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Abstract— Neuromorphic computing systems have demon-
strated many advantages for popular classification problems with
significantly less computational resources. We present in this
paper the design, fabrication and training of a programmable
neuromorphic circuit, which is based on printed electrolyte-
gated field-effect transistor (EGFET). Based on printable neuron
architecture involving several resistors and one transistor, the
proposed circuit can realize multiply-add and activation func-
tions. The functionality of the circuit, i.e. the weights of the
neural network, can be set during a post-fabrication step in form
of printing resistors to the crossbar. Besides the fabrication of
a programmable neuron, we also provide a learning algorithm,
tailored to the requirements of the technology and the proposed
programmable neuron design, which is verified through simu-
lations. The proposed neuromorphic circuit operates at 5V and
occupies 385mm2 of area.

I. INTRODUCTION

In recent years, neuromorphic computing systems (NCS)

have shown to be very potent solutions to efficiently solve

neural network (NN) tasks, such as classification or regression

problems with reduced computation time [1], high energy-

efficiency on hardware fabricated in compact volume and with

inherent fault-tolerance [2]. These attractive features motivated

research groups to implement NCSs in emerging technologies.

On the other hand, Printed Electronics (PE) has gained a

lot of attention recently. In comparison to traditional silicon-

based VLSI, PE can potentially decrease the fabrication costs

of electronic systems using large-area printing and provides

additional properties for future applications based on flexible,

green and low-voltage devices.

One major benefit for realizing NCS in PE is the mitigation

of high device latencies of printed designs by taking advantage

of the parallel computing capability of the NCS. The analog

computing paradigm of NCS can also be used to replace

digital circuits to obtain smaller hardware footprints and

further lower device variations by reducing transistor count,

typically existing in boolean-logic-based designs. Moreover,

the crossbar architectures can easily be customized according

to demand during a post-fabrication step by means of weight-

adjustment through resistor printing.

In this paper, we propose new design concepts and tools

such as a mapping and learning algorithm to deploy NN

computations on a programmable non-spiking NCS with a

∗Both authors have same contribution to this work

customizable crossbar array and an activation function using

inkjet printed electrolyte-gated inorganic transistor technology.

To the best of our knowledge, this is the first time a NCS is
fabricated and demonstrated using printing technology. To be

precise, we make the following contributions:

1) We design, fabricate and characterize a programmable

neuron, which consists of a crossbar-array with post-

fabrication of weights and a printed activation function

circuit involving only one transistor (EGFET).

2) We have developed a training algorithm tailored for

the requirements of the technology and printed neuron

circuitry.

3) We verified the proposed programmable NCS and its

learning algorithm simulation-based.

This work might encourages other PE research groups to

consider NCS-based implementations in their design flow.

To this end, we provide a reproducible concept for printed

neurons with a set of learning rules to solve classification

problems by the NCS. This is especially valuable as existing

digital-based printed designs can be substituted to improve

circuit characteristics or even broaden the scope of potential

applications.

The rest of this paper is structured as follows: In Section II,

we provide background of this work. In Section III, the

proposed printed neuron design is presented and in Section IV,

we describe the fabrication of the printed neuron circuitry.

Section V introduces the developed learning algorithm to solve

a specific classification tasks. Finally, Section VI concludes the

paper.

II. PRELIMINARY

A. Printed Electronics and Electrolyte-gated inorganic tran-
sistors

Printed Electronics (PE) offer solutions beyond the capa-

bilities of silicon-based VLSI technologies, such as flexible,

large-area and low-cost fabrication. They can be classified

into different groups, according to the utilized processes and

materials. Organic-based electronics for instance are widely

used, which require however high supply voltages ranging up

to 100V [3] and can thus limit the deployment in embedded

applications. On the other side, inorganic n-type electrolyte-

gated field-effect transistors (EGFET) where developed, with

sub 1V operation region [4].

