
HashHeat: An O(C) Complexity Hashing-based Filter
for Dynamic Vision Sensor

Shasha Guo1 Ziyang Kang1 Lei Wang Shiming Li Weixia Xu

College of Computer Science and Technology

National University of Defense Technology

Changsha, Hunan, China. 410073

e-mail: guoshasha13, kangziyang14@nudt.edu.cn

Abstract— Neuromorphic event-based dynamic vision sensors
(DVS) have much faster sampling rates and a higher dynamic
range than frame-based imagers. However, they are sensitive to
background activity (BA) events which are unwanted. We pro-
pose HashHeat, a hashing-based BA filter with O(C) complexity.
It is the first spatiotemporal filter that doesn’t scale with the
DVS output size N and doesn’t store the 32-bits timestamps.
HashHeat consumes 100x less memory and increases the signal
to noise ratio by 15x compared to previous designs.

I. INTRODUCTION

Images are widely utilized in deep learning. They are

generally collected by frame-based image sensors, which

have several common drawbacks like constant high power

dissipation, sensitivity to bright ambient lighting, and low

capability to capture fast objects. Neuromorphic event-based

sensors are promising to address these problems.

Research on neuromorphic event-based sensors (“silicon

retinae”) started a few decades back [1]. Recently, the tech-

nology has matured to a point where there appears some

commercially available sensors. Some of the popular sensors

are Dynamic Vision Sensor (DVS) [2], Asynchronous Time-

based Image Sensor (ATIS) [3], the sensitive DVS [4], and

the Dynamic and Active pixel Vision Sensor (DAVIS) [5].

These sensors have several possible applications such as pose

estimation [8], gesture-based remote control [9] and high

speed corner detection [10].

Different from conventional frame-based imagers that work

by sampling the scene at a fixed temporal rate (typically 30

frames per second), these sensors detect dynamic changes in

illumination. This results in a higher dynamic range, higher

sampling rate, and lower power consumption. However, they

also produce background activity (BA) events even under

constant illumination, caused by temporal noise and junction

leakage currents [2], [6], [7].

There exist many noise filtering methods for event-based

data, such as the Nearest Neighbor (NNb) filters [6], [11],

[12] based on the spatiotemporal relation and some variations

of NNb filters [13].

However, these spatiotemporal filters are memory intensive.

For a DVS with N×N pixels, the minimum space com-

plexity is O(N) [14], which puts a burden on the limited

programmable logic (PL) embedded in the sensor head. There

are two main reasons for the high space complexity of the

1Shasha Guo and Ziyang Kang contribute to this article equally.

current spatiotemporal filters. First, the memory occupation

of these filters are dependent on the DVS output size N
for the convenience of detecting spatiotemporal correlation.

Second, memory cells of these filters are designed to store

the timestamp and possible more information, i.e., at least 32-

bits per cell. These two characteristics limit the possibility of

further reducing memory consumption.

To tackle these challenges, we find that hashing functions,

applied in Nearest Neighbor (NNb) search algorithms and

collection element detection algorithms, can maintain the ad-

jacency information and help to achieve high space efficiency.

Inspired by these features, we design a spatiotemporal BA

filter based on hash computing to obtain low memory cost. Our

contributions are as follows. First, we propose HashHeat, an

O(C) complexity spatiotemporal BA filter which aggressively

saves memory cost. As we know, it is the first spatiotemporal

filter with a constant space complexity and the first without

storing the timestamp. C is to demonstrate that the space

complexity is smaller than the O(N) proposed in [14]. Second,

we propose a hardware design which can process an event at

the latency of 10 ns. Third, HashHeat increases the signal to

noise ratio by about 1.2x to nearly 15x compared with other

baseline filters on a real dataset.

II. BACKGROUND

A. DVS

The DVS128 [2] sensor is an event-based image sensor that

generates asynchronous events when it detects the changes in

log intensity. If the change of illumination exceeds an upper

or lower threshold, the DVS128 will generate an ”ON” event

or ”OFF” event respectively.

