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Abstract—As the technology node shrinks to the nanometer
scale, process variation become one of the most important issues
in IC designs. The industry calls for designs with high yield
under process variations. Yield optimization is computationally
intensive because traditionally it relies on the Monte-Carlo yield
estimation. In this paper, we will first review the Bayesian
methods that reduce the computational cost of yield estimation
and optimization. By applying Bayes’ theorem, maximizing the
circuit yield is transformed to identify the design parameters
with maximal probability density, conditioning on the event that
the corresponding circuit is ”pass”. It can thus avoid repetitive
yield estimations during optimization. The computational cost
can also be reduced by using the Bayesian optimization strategy.
By using the Gaussian process surrogate model and adaptive
yield estimation, Bayesian optimization can significantly reduce
the number of simulations while achieving even comparable
yields for analog and SRAM circuits. We further propose a
Bayesian optimization approach for yield optimization via max-
value entropy search in this paper. The proposed max-value
entropy search can better explore the state space, and thus reduce
the number of circuit simulations while achieving competitive
results.

I. INTRODUCTION

As the IC technology node shrinks to the nanometer scale,
the increasing process variations lead to server yield issues.
For analog designers, the yield concern is especially empha-
sized, since the analog circuits are more sensitive to process
variations. SRAM is a special kind of circuits with high yield
requirements. An SRAM array contains millions of SRAM
cells, the failure rate of an SRAM cell should be lower
than 10−6 to guarantee the yield of the array. Efficient yield
optimization approach is required to help the designers to
optimize the yield during the design phase.
For yield optimization, repetitive yield estimations are re-

quired to guide the yield optimization. For yield estimation, a
large number of simulations are generally needed to guaran-
tee the accuracy, which would be very time-consuming. For
SRAM circuits, to estimate the failure rate lower than 10−6,
the required number of simulations would be extremely large.
Thus, we can improve the efficiency of yield optimization
from two aspects. On the one hand, we could reduce the
computational cost of each yield estimation. On the other hand,
we could accelerate the optimization procedure.
Monte Carlo analysis is a general approach for yield es-

timation. A large number of circuit simulations are invoked
to guarantee the accuracy of yield estimation for Monte Carlo
analysis. A variety of approaches have been proposed to reduce
the computational cost of Monte Carlo analysis. LHS [1] and
Quasi-MC [2] methods employ the techniques of design of
experiments to reduce the number of samples for Monte Carlo
analysis. Prior knowledge from early design stages can also
be utilized to reduce the required number of simulations in
late stages for yield estimation. Bayesian inference has been
proposed to fuse the prior knowledge from early stage and
very few late-stage simulation samples to accurately estimate
the yield of late stage in [3] [4]. Note that the accuracy of
yield estimation could be low if the current yield is low. Thus,
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an optimal computation budget allocation (OCBA) technique
is proposed in [5] [6]. Although this method can reduce the
number of circuit simulations, the total computational cost of
yield optimization is still high. For the yield estimation of
SRAM circuits, many approaches have been proposed to re-
duce the required number of samples, e.g., important-sampling
based approaches [7]–[10], boundary-based approaches [11]–
[14], subset simulation [15] and scaled-sigma sampling [16].

To accelerate the optimization procedure, corner-based ap-
proaches have been proposed in [17]–[19]. The corner-based
approaches try to optimize the worst-case performances over
several corners. The computationally intensive yield estimation
can thus be avoided. However, corner-based optimization
would lead to over-design. Furthermore, the number of corners
would also be extremely large if more process variations
were considered. An alternative approach to accelerate the
optimization process is building models to replace the cir-
cuit simulations [20] [21] [22] [23]. However, to guarantee
adequate modeling accuracy, the required number of training
samples would grow exponentially as the number of process
variations increases.

Bayesian method is a powerful approach in machine learn-
ing community. It can encode the prior knowledge to the
modeling process. The required number of training samples
could thus be greatly reduced. The Bayes’ theorem can be used
to reformulate the problem, which would be more convenient
to solve. We have proposed two Bayesian methods for yield
optimization [24] [25]. In [24], we reformulate the yield
optimization problem through Bayes’ theorem. Instead of
optimizing the yield, we aim to find the design parameters
that maximize the probability density conditioning on the event
that the corresponding circuit is “pass”. The Gaussian kernel
is used to approximate the probability density function and an
EM-like algorithm is proposed to maximize the approximated
probability density function. Through the reformulation, the
repetitive yield estimations could be avoided. Nevertheless,
the same computation efforts are allocated for both low-
yield and high-yield candidates. It would lead to a waste of
computational resources for low-yield candidates.