In our work, we deploy inkjet printing, which offers a

digital, customizable post-processing step that can be used to
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Fig. 1: Printed Electronics technology (a) top- and (b) side-

view of the electrolyte-gated field effect transistor (c) Fujifilm

Dimatix Materials Inkjet Printer DMP-2850

easily tailor the functionality of the printed NCS. In contrast,

in screen printing or roll-to-roll printing, a master plate has to

be fabricated as part of the replication process. Inkjet printing

on the other side enables on-demand printing and allows

circuit customization and tuning.

Inkjet printing as a fully additive process was proven to be

very efficient to implement digital circuits such as logic gates,

memory elements or physical unclonable functions, to name

a few [4, 5, 6]. The used EGFETs in these designs are build

from the following functional inks: In2O3 as the semicon-

ducting channel material, an electrolyte as a substitute for a

dielectric layer and PEDOT:PSS as the conductive material

used in resistors and the top gate electrode [4]. In Fig. 1, the

transistor stack as well as our inkjet-printer are illustrated.

Using electrolytes offers the advantage to drastically reduce

the supply voltage due to its high gate-capacitance.

As EGFET-based circuits are part of an emerging and less

mature technology, still several challenges remain unsolved.

Due to inherent non-determinism in droplet printing as well

as the strong impact of interface quality between the different

thin film layers, high process variabilities exist and thus

designs are preferred with a low number of devices. Therefore,

EGFET-based designs aim at low-complexity implementations

with reduced number of transistors. Furthermore, due to the

absence of p-type transistors, mapping of existing designs

to the limited NMOS-logic sometimes is difficult. NCS with

resistor-based crossbar architectures are thus a suitable solu-

tion to build circuits that do not demand many transistors.

Moreover, NCS does not require high-performance devices

and can achieve reasonable performance even with high device

latencies, which is another characteristic of PE.

B. Related Work

Several crossbar architectures for NCS have been presented

in recent years. The authors of [7] reported on a memristor-

based crossbar architecture in combination with summing

amplifiers to realize a Brain-State-in-a-Box (BSB) model

for optical character- and image processing. Based on a

similar hardware, [8] provided an automation framework for

automatic deployment of NNs to memristor-based crossbars.

Also on the level of algorithms, most recently, [9] described

how quantization and bias-tuning techniques can be used to

compensate for NN accuracy losses.

However, these silicon-based architectures and concepts can

not be applied to existing printed electronic technologies due

to fundamental differences in material properties and design

complexity. Nevertheless, organic-based crossbar-architectures

were introduced in the past [10]. The focus of this work

was however more on device characterization, not on de-

veloping circuits for NCSs. In contrast, [11] reported on a

low-complexity design for both memristor-based crossbar and

activation function based on organic p-type transistors. The

solution proposed in [11] is however not programmable by

printing as it is the case in all other prior published works.

III. PROGRAMMABLE NEURON DESIGN

Our proposed inkjet-printed circuits are build from n-type

electrolyte-gated transistors (EGFET) and printable resistors.

Although the lack of p-type transistors in this technology is a

limitation, we can still manage to realize efficient neurons for

neural networks based on our NMOS-logic. After offline train-

ing for classification tasks, the neural network is customized

by printing the corresponding weights to the crossbar array.

The schematic of the neuron is depicted in Fig. 2. It consists

of two components required to build NN architectures: the

multiply-add circuit and the activation function. All design

considerations regarding the neuron implementation will be

described in the following.

A. Multiply-Add

As a digital implementation with boolean logic would

require very complex designs, the weighted-sum operation

can easier be realized by a crossbar architecture. In this

low-complexity solution, the input voltages are converted

into currents, inversely proportional to the resistances on

the crossbar-points, and are instantly summed up according

to Kirchhoff’s rule. The novelty of this approach is, that

the resistors of the crossbar array can be customized by

inkjet-printing during post-fabrication and tuned in their value

by printing. Therefore, PEDOT:PSS ink can be printed in

different geometries to the crossbar-points to realize different

resistances.