To encode all the event information for output, the DVS

sensor uses Address Event Representation (AER) protocol

[20] to create a quadruplets e(p, x, y, ts) for each event.

Specifically, p is polarity, i.e., ON or OFF, x and y are the

two coordinates of the event respectively, and ts is a 32-bits

timestamp, i.e., the timing information of an event.

B. BA Events

BA events are caused due to thermal noise and junction

leakage currents. These events degrade the quality of the data

and further incurs unnecessary communication bandwidth and

computing resources. The BA and the real activity events differ

in that the BA event lacks temporal correlation with events in

its spatial neighborhood while the real activity events have. On

the basis of this difference, the BA events can be filtered out

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE
452

7A-2

by detecting events which do not have spatial correlation with

events generated by the neighborhood pixels. Such a filter is a

spatiotemporal correlation filter. The filter decides whether an

event is a real event or noise by checking the condition for all

neighborhood pixels, TNNb−Te < dT . TNNb is the timestamp

of the latest event occurred in one of the neighborhood pixels.

Te is the timestamp of the event. And dT is the limitation for

timestamp difference. If the condition is meet, the event is

regarded as a real activity event. As for neighborhood events,

they meet this condition: |xp − x| ≤ 1 and |yp − y| ≤ 1,

where xp and yp are x-position and y-position of the pixel

p, and x and y are the positions of the pixel generating the

current event.

C. E2LSH

The main idea of Locality Sensitive Hashing (LSH) algo-

rithm is to hash similar input items into the same “bucket”

with high probability. This technique can be used for data

clustering and NNb search. LSH was first applied in Hamming

space, and then extended to Euclidean space. Exact Euclidean

Locality Sensitive Hashing (E2LSH) is a scheme of LSH

realized in Euclidean space [17]. Its basic principle is to reduce

the dimension of high-dimension data via position sensitive

functions based on p-stable distribution, so that two points

close to each other in the original space are still very close

after mapping. Hashing functions in E2LSH are formulated as

h (x) = ax+b
w . a is a d-dimensions vector (the same dimension

as data vector v), b is a random number between 0 and w, and

w is used for segmenting lines. To reduce clustering errors, a

set of k hashing functions are adopted. These k hash values

are then processed by another two hashing functions to get

two values for storage (building the hashtables) and search

(indexing the hashtables).

D. BF

Bloom filter (BF) is a binary vector data structure proposed

by Howard Bloom in 1970 [18]. It has good space and time

efficiency and is used to detect whether an element is a

member of a set. The typical method to find whether an

element is in a set is saving all the elements, and comparing

them with the element. Data structures such as link lists and

trees are based on this idea. When the number of elements

in the set increases, more space and time is needed, and the

query speed becomes slower.

For checking an element, BF uses k hashing functions to

encode the element and get k real values. Then, it uses the k
values as indices to index an array with m cells. Each cell is

1 bit. Only all the k cells indexed by the indices are ones, the

element is regarded as in the set.

There are still some problems with the above two methods

when applying them to the filtering problem straightly. For

E2LSH, it is computing intensive which has one mapping

function of k hash operations and two more hashing functions.

Furthermore, hashtables in E2LSH are memory intensive as

the indices of each event are still stored explicitly. As for BF,

the hashing functions is designed for set searching and doesn’t

maintain the spatiotemporal correlation well.

(a) Bs1 (b) Bs2 (c) Bs3

Fig. 1. Three event-based filters [14].

III. RELATED WORK

A. Event-based filters

Here we introduce three event-based filters with O(N2),

O(N/s) and O(N) space complexity respectively, and they will

be denoted as Bs1, Bs2, and Bs3 in the rest content.

In Bs1 filter, each pixel has a memory cell for storing the

last event’s timestamp. The stored timestamps are used for

computing the spatiotemporal correlation (Fig.1(a)).