In [25], we proposed a yield optimization method based
on Bayesian optimization and adaptive yield estimation. The
Bayesian optimization [26] consists of two key ingredients,
i.e., a probabilistic Gaussian process regression model and an
acquisition function. The Gaussian process regression model
assumes that the objective function could be modeled by
a Gaussian process. The hyper-parameters of the Gaussian
process could be obtained by the known training data. The
predictions of the Gaussian process regression model include
the expected yield but also the uncertainties of the prediction.
This implies that our yield estimation is not necessarily to
be accurate. The acquisition function is used to guide the
optimization procedure. The expected improvement (EI) is
taken as the acquisition function in this approach. It can be
viewed as the expectation of the yield improvement based on
the Gaussian process regression model. The acquisition func-
tion is designed to balance the exploitation and exploration.
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The exploitation means that the regions where the yields are
expected to be high will be visited. The exploration means
that the regions where the uncertainties of yields are high will
be visited to guarantee the potential good solutions are not
missed.
Bayesian optimization is a promising approach for yield

optimization. On one hand, due to its efficient optimization
strategy, it could significantly reduce the number of yield
estimations. On the other hand, the Gaussian process regres-
sion model is possible to encode the observation uncertainties
of yields, which enable us to adaptively control the yield
estimation accuracy. Such an approach could significantly
reduce the computational cost of yield estimation without
sacrificing the accuracy of the final optimization results, since
the uncertainties of the yield estimations are encoded in the
Gaussian process regression model.
In this paper, we further propose a Bayesian optimiza-

tion approach via max-value entropy search (MES) for yield
optimization. The max-value entropy is proposed to replace
the expected improvement (EI) acquisition function in [25].
By maximizing the max-value entropy search function, the
search space can be better explored by maximizing the gain
in mutual information between the optimum and the next
query point. Compared with the traditional improvement-based
acquisition functions, the experimental results demonstrate that
the performance of MES function is competitive compared
with state-of-the-art acquisition functions.
The rest of the paper is organized as follows. In section

II, we will present the formulation of the yield optimization
problem and review the existing Bayesian methods for yield
optimization [24] [25]. Our proposed Bayesian optimization
method via max-value entropy search is presented in section
III. The efficiency of our proposed method is demonstrated in
section IV. We conclude the paper in section V.

II. BACKGROUND REVIEW

In this section, we will review the problem formulation of
the yield optimization problem firstly. Then, we will review
two Bayesian methods for yield optimization [24] [25].

A. Problem Formulation
Denote x = [x1, x2, · · · , xnx ]

T ∈ χ an nx-dimensional
vector, which represents the design variables of the designs.
χ is the design space which is specified by users. Denote
v = [v1, v2, · · · , vnv

]T ∈ V an nv-dimensional vector, which
represents the nv-dimensional process variations. V is the
variation space. Generally, the v’s are mutually independent
and standard normal in most process design kits (PDK)
provided by foundry.
Thus, the probability density function (PDF) of v can be

expressed as

p(v) =

nv∏
i=1

[
1√
2π
· exp

(
− 1

2
v2i

)]
=

exp(−‖v‖22/2)(√
2π

)nv
, (1)

where ‖ · ‖2 denotes the L2-norm of a vector [27].
We consider a circuit performance ci. It can be viewed

as a function of x and v. Without loss of generality, its
specification could be written as ci ≤ 0. If K performances
are considered, the circuit is expected to be “pass” if the
K specifications are met. Denote the “pass” event as S, the
conditional yield is expressed as

P (S|x) =
∫
V

I(x,v) · p(v) · dv, (2)

where I(x,v) is an indicator function. It equals to 1 if the
circuit pass with design vector x and process vector v, and 0
otherwise.
With these definitions, the yield optimization can be ex-

pressed as

x∗ = argmaxx P (S|x)
s.t. x ∈ χ, (3)

where x∗ is the optimal solution.