The output voltage of the crossbar is determined by the

voltage drop across Rbase and can be computed as:

Vx =

Rbase

(∑P
i=1

Vi

Ri

)

1 +Rbase

(∑P
i=1

1

Ri

) (1)

For Rbase � Ri, Equ. 1 can be approximated, according

to Equ. 2:

Vx =

∑P
i=1

Vi

Ri

1

Rbase
+

(∑P
i=1

1

Ri

) ≈
∑P

i=1

Vi

Ri∑P
i=1

1

Ri

=
∑P

i=1
Vi wi

(2)

As a result, the synaptic weights can be written in the form

of:
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wi =

1

Ri∑P
j=1

1

Rj

(3)

From Equ. 3 it is obvious that the wi are bounded:

wi ∈ [0, 1]. In addition, by summing up all wi, we obtain

the constraint:
∑P

i=1 wi = 1.

It is important to mention that there exist another approxi-

mation of Equ. 1 by setting Rbase � Ri, which was used by

[11]. Using this approximation, the constraint
∑P

i=1 wi = 1
is not existing, however, this leads to an upper bound on the

weights, which is much smaller than 1, and thus leads to a high

voltage drop across each node causing signal losses towards

the NCS output.

B. Activation Function

Activation functions for neural networks introduce non-

linear behavior to the neuron computation. As illustrated in

Fig. 2, the printable activation function design consists of

an n-type EGFET with two resistances at the gate. They

realize a voltage-divider, which turns the transistor on for

positive polarity, and off for negative polarity. To this end,

resistor sizing of the voltage divider has to fulfill: RL � RH .

Dependent on the crossbar output voltage Vx, the input voltage

of the activation function is positive or negative, and either

high positive drain currents or small negative drain currents

flow through the pull-down resistor Rout, which generates

the output voltage Vout of the neuron. As we later show

in Section IV, the resulting activation function represents a

piece-wise linear unit. In order to guarantee that the multiply-

add-circuit is not shortcut by the activation function circuit,

Rout � Rbase has to be satisfied. In a similar manner, the

series resistance of the voltage divider has to be higher than

the ON-resistance of the EGFET: RL � RON . Otherwise the

transistor operation point would be shifted or the transistor

will be shortcut by the voltage divider, respectively.

C. Biasing

The constraint
∑P

i=1 wi = 1 can create a significant

restriction for the training algorithm, forcing the weight vector

to lie on a hyperplane. To relax this condition, we can add an

additional ”dummy” input with a weight of wb = 1−∑P
i=1 wi

and an applied input voltage Vbias of 0V (see Fig. 2). In

this case, the constraint changes to
∑P

i=1 wi + wb = 1 =⇒∑P
i=1 wi < 1. Alternatively, we can also use the ”dummy”

node to bias the neuron by b, in this case the constant applied

voltage must be equal to Vbias =
b
wb

.

The input of the neuron xi = Vi and the bias b can only

be chosen continuously between -1V and 1V. Higher absolute

voltages would destroy the electrolyte of the EGFET.

Furthermore, to also limit Vbias and hence the maximum

required supply voltage, we set wb ≥ wmin
b = 0.2. In case of

a 2-input neuron with w1 + w2 = 0.8 ∧ wb = 0.2 and b = 1
we have Vbias =

b
wb

= 1
0.2 = 5V , where 5V is the maximum

supply voltage. For an unbiased neuron we set Vbias = 0V .
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V
bias
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bias

R
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R
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R
out

T
1
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pPLU - Activation 
Function
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x

Fig. 2: Neuron schematic - realisation of multiply-add with

crossbar array, implementation of activation function with

EGFET (T1), voltage divider (RH , RL) at the transistor gate

and pull-down resistor (Rout). The number of inputs can easily

be scaled by adding further input resistances Ri (grey).