Bs2 filter uses sub-sampling groups to reduce the memory

occupation [6]. Each group with factor s contains s2 pixels

and uses one memory cell for storing the timestamp of the

most recent event of the group (Fig.1(b)).

Bs3 filter assigns two memory cells to each row and

each column to store the most recent event in that row or

column (Fig.1(c)) [14]. This filter is designed to store all the

information of an event, with two 32-bits memory cells. One

of them is for storing the timestamp. The other is for polarity

and the x-axis or y-axis position.

B. Frame-based heatmap filter

This frame-based filter processes a picture of fixed number

of events at a time and output a denoised frame rather than

checking each event. The heatmap is a matrix, of which the

size equals to the size of the pixels of the DVS output. When

an event occurs at a pixel, the corresponding element in the

heatmap will add 1 to itself. When all events in a picture frame

are processed, a threshold is calculated based on the heatmap

by equation 1 [15].

Thr =

∑
i∈S hi

Card |S| (1)

Where S is the set of all the non-zero elements in the heatmap

and Card means the number of elements in a set. If one

element in the heatmap exceeds the threshold, it means this

pixels have generated enough events. And these events are

regarded as real activity events.

There are also some other filtering methods. Vandana et.al.

[21] proposed a filter with neuromorphic integrate-and-fire

neurons which integrate spikes not only from the correspond-

ing pixel but also its neighborhood pixels for firing. And [19]

assigns a lifetime to each event and the lifetime of a noise

event will be assigned 0.

IV. PROPOSED FILTER

We propose a hashing-based spatiotemporal filter, Hash-
Heat. As shown in Fig.2(a), HashHeat comprises four main

steps. Hash gets the AER representation of an event as input,

and uses k hashing functions to process the event informa-

tion, and outputs k hash values (h1, h2, ..., hk) to the next

453

7A-2

stage. The k hashing functions are locality sensitive hashing

functions, so as to maintain the spatiotemporal correlation

information. Index receives the k hash values, and uses them

to index the m-array, and outputs k heat values, (v1, v2, ..., vk).
The m-array records the information of previous events, and is

the key for checking the correlation between the current event

and previous events. The k heat values are then forwarded

into the Check stage. In this stage, they are compared with

the threshold to generate an indicating signal, flag. If there is

one element smaller than the threshold, flag will be set to 0

showing that the event is a noise event. And last but not least,

Update receives the flag and the k hash values as input, and

adds a certain increment to the k positions based on the value

of flag. This enables the m-array to incorporate the current

event information into itself.

The m-array needs reset at a certain frequency, since the

cells of the m-array can only count finite numbers and will

overflow without reset. Therefore, we define a processing
window with fixed number of events segmented from the

event stream. At the begining of each processing window, the

m-array is reset. The begining and the length of processing

window can be adjusted manually.

Cells in the m-array can be set to be 1 bit or multiple bits.

The 1-bit m-array is the most space-efficient configuration for

HashHeat (Fig.2(b)), and is capable of filtering BA events in

a relative simple scene like moving a laser pointer in front

of the DVS. However, checking based on the 1-bit m-array

is prone to be interfered in a noisy environment, as a large

number of noise events will update many locations in the m-

array from 0 to 1. These locations should not be 1 until there

are real activity events indexing them and updating them.

Inspired by the frame-based heatmap filter, we propose

that heat value is a more promising metric for evaluating the

correlation between events compared with the binary signal 1

and 0 in a noisy environment. Therefore, we propose the X-

bit m-array (Fig.2(c)) so as to record the heat value of the cell.

The heat value is the weighted sum of the indexed times of a

cell. The X-bit m-array is also named heat-array. Compared

with the baseline filters, it is still memory efficient since X

doesn’t need to be large considering the processing window.