B. Reformulation of Yield Optimization via Bayes’ Theorem
In [24], we proposed to reformulate the yield optimization

problem via Bayes’ Theorem. For design variables, we can
view them as random variables uniformly distributed over the
design space χ. Hence, p(x) can be viewed as a constant over
the design space χ.
By using Bayes’ theorem, the conditional yield x can be

rewritten as
P (S|x) = P (S)

p(x)
· p(x|S), (4)

where P (S) is expressed as

P (S) =

∫
D

∫
V

I(x,v) · p(v) · p(x) · dvdx, (5)

and p(x|S) is the conditional probability density function
(PDF) of x

p(x|S) = 1

P (S)
·
∫
V

I(x,v) · p(v) · p(x) · dv. (6)

Equation (4) is slightly different from the standard Bayes’ the-
orem. In (4), the probabilities P (x) and P (x|S) are replaced
by their PDFs p(x) and p(x|S).
Note that P (S) is a constant over the combined space of χ

and V . Also, p(x) is a constant. Therefore, we have

P (S|x) ∝ p(x|S). (7)

It means that we can transform the yield optimization
problem to an equivalent problem, which can be expressed
as

x∗ = argmaxx p(x|S)
s.t. x ∈ χ. (8)

From (8), we can find that maximizing the yield is equivalent
to identify x with the highest probability density, conditioning
on the occurrence of the circuit “pass” event. In other words,
to improve the yield, it is equivalent to find a design vector
such that the number of “passed” designs is maximized in the
neighborhood of this vector under process variations.
Since p(x|S) is unknown, we approximate p(x|S) by kernel

density estimation. Firstly, N samples θi = [xi vi]
T, i =

1, · · · , N were generated in the combined design space and
process variation space. With circuit simulations, we can find
M out of N samples are “pass”. Their design vectors can be
expressed as μi, i = 1, · · · ,M , which follows the distribution
p(x|S). The distribution can be approximated by kernel den-
sity estimation. p(x|S) is approximated by probability density
function p̂(x|S), which can be expressed as

p̂(x|S) = 1

M
·

M∑
i=1

KH(x− μi), (9)

where KH(x) = |H|−1/2 · K(H−1/2x). K(·) is the kernel
function. H is an nx×nx bandwidth matrix. The multivariate
Gaussian kernel is used here.

K(x) =
1√
2π

nx
· exp

(
− 1

2
· xTx

)
. (10)
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Note that p̂(x|S) is a Gaussian mixture distribution. We can
use an expectation-maximization (EM) like algorithm from the
machine learning community [28] to maximize p̂(x|S). Please
refer to [24] for the details of the EM-like algorithm.

C. Yield Optimization via Bayesian Optimization
The Bayesian optimization approach is a sequential model-

based framework proposed for the optimization of noisy and
expensive black-box functions. This implies that our yield
estimation is not necessarily to be accurate. In [25], we
proposed an efficient yield optimization method based on
Bayesian optimization.
The Bayesian optimization [26] consists of two key ingre-

dients, i.e., a probabilistic surrogate model and an acquisition
function. Gaussian Process Regression (GPR) model is a
widely used surrogate model. Consider n training data points
Xn = {xi, i = 1, · · · , n}, and denote fi = f(xi) and
yn = {yi, i = 1, · · · , n} as the real yields and the noisy yield
estimations, respectively. In GPR model, f(x) is assumed to
follow Gaussian process

f(x) ∼ GP(
μ0(x), k(x,x

′)
)
, (11)

where μ0:D �→ R denotes the mean function, and k:D×D �→
R denotes the covariance function.
According to the Gaussian process assumption, f =

[f1, f2, · · · , fn]T follows a joint Gaussian distribution. We
assume the deviation of the yield estimator y and fi could
be modeled by a Gaussian noise ε ∼ N (0, σε). Thus, we have

f | X ∼ N (m,K) (12)

y | f , σ2
ε ∼ N (f , σ2

ε I), (13)

where m = [μ0(x1), · · · , μ0(xn)]
T, and I is the identity

matrix. K is the kernel matrix given by

K =

⎡⎣ k(x1,x1) . . . k(x1,xn)
...

. . .
...

k(xn,x1) . . . k(xn,xn)

⎤⎦ . (14)

For a new point x′, the prediction f ′ could be obtained
according to the assumption that f ′ and f also follow a joint
Gaussian distribution. The prediction of f ′ is a Gaussian
distribution N (μ(x′), σ2(x′)), where

μ(x′) = μ0(x
′) + kT

(
K+ σ2

ε I
)−1

(y −m)

σ2(x′) = k(x′,x′)− kT
(
K+ σ2

ε I
)−1

k.