Fig. 3: Photo of inkjet-printed 2-input neuron with printed

weights (Ri) and EGFET (T1), annotated with contacts for

drain (D), source (S) and gate (G). Layout was derived from

the schematic depicted in Fig. 2 (without grey resistors).

IV. PROGRAMMABLE NEURON FABRICATION AND

CHARACTERIZATION

A. Fabrication of 2-input neuron

We fabricated a two-input neuron (P = 2) according to the

design depicted in Fig. 2 and based on the inkjet-printing tech-

nology introduced in Section II. A 20x20mm ITO-sputtered

glass substrate was structured using laser ablation in order to

obtain the passive conductive tracks. Afterwards In2O3 for

the semiconductor channel material of the EGFET was inkjet-

printed and annealed at 400◦C. Subsequently, the electrolyte

was printed covering the channel, source and drain electrodes,

respectively (see Fig 1). Finally, PEDOT:PSS was printed

for both, the top-gate contact of the EGFET, as well as the
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TABLE I: Design parameters for 2-input neuron fabrication

R1 R2 Rbase Rout RD RH W/L of T1

1kΩ 1kΩ 30kΩ 300kΩ 500kΩ 10kΩ 200μm/80μm

synaptic weights. A microscope photo of the printed circuit is

illustrated in Fig. 3. The values of all design parameters and

sizing of the transistor are depicted in Table I.

Rbase, Rout, RD and RH were sized in accordance to the

discussion in Section III. Ron and Roff resistances of the

EGFET for a geometry of W/L = 200μm/80μm are typically

5kΩ or 2MΩ, respectively.

B. Measurements of 2-input neuron

In total three measurements were conducted and the out-

come of those are shown in Fig. 4. The first two measurements

were performed on isolated circuits, namely one separate

multiply-add-circuit and a separate activation function circuit.

In the transient measurement of Fig. 4a, the correct operation

of a weighted-sum with w1 = w2 = 0.5 can be observed.

The output voltage is pulled up to 1V when both inputs are

1V or pulled down to -1V for inputs of -1V, respectively.

For the two other input voltage combinations, the currents

at the crossbar cancel out and the output voltage Vx reaches

nearly 0V. Regarding the activation function circuit (Fig. 4b), a

printed piece-wise linear unit is obtained, which we call in the

following pPLU. Figure 4c shows the transient measurement

of the neuron response (multiply-add + pPLU), which was

fabricated as seen in Fig. 3. As expected, negative input

voltage combinations are suppressed due to the pPLU. The

frequency of the square pulses V1 and V2 was increased to

investigate the latency of this device and thus the maximum

operating frequency.

The latency of the neuron was about 1.6ms, giving a

maximum operating frequency of 625Hz. Output signals could

still be differentiated for a maximum voltage swing at the

input of -0.7V to 0.7V. The area of the neuron is about

54mm2, which can however be further optimized in the future

by replacing the ITO passive structure with low-conductive

printed PEDOT:PSS.

V. TRAINING PRINTED NEURAL NETWORKS

As described before, several constraints and restrictions

from the technology and the proposed neuron design need

to be factored in for training the proposed programmable

and printed NCS for a classification task. In the following,

we present a training algorithm as well as an appropriate

loss function to deal with the given constraints presented in

Section IV III-C, i.e.

• w(n) ∈ [0, 1−wmin
b ]nP ⊂ �nP ,

∑nP

i=1 w
(n)
i ≤ 1−wmin

b

• b(n) ∈ [−1, 1] ⊂ �.

We use the superscript (n) to distinguish between the

neurons in the NN, w
(2)
3 is for instance the 3rd weight of

neuron 2. In addition, we summarize the weights in vector

notation, e.g. the parameter w(n) denotes the weight vector of

the neuron n with nP inputs.

