes.

We also use the SVM-recursive feature elimination (SVM-

RFE) technique to further reduce the features [23]. It first

trains a SVM classifier with all features. Then, it estimates the

relatively contribution of each feature and the least important

features are removed. This procedure is repeated until the loss

on the classification accuracy is above a threshold. Finally, five

features are selected: Nn, Ne, avg d, max d and diameter.

Calculating diameter is of O(N2
n) complexity.This could

be expensive for practical use. So, we devise an approximate

approach to calculating the graph diameter. The idea is that

we find the farthest node from an initial node and record

their distance. Then, we repeatedly change the initial node

and calculate its farthest node until the corresponding distance

does not increases. The procedure usually converges in a

couple of iterations, so that its complexity is about O(Nn).
Empirical results have shown that the approximate diameter

well captures the feature of graph.

For SVM classifier, the kernel trick with the Gaussian radial

basis function is applied. For MLP-NN, we build a three-layer

network which includes only one hidden layer. The size of

hidden layer is 16. The activation function is set to ReLU.

The gradient decent algorithm is used to training the weights

and bias in the network. The learning rate is fixed at 1e-3.

The maximum iteration number to set to 100. All tolerances

for convergence are 1e-3.

Two large-scale power grids from real design (with 40

million and 22 million nodes), provided by our industrial

partner, are tested. They are partitioned separately, resulting

in 2660 subdomain matrices in total. The dimension of these

matrices ranges from 11810 to 36473. A program is written

in Matlab2016b to test them with three ordering approaches:

AMD, metis and RCM. For AMD and RCM the build-in

commands “amd” and “symrcm” are used respectively. For

metis, the Matlab interface of metis-5.1.0 [22] provided in

SuiteSparse [24] is employed. Applying the generated orders

followed by Cholesky factorization (“chol” in Matlab) we

measure the number of fill-ins or peak memory usage to

determine the optimal ordering algorithm for each matrix. For

the tested matrices, we find out that it is always AMD or metis.

So, this leads to a binary classification problem.

We first construct two datasets: Dataset1 with 2128 ran-

domly selected matrices (80% of the whole set) as the

training subset and the remaining matrices as the testing

subset, Dataset2 with 1862 matrices (70% of the whole set)

as the training subset and the remainder as the testing subset.

With the number of fill-ins and memory cost as the criterion

separately, the numbers of matrices whose best orderings are

AMD or metis are listed in Table III. We can observe that

although AMD wins for most cases there are about 29% of

the matrices whose best ordering algorithm is metis. And, the

criterion of memory is similar to fill-in, as the number of fill-

ins largely determines the peak memory cost.

The classifiers are implemented in Python 2.7.6, with Scikit-

Learn package. The SVM based classifiers for optimal fill-ins

and peak memory are denoted as Classifier1 and Classifier2

respectively. To evaluate their performance, we measure four

metrics: true positives (TP), true negatives (TN), false positives

TABLE II
THE DISTRIBUTIONS OF THE OPTIMAL ORDERING ALGORITHMS

Criterion Training Subset Testing Subset

AMD metis AMD metis

Dataset1 Fill-in 1508 620 384 148
Memory 1494 634 377 155

Dataset2 Fill-in 1329 533 563 235
Memory 1319 543 552 246

(FP), and false negatives (FN). The inference results on the

two testing subsets are listed in Table IV. Here, “positive” and

“negative” refer to AMD and metis, respectively. From the

results we observe that the classifiers perform very well.

TABLE III
THE PERFORMANCE OF THE BINARY CLASSIFIERS BASED ON SVM

Classifier1 TP TN FP FN Classifier2 TP TN FP FN

Dataset1 381 128 3 20 Dataset1 374 128 3 27
Dateset2 562 208 2 27 Dataset2 551 208 2 38

More computational results on the two datasets are given

in Table V. “Time” means the inference time for the whole

testing subset. “Accuracy” means the fraction correct, i.e.

(TP+TN)/(TP+TN+FP+FN), which is the fraction of all in-

stances correctly categorized. “Average Mem.” is the average

memory cost for factorizing a matrix. For comparison, the

average memory costs corresponding to the situation where

AMD ordering is always applied and an oracle situation are

also provided. The latter stands for the ideal scenario where

the best among the three orderings is applied for each matrix.