The hyperparameters of the Gaussian process could be
obtained by maximizing the likelihood of the training data.
The next query point is selected by maximizing the expected
improvement:

x∗ = argmax
x

E(I
(
x)), (15)

where

I(x) =

{
ft+1(x)− y(x+) ft+1(x) > y(x+)
0 otherwise,

(16)

where ft+1(·) is the GP model of the yield after t iterations,
y(x+) the best observed yield.
With the expected improvement acquisition function and the

probabilistic Gaussian process model, the optimization proce-
dure could efficiently balance exploration and exploitation, and
thus leads to promising designs with a very small number of
yield estimations.

The errors of the yield estimations are included in the
Gaussian process model as shown in (13). Therefore, although
the yield estimation is not accurate, the potential optimal
solutions will not be missed.
For Monte Carlo based yield estimation, the relationship

between the sample size N and the accuracy of the estimation
PMC can be expressed as [29]

N ≈ PMC · (1− PMC) · k2γ
ΔP 2

MC

, (17)

where ΔPMC indicates the confidence interval. kγ reflects
the confidence level. From (17), we can estimate the required
number of samples if the accuracy is specified. Also, we
can estimate the accuracy of yield estimation for a specific
number of samples. Equation (17) enables an adaptive scheme
to dynamically control the accuracy of yield estimation during
the optimization procedure, which could significantly reduce
the number of circuit simulations. Please refer to [25] for the
details of this method.

III. BAYESIAN OPTIMIZATION VIA MAX-VALUE ENTROPY
SEARCH

In this section, we will present our proposed Bayesian
optimization approach for yield optimization via max-value
entropy search.

A. Max-value Entropy Search
Entropy search methods employ the information theory

based criteria to select the next query point during the
Bayesian optimization. Denote Dt = {Xt,yt} the training
data at the t-th optimization step. Denote x∗ the location
x∗ = argmaxx∈Df(x) which corresponds to the global
optimum of f(x). Entropy search aims to find the next query
point that achieves maximal information gain or uncertainty
reduction of x∗. The corresponding entropy reduction function
can be expressed as

ES(x) = I({x, y};x∗|Dt)

= H(p(x∗|Dt))− E[H(x∗|Dt ∪ {x, y})], (18)

where H(·) denotes the differential entropy of a continuous
probability. E[H(x∗|Dt ∪ {x, y})] represents the expectation
of the entropy if a new data point (x, y) is observed. The
expectation is over p(y|Dt,x).
The predictive entropy search [30] employs the symmetric

formulation of (18), which can be expressed as below

PES(x) = H(p(y|Dt,x))− E[H(y|Dt,x,x∗)], (19)

where the expectation is over P (x∗|Dt). However, P (x∗|Dt)
is not analytically intractable, and the approximation of
P (x∗|Dt) is computation expensive [31].
In this paper, we follow the idea of the above information-

based policies. Instead of measuring the information of x,
we try to use the information of the maximum value y∗ =
f(x∗) [31]. We try to maximize the gain in mutual information
between the maximum value y∗ = f(x∗) and the next query
point [31], which could be approximated analytically. The
corresponding max-value entropy search function is expressed
as

MES(x) = I({x, y}; y∗|Dt)

= H(p(y|Dt,x)))− E[H(y|Dt,x, y∗)]
(20)

In equation (21), the first term p(y|Dt,x) follows the Gaussian
posterior distribution N(μt(x), σ

2
t (x)), which is analytically

tractable. The second term can be approximated by a Monte
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Fig. 1: The posterior distribution provided by the Gaussian
process regression model with 1-hidden-layer neural network,
and the number of neurons is set to be 50. The lightgray area
represents the three standard deviation band.

Carlo estimation. Given the y∗ of the underlying objective
function, p(y|Dt,x, y∗) is a truncated Gaussian distribution.
By sampling K functions out of the posterior distribution,
we maximize each of them to generate a set of incumbent
targets Y∗ = {y∗,1, y∗,2, ..., y∗,K}. These incumbent targets
can be used to approximate the second term of (21). The
Monte Carlo estimation helps to generate a more accurate
formulation for the mutual information gains between the
underlying maximum value y∗ and the candidate data points.
The MES(x) can thus be approximated by [31]

MES(x) ≈ 1

K

K∑
i=1

λiψ(λi)

2 ∗Ψ(λi)
− log(Ψ(λi)), (21)

where ψ and Ψ denote the probability density function and cu-
mulative density function of normal distribution, respectively.
Here, λi = (μ(x)− y∗,i))/σ(x), and y∗,i is the i-th sampled
maximum value of the objective function.