The general form of HashHeat (Fig.2(c)) requires change-

able thresholds. With the progress of processing, elements of

the m-array are increasing. If the threshold keeps stable at

a low level, the events in later processing progress will be

tagged as real activity events with a high probability, as most

of the cells will have large heat values at that time. Also, if

we change the threshold at the coming of each event, it is

inefficient and unnecessary because one event will not change

many cells of the m-array. We consider the average heat value

under the worst condition as the threshold, which can be

formulated as equation 2.

threshold =
EN × k × 2

m
. (2)

The worst condition refers to the theoretical maximum sum

of the m-array at a certain timing point. EN is the number

of input events from the begining of the processing window,

k is the number of hashing functions and m is the length

of the m-array. Due to the locality sensitive features of the

hashing functions used in HashHeat, real activity events with

spatiotemporal correlation will result in similar hash values.

Thus the heat values in the m-array are more likely to

be unevenly distributed. Therefore, this threshold is able to

distinguish the cells with high heat values from those with

low heat values.

Using hashing functions, HashHeat encodes the spatiotem-

poral information and thus is free from storing timestamps

and position information. Using the m-array, HashHeat further

compresses the memory occupation for checking the correla-

tion between events.

V. HARDWARE DESIGN

Based on the working scheme (Fig.2(a)), we propose the

hardware design of HashHeat filter (Fig.3). The input to

HashHeat include the x and y positions, and timestamp of

an event. The output of HashHeat is a flag indicating whether

this event is a BA noise event or not.

To speed up the processing of event streams, we design the

pipelined architecture. In Stage 1, the timestamp T in each

packet minus the baseline timestamp, which is the timestamp

of the first event in the frame, generating a new timestamp

T2. This offset operation is to prevent the timestamp from

being too large to process. The x-position and y-position

are not changed in this stage. In Stage 2, the pre-processed

vector and the corresponding parameters of the hash function

perform a dot operation. Next, the results will be modded in

Stage 3 for limiting the hash values to a certain range. In

this design, the length of the m-array is designed to be 128.

In Stage 4, all the values obtained by indexing the m-array

will be compared with the threshold. Multiple comparison

operations are performed in parallel. Then we accumulate all

the comparison results. If the sum is less than k, it indicates

that an event is a noise event and the Noiseflag will be 1.

Finally, the heat-array will be updated differently according

to the value of the flag.

The process can be formulated as equation 3. Tbase is the

timestamp of the first event in a processing window. Other

parameters have been introduced before.

T2 = T − Tbase,

h
′
j = a1x+ a2y + a3T2,

hj =
(
h

′
j mod w

)
mod m,

flag = ∃ (marray (vj) < Thri) ,

marray(hj) = marray(hj) + increment.

(3)

VI. EXPERIMENT

A. Hardware

We use FPGA Artix-7 and Vivado for synthesizing and

measuring performance such as power, hardware resources

consumption, and timing through cycle-accurate simulations.

We have implemented a simulator in MATLAB to verify our

ideas and to use it as a reference model for our hardware

implementation. The hardware behaves the same as the sim-

ulator.

HashHeat works at 100MHz. The computing latency is

amortized by the pipeline which enables HashHeat to process

an event at a latency of 10ns. Table I gives the utilization

of resources of the hardware. DSP is used in Stage 2. As

454

7A-2

(a) Working scheme of HashHeat filter (b) Special case of HashHeat. (c) General form of HashHeat.

Fig. 2. HashHeat filter. Fig.2(b) shows a special case of Fig.2(c). In Fig.2(b), it is only 1-bit per cell in the m-array, which saves the most space. The
updating rule is simple. If a cell is 0 at the begining and it is indexed, it will turn into 1 and will not change to 0 again by later events within the processing
window. And it doesn’t depend on the flag to update. In Fig.2(c), the m-array is X-bits per cell (X is bigger than 1). And a cell will add a certain delta to
itself when it is indexed. The delta is relative to the flag.

Fig. 3. Hardware design of HashHeat. Threshi stands for threshold. The
subscript i is larger than 1 when there are more than one threshold for large
processing window. And a certain Threshi will be chosen as threshold for
comparison every time.