A. The Loss Function

An important part of training neural networks is the loss

function, where typical choices are e.g. mean squared error

(MSE) or cross-entropy (CE) [12]. In both cases, for some

data D = {(xj , yj)}mj=0, the loss function measures a distance

of the output of the network fθ(xj) for a training instance xj

to the true label value yj (usually yj ∈ {0, 1}). The parameter

θ thereby denotes all parameters of the network, i.e. weights

and biases of all neurons.

However, since the parameters θ(n) of a printed neuron n

are bounded i.e. w
(n)
i ∈ [0, 1−wmin

b ], the range of the neural

network output fθ(x) is also bounded. Additionally, the signal

x is likely to shrink through each computation due to the

multiplication with values smaller than one, i.e. by weights

or through the activation function, which reflects the voltage

drop. This phenomenon leads to all inputs signals becoming

increasingly similar through each mapping (multiply-add and

activation), and cannot be counteracted with the bias since

it operates independently of the inputs. It is therefore not

possible for our printed neural network to map both classes

arbitrarily far apart in the last layer, i.e. to cover the range

between 0 and 1 (or −1 and 1). We therefore resort to a

special variant of the Hinge-Loss (also called SVM-loss or

maximum-margin-loss):

LHinge(θ) =
1

|D|
∑

(x,y)∈D
max{0, m− y · fθ(x)},

where m ∈ �
+ denotes the so called margin and

y ∈ {−1, 1} denotes the true label. A positive loss is incurred,

when the output of the neural network is either of the wrong

label, i.e. y �= sign(fθ(x)), or the output fθ(x) is smaller than

the margin m. For correct outputs, i.e. y = sign(fθ(x)), and

fθ(x) > m, no error is incurred. Using m = 1, the classical

Hinge-Loss is realized. As discussed before, the range of our

outputs is ever shrinking through successive layers and it is not

possible to set a fixed value of m > 0, as we cannot guarantee

that outputs of different classes can be mapped further apart

than m. We therefore choose m = 0, which will result in

our loss function only penalizing wrongly classified examples,

while correctly classified examples produce no loss.

Furthermore, to slightly reduce the incurring voltage drop

due to small weights, one can add the negative norm of the

weight vectors w(n) to the loss to encourage higher weights.

This leads to a final loss function of

L(θ) =
1

|D|
∑

(x,y)∈D
max{0, −y · fθ(x)} − λ

∑
∀n
‖w(n)‖2,

where λ ∈ �
+ denotes some tunable parameter. Note

that due to the boundedness of the weights, the loss is still

bounded.

B. Back Propagation with Projected Gradients

Since neural networks are mostly trained using gradient-

based methods and back-propagation, we will adapt the

update-steps accordingly to satisfy the given constraints via

projection on the feasible set. In the following, we denote
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(a) (b) (c)

Fig. 4: Measurement results of inkjet printed 2-input neuron, a): multiply-add-function for w1 = w2 = 0.5 b): measured

activation function c): neuron output voltage Vout with suppressed response for negative input voltage combination (V1 =
V2 = −1V )

parameters of a neuron n by θ(n) = [w(n), b(n)]T ∈ �nP+1

for ease of notation. An update step using the step-length α
can then be expressed as:

θ′(n) ← θ(n) − α · ∇θ(n)L(θ(n))

θ(n) ← Proj
[
θ′(n)

]
,

where the projection function Proj
[
θ′(n)

]
returns the clos-

est feasible solution vector to θ′(n) in euclidean norm. The

solution of the projection problem can be obtained by solving

the following optimization problem:

Proj
[
θ′(n)

]
:= argmin

[w, b]T

∥∥∥∥θ′(n) −
[
w
b

]∥∥∥∥
2

s.t.

∑nP

i=1
wi ≤ 1− wmin

b

0 ≤ wi ≤ 1− wmin
b , ∀i = 1, · · · , nP

− 1 ≤ b ≤ 1

As this projection is a convex optimization problem due to

a norm being minimized over a non-empty, closed convex

set [13], it is always solvable and the solution is unique.

Through projection, the parameters after each update step will

always satisfy the given constraints.