B. Gaussian Process Regression Model with Neural Network
We employ a Gaussian process regression model with neural

network to replace the original one. On the one hand, the com-
putational cost of training and prediction of Gaussian process
regression model can be reduced [23] with the neural network
representation. On the other hand, the weight space view of
neural network based Gaussian process model facilitates the
Monte Carlo sampling of the predictions y∗ in (21).
From a weight space view, the latent function f(x) can

be expressed as a linear combination of a nonlinear feature
maps. Let φ(·) represents the nonlinear function that maps data
from D-dimensional input space to M -dimensional feature
space. Denote y the observed data generated form the black-
box function with additive noise with Gaussian distribution
N (0, σ2

n)). f(x) and y can be expressed as{
f(x) = wTφ(x)
y ∼ N (f(x), σ2

n).
(22)

By characterizing the Gaussian prior of the weights w with

zero mean and covariance matrix Σp =
σ2
p

M I ∈ RM×M ,
the distribution of weights follows w ∼ N (0,Σp) and the
kernel function of the neural-network-based Gaussian Process
regression model can be expressed as:

k(xi,xj) = φ(xi)
TΣpφ(xj). (23)

Fig. 2: The 5 sampled functions from the posterior distribution
provided by the Gaussian process regression model with 1-
hidden-layer neural network (top), and the corresponding max-
value entropy search function (bottom).

By assembling σn, σp and the weights of the neural network
η into a single hyperparameter θ = (σn, σp, η), the model can
be built by minimizing the reformulated negative log marginal
likelihood function:

NLML =
1

2σ2
n

(yTy − yTΦTA−1Φy)

+
1

2
log|A|+ N

2
log(2πσ2

n)−
M

2
log

Mσ2
n

σ2
p

.
(24)

And the corresponding posterior distribution provided by the
Gaussian Process regression model can be expressed as{

μ(x) = φ(x)TA−1Φy
σ2(x) = σ2

n + σ2
nφ(x)

TA−1φ(x),
(25)

where {
Φ = (φ(x1), φ(x2), ..., φ(xN ))

A = ΦΦT +
Mσ2

n

σ2
p
I.

(26)

Figure 1 shows that the neural-network-based GPR model is
able to capture the underlying behavior of the latent function
with only a small set of training data.
From the above equations, the posterior distribution of the

weights w follows the multivariate Gaussian N(μ(w), σ2(w))
which can be expressed as{

μ(w) = A−1Φy

σ2(w) =
Mσ2

n

σ2
p
A−1.

(27)

Fueled with equation (27), we can sample the i-th incumbent

target y∗,i by maximizing the i-th sampled function f̃(x) =
wT

i φ(x). The sampled functions and the corresponding max-
value entropy search function is shown in Figure 2. The
MES is able to carefully balance between the exploitation and
exploration to make the search efficient.

C. Summary
With the carefully designed MES function and neural-

network-based Gaussian process regression model, the so-
lution space of the latent function can be fully explored
efficiently. By sampling a set of functions from the Gaussian
posterior distribution and maximizing each of them, a set of
incumbent targets can be generated to facilitate the Monte
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Fig. 3: The schematic of the three-stage amplifier, which is
reproduced from [25].

TABLE I: Experimental results of the three-stage amplifier.
The results of EI, BYO and ORDE are taken from [25].

Algo MES EI BYO ORDE

Yield

best 99.99% 99.99% 99.99% 99.99%
worst 99.87% 99.63% 97.57% 94.72%
mean 99.97% 99.84% 99.17% 98.30%

Std. Dev. 0.04% 0.13% 0.90% 2.18%

# Simulation
best 3809 3947 16400 37634
worst 12835 24860 67100 163837
mean 8350 10113 36260 81104

Carlo estimation. At each iteration, the query point is chosen
by maximizing the mutual information gains between the
maximum value of the latent function and the next query point.
And the overall framework of the Bayesian optimization via
max-value entropy search is presented in Algorithm 1.