TABLE I
UTILIZATION OF HARDWARE RESOURCES.

Resource Utilization Available Utilization %
LUT 10400 20800 50.00
FF 2543 41600 6.11
DSP 20 90 22.22
IO 71 106 66.98
BUFG 1 32 3.13

HashHeat is computing-intensive, we use registers rather than

BRAM to implement the heat-array, and thus there is no

BRAM entry in the table. The power consumption is 0.471W.

The choice of the number of memory cells determines the

space complexity C, and is affected by parameters such as k
and X . We use 128 in this paper. The memory overhead is

shown in Table II. The baseline filters are decribed in section

III. It is clear that HashHeat has the least storage cost due

to the elimination of storing timestamps and scaling with the

DVS output size. We don’t compare other logic overhead as

the baseline filters also need computing logic.

B. Visual Effect

We use two datasets for validation, a synthetic and a real.

The synthetic dataset is to mimic a laser pointing from bottom

(a) Init (b) Bs1 (c) Bs3 (d) HH1bit

Fig. 4. Comparison of filters on synthetic dataset. HH1bit denotes HashHeat
with the 1-bit m-array.

to top. The real dataset is a collected DVS dataset, DvsGesture

[16], comprising 11 hand gesture categories from 29 subjects

under 3 illumination conditions.

The performance of different filters on the synthetic dataset

are shown in Fig.4. The x-axis and y-axis indicate the position

of an event produced, and the verticle axis models the times-

tamp of an event. The blue points stand for real activity events

and the orange points represent BA events. It is clear that Bs3

filter passed more errors than Bs1 and Bs2. In Bs3, pixels

in one row share the same two memory cells and so are the

elements in one col. Thus some noise events are likely to get

support from other events occurred in the adjacent rows and

cols, as these events will update the adjacent memory cells.

Fig.5 gives the performance of filters on the real dataset,

DvsGesture. To make the event stream visible as a picture

rather than the event flow, it is common to generate a frame

from the events, either of fixed time length or of a constant

number of events. We choose to use the fixed number of

events (5,000 or 10,000 per frame). A pixel in the picture

will be 255 if it has an event. Without loss of generality,

we choose five gestures under three illumination conditions

by three experimenters from DvsGesture for the convenience

of illustration. It’s worth noting that frames processed by

HashHeat are cleaner than others.

C. Error Analysis

Here we introduce three metrics for evaluating error. Before

introducing the metrics, it is necessary to introduce a concept

in the field of object tracking, the bounding box. A bounding

455

7A-2

Fig. 5. Illustration of performance of filters on five gestures under three
illumination condictions by three users (5,000 events per frame). The five
gestures are hand clap, left/right hand wave, air drum and air guitar per row
from the top down. The performance of Bs2 filter is similar to Bs1 and thus
is not listed.

Fig. 6. Bounding boxes in five gestures (10,000 events per frame).

box is to mark the range of an object in the picture frame.

Events in the bounding box are considered to be signal events,

and events out of the bounding box are regarded to be noise

events.

In this work, we choose bounding boxes manually as we

focus on the noise filtering rather than object tracking where

the choice of bounding boxes are the key element. Fig.6 shows

the initial frames with bounding boxes.

We first introduce the notation Eq
p , which is the total

number of p events (replacing p with ’signal’ or ’noise’)

before filtering (q = o) or after filtering (q = f). We use

three metrics, SR, NR and SNR inspired by [21], which

can be formulated by equation 4. SR is the ratio of signal

events remaining after filtering, NR is the ratio of noise events

remaining after filtering, and SNRq is the ratio of signal to

noise events before filtering or after filtering.

SR =
Ef

signal

Eo
signal

, NR =
Ef

noise

Eo
noise

, SNRq =
Eq

signal

Eq
noise

(4)

For the three metrics introduced above, a good filter is

expected to have a high SR and a low NR, which can lead

to a high SNRf .

For Heatmap filter, as we discussed in section III-B, it

TABLE II
STORAGE OVERHEAD.