In our case, the projection problem is solved using Sequen-

tial Quadratic Programming [14] implemented in scipy [15],

and the gradients of the neural network are retrieved using

pytorch [16].

C. Evaluation on 2-layer Neural Network

To verify the feasibility of the proposed design, we train

a neural network on a simple classification task given the

aforementioned characteristics i.e. parameter constraints, acti-

vation function and loss function. The neural network is then

converted into its circuit representation and the classification

errors are evaluated based on a circuit simulation in Cadence

Virtuoso.

For the classification task, we use the IRIS flower data set

[17, 18] containing 150 four dimensional examples of three

classes (50 per class), and try to distinguish the first class

(setosa) versus the other two (versicolor and virginica). Note

TABLE II: Simulation Results - Neural Network Classification

Max
Voltage

Accuracy Latency
Max Operating
Frequency

Power Area

5V 88% 1.6ms 625 Hz 4.3mW 385 mm2

that multi-class classification is not yet possible as we cannot

fabricate a softmax output. We therefore perform 1-vs-rest

classification choosing class 1 (setosa) if VOUT is positive and

class 2 (versicolor and virginica) otherwise. As the dataset has

four inputs, we choose the architecture of the neural network

as follows: two five-inputs nodes, i.e. four weights and a bias

for printed neuron node in the first layer, and one 3-input

multiply-add function, i.e. two weights and one bias, in the

last layer (Fig. 5). Since the task is linearly separable, a close

to 100 % accuracy can be achieved in software-based training.

For the circuit simulation, the input vector �x is converted

into input voltages: �x = (V1, V2, ..., V4)
T . Subsequently, the

crossbar resistance values R
(n)
i are directly computed from

the optimal weights w
(n)
i obtained from the training routine.

We used a symbolic solver (sympy) on the set of coupled

equations of the form (3) in order to receive the R
(n)
i . V

(n)
bias

are computed by V
(n)
bias =

b(n)

w
(n)
b

.

Simulation results are illustrated in Table II. Due to approxi-

mations of the printed NCS components (multiply-add, pPLU)

from the exact analytical function descriptions used during

in-software training - which usually persist in any analog

computing system - circuit simulation accuracy was lowered.

Nevertheless, still a classification accuracy of 88% could

be achieved. The latency and thus the maximum operating

frequency, which are mainly caused by the EGFET gate

capacitance in the pPLU, was equal to the fabricated 2-input

neuron (Section IV), as only one activation function layer was

deployed in the NN.

VI. CONCLUSION AND FUTURE WORK

In this work, we reported on a programmable neuron for

neuromorphic computing systems (NCS). The neuron can fully

be tuned during post-fabrication customization according to

the desired functionality. As mapping of NCS computations to

physical hardware is accompanied by many design constraints,

especially the limitation to positive weights, low device count
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Fig. 5: Architecture of the neural network: two 5-input neurons

with pPLU-activation function in the first layer and one 3-input

neuron with only multiply-add operation (MA) in the second

layer.

and NMOS-logic in this emerging technology, we developed

a learning algorithm for inkjet-printed programmable NCS,

which takes all these technology and hardware restrictions into

account to produce a feasible and well-performing realization.

Finally, the learning routine was verified on a simulation-

based printable neural network design solving a common

classification problem.

Although the objective of this paper is to prove the feasibil-

ity of the printed neuron concept, we still see a lot of room for

improvements. ITO-sputtered passive conductive tracks were

the preferred choice to build a benchmark circuit showing the

potential of the printed neuron and secondly, used to reduce

process variations. These conductive elements can be replaced

in the future by printed conductive materials such as PE-

DOT:PSS to enable a fully additive process. Furthermore, with

a fully inkjet-printed design, process variations of resistors can

be compensated by introducing a second printing step after

the first fabrication and characterization. And finally, another

improvement of the current approach would be the inclusion

of printable negative weights to broaden the scope of neural

network applications.
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