Algorithm 1 Bayesian optimization via Max-value Entropy
Search

1: Randomly sample a initial training set D0 = {X,y}
2: for t=1 to n do
3: Build the neural-network-based GPR model
4: Draw K functions from the Gaussian posterior dis-

tribution and maximize each of them to generate K
incumbent targets Y∗ = {y∗,1, y∗,2, ..., y∗,K}

5: Maximize the MES function and get xt
6: Estimate yield yt at xt
7: Update the training dataset with the new observed data

{xt, yt}
8: end for

IV. EXPERIMENTAL RESULTS

In this section, we conduct experiments on a three-stage
amplifier and an SRAM circuit to demonstrate the efficiency
of our proposed algorithm (denoted as MES) by comparing
it to the following four state-of-the-art yield optimization
algorithm: (1) EI [25] which employs the weighted expected
improvement acquisition function to cut down the number of
circuit simulations, (2) BYO [24] which tries to avoid repet-
itively invoking the yield estimations with reformation of the
yield problem [32], (3) ORDE [5] which instead reduces the
computational costs by combining the differential evolutionary
algorithm with OCBA, (4) and AOSM [33], which accelerates
the SRAM yield optimization procedure with adaptive online
surrogate model. All experiments are conducted on a Linux
workstation with 2 Intel Xeon CPUs and 128 GB memory.

A. Three-Stage Amplifier
The three-stage amplifier circuit is implemented in a 0.35

μm CMOS process, and the corresponding schematic is
presented in Figure 3. A total of 24 design variables are

BL_BL

VSS

VDDWLCELL<0>

CELL<1>

CELL<Na>

WL<0>

WL<1>

WL<Na>

BL BL_
0 1

1

1

0

0

...

Fig. 4: The simplified schematic of an SRAM column, which
is reproduced from [25].

considered in this circuit, and the design specifications are
listed as follows ⎧⎪⎪⎨⎪⎪⎩

GM > 20dB

GBW > 0.9MHz

PM > 50o

Iq < 70μA.

(28)

In (28), GM denotes the gain margin, GBW represents gain-
bandwidth, PM means phase margin and Iq is the quiescent
current at 27oC. To ensure a fair comparison, we run each
algorithm 10 times to reduce random fluctuations. And the
final yields are estimated with 50000 Monte Carlo simulations.
The yield results and the number of circuit simulations are

presented in Table I. The final optimization results achieved
by our MES are competitive compared to the state-of-the-
art, while establishing a much more stable performance. As
for the number of circuit simulations, a 17.4% reduction is
achieved compared to EI on average. And the speed up with
respect to BYO and ORDE are 77.0% and 89.7%, respectively.
It is also worth noting that MES significantly reduces the
worst simulation times (e.g., by 48.4% compared to EI). This
demonstrates its stability and efficiency.

B. SRAM Circuits

The simplified schematic of an SRAM column is presented
in Figure 4, whereNa denotes the number of replicated SRAM
bit cells implemented with a 45nm CMOS process. In this
experiment, we set the Iread as the performance of interest.
And a total of six design variables are considered, including
the widths and lengths of the drive, access and load transistors.
The experiments are conducted for Na = 1, Na = 64 and
Na = 512 to test both low-dimensional and high-dimensional
variation space cases. Again, to ensure a fair and meaningful
comparison, each algorithm is run 10 times to reduce random
fluctuations. And the final failure rates are estimated with 108

Monte Carlo simulations.
The failure rates and the average simulation times are

presented in Table II. For Na = 512, the AOSM algorithm
fails in the optimization process, due to the unaffordable
modeling cost for high dimensionality. In both low- and high-
dimensional variation space cases, MES achieves lower failure
rates compared with the state-of-the-art algorithms. And the
failure rates for Na = 512 are reduced for 55.1% with
respect to both EI and BYO algorithm. As for the number of
circuit simulations, MES speeds up the optimization process
by 33.0% compared to EI in low-dimensional variation spaces
when Na = 1. And the number of circuit simulations is
reduced by 13.1% when Na = 64. This again shows that MES
outperforms the state-of-the-art algorithms in both stability and
efficiency.
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TABLE II: The optimization results of the SRAM. The results
of EI, BYO and AOSM are taken from [25].

Algo MES EI BYO AOSM

Na = 1 Failure Rate 2.96e-7 3.43e-7 3.45e-7 3.45e-7
# Simulation 3722 5556 8100 14750

Na = 64 Failure Rate 3.36e-7 3.80e-7 3.81e-7 3.80e-7
# Simulation 5399 6214 8100 640146

Na = 512 Failure Rate 3.51e-7 7.82e-7 7.82e-7 -
# Simulation 6138 6450 12600 -

V. CONCLUSION

In this paper, we review the state-of-the-art yield optimiza-
tion algorithms and propose an efficient Bayesian optimization
approach for yield optimization via max-value entropy search.
The proposed algorithm is able to better search the state space
with the max-value entropy search acquisition function, and
reduce the number of circuit simulations while achieving com-
petitive results. Experimental results demonstrate the stability
and efficiency of our proposed method.
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