Filter Bs1 Bs2 Bs3 Heatmap HashHeat
Bytes 65536 16384 2048 32768 256

cannot give the check of event one by one, so it is a little tricky

to compute the three metrics. The Ef
signal, E

o
signal, E

f
noise and

Eo
noise are derived from the heatmap and weightmap.

Fig.7(a) and Fig.7(b) shows the SR and NR of the five

filters for the five gesture frames. Filter Heatmap has the best

SR while having the highest NR as well. This is because

some pixels out of bounding boxes are also active and leads to

frequent indexing of the corresponding cells. The heat values

of these cells will then exceed the threshold and the events

will be tagged as real events. In addition, Bs1 generally has

the highest SR and SNRf among the Bs-series filters which

is reasonable as it requires the largest memory.

As shown in Fig.7(c) and Fig.7(d), HashHeat has the best

SNRf among all the filters for both the 5,000-events frames

and 10,000-events frames. The maximum SNRf improve-

ment of HashHeat is up to 15x in Gesture2 for frames with

5000 events. And the minimum increment is nearly 1.2x in

Gesture4 for frames with 5000 events.

In short, HashHeat has a better performance than the

baseline filters w.r.t memory cost or signal to noise ratio.

D. Discussion

1) Advantage: Other than the heatmap filter processing

frame by frame, HashHeat processes events streamly and in

real-time. The heatmap filter can provide a visible frame with

the effect of noise removal but not give the detection result of a

single event. If a new frame with a different number of events

is required, the filter must process the whole events again,

which is inefficient and unreasonable. However, HashHeat
detects every single event and generates a flag. By recording

all flags which are only one-bit each, HashHeat is able to

generate any frame at any required number of events and each

event is processed only once.
2) The latency: DVS produces 1M events per second [2],

and the time interval between two events is usually several

μs. Thus HashHeat with a latency of 10 ns for an event can

process the event stream in real time. Also, it can be integrated

into other pre-processing methods for its fast speed.

For event-based sensors with events intervals less than 10ns,

the current processing speed of HashHeat cannot meet the

requirement. In this case, we need a FIFO for buffering events

to prevent the loss of events. This work will be done in the

future.

VII. SUMMARY AND CONCLUSIONS

Neuromorphic event-based sensors have witnessed rapid

development in the past few decades, especially dynamic

vision sensors. These sensors allow for much faster sampling

rates and a higher dynamic range which outperform frame-

based imagers. However, they are sensitive to background

activity events which cost unnecessary communication and

computing resources. Moreover, improved noise filtering will

enhance performance in many applications. We propose Hash-
Heat, an effective and memory efficient spatiotemporal BA

456

7A-2

(a) SR&NR of filters for gesture frames with 5,000 events. (b) SR&NR of filters for gesture frames with 10,000 events.

(c) SNRf of filters for gesture frames with 5,000 events. (d) SNRf of filters for gesture frames with 10,000 events.

Fig. 7. Comparison of SR, NR and SNRf . HH denotes HashHeat. HM denotes Heatmap.

filter with O(C) complexity. As far as we know, it is the

first spatiotemporal filter that doesn’t depend on the DVS

output size N and doesn’t require the storage of the 32-

bits timestamp. The experimental results show that HashHeat
increases the signal to noise ratio by about 1.2x to nearly 15x

on DvsGesture compared with other baseline filters.

ACKNOWLEDGMENTS

We thank Professor Tobi Delbruck for the discussion. We

thank reviewers and sheperds for their precious comments.

This work is supported by National Key R&D Program of

China (2018YFB2202603), HGJ (2018ZX01029-103) and the

National Natural Science Foundation of China (61802427 and

61832018).

REFERENCES

[1] M. Mahowald, and C. Mead. “The Silicon Retina.” Scientific American
264.5(1991):76.

[2] P. Lichesteiner, C. Posch, and T. Delbruck. “A 128×128 120 dB 15