However, the knowledge of the best ordering algorithm is

hardly achievable in practice.

TABLE IV
RESULTS OF THE SVM BASED CLASSIFIERS ON THE TESTING SUBSETS

Time Accuracy Average Average Mem.(MB)

(s) (%) Mem.(MB) AMD Oracle

Dataset1Classifier1 12.7 95.7 2265 3232 2192Classifier2 12.7 94.4 2266

Dataset2Classifier1 19.1 96.4 2240 3251 2168Classifier2 19.1 95.0 2242

From the results we observe the high accuracy of inference.

Compared to the total runtime for factorizing all matrices

in the testing subset of Dataset1 (ordered by AMD), which

is 45.0 seconds, the inference costs much less time. Notice

that it can be further reduced if the feature selection and

SVM classifier are implemented in C. Compared with the

conventional approach where the AMD algorithm is applied

to all cases, the proposed method reduces the memory cost by

30%. It is only slightly larger than the oracle case. For a brute-

force approach where both ordering algorithms (i.e., AMD

and metis) and Cholesky factorizations are run, it costs 67.2

seconds. Accordingly, the proposed method only consumes

47.0 seconds. These are the benefits of the proposed approach

for automatically selecting the matrix ordering algorithm.

For the MLP-NN based classifiers for optimal fill-ins and

memory usage, their performance are very similar to those

based on SVM, in terms of inference time and accuracy. And,

more experiments are carried out to evaluate how the size of

training subset affects the performance of the classifier [25].

The results show that the accuracy slowly decreases as the

training subset becomes smaller. However, even trained with

only 133 matrices both classifiers can have an accuracy around

432

6C-1



93%. This implies that the proposed approach is very stable

in terms of training set size.

C. An A∗-Search Inspired Approach
Efficiency of the supervised learning based approach de-

pends on existing heuristic techniques for matrix reordering,

which care more about the runtime instead of the performance

of outputted matrix order. Nowadays, the power grid analysis

consumes a large portion of time for VLSI design. To find

the worst-case scenario a large number of simulations are

executed, and a power grid endures successive modifications

during the design cycle. So, a better matrix order is beneficial

across many simulations, as long as the power grid’s structure

and partitioning which determine the sparse patterns do not

change. In this sense, pursuing a slower reordering approach

is meaningful if it could bring remarkably fewer fill-ins.
We make an analogy between the matrix reordering problem

and the traveling salesman problem, so that some AI technique

for path search can be borrowed to produce a better matrix

order. One of them, which is figured out to be appropriate, is

the A∗ search algorithm [26].
The problem can be regarded as finding a node order (node

sequence) for a undirected graph. This is a tree-search problem

if each tree node is a partial node sequence (root node is

a null sequence, and a child node is grown by appending a

graph node to its parent node’s sequence). The search process

is branching and traversing the tree. So, a complete sequence

is a leaf node in this tree, and the search process is finding a

path from the root node to the leaf node. Exhaustive search for

a sequence with the fewest fill-ins (scores) is obviously NP-

hard. The idea of A∗-search is at each intermediate tree node

determining the order of search (augmenting the sequence)

through estimating the final scores. This makes the paths

with fewer fill-ins are first searched, and with a global record

of minimum #fill-in some later tree-searches can be pruned

to reduce the total computation. Inspired by this idea, we

estimate the final #fill-in as the sum of #fill-in happened for

attaining current incomplete sequence (intermediate tree node)

and an evaluation of future fill-ins. We use the AMD algorithm

performed on the unfactorized submatrix (or remaining graph)

to make this evaluation, as it runs fast and is close to optimal.

And, each time we only append the node with the fewest fill-

ins estimation instead of trying all branches.
We have implemented the algorithm in C based on [24]. The

test matrices are from the dataset described in last subsection.

An experimental result is listed in Table V, from which we

see that A∗-search inspired approach runs very slow. So, we

further improve it with randomized technique, i.e. randomly

appending 32 nodes and choose the one with the minimum

fill-in estimation. As shown in Table V, this improved version

produces more than 5, 000× speedup. More results compared

with AMD are given in Table VI. We see the fill-ins can

be reduced by up to 20%, while the runtime is just several

minutes. The reduction ratio of fill-ins is basically proportional

to the increase ratio of nonzeros in Cholesky factorization after

using the AMD ordering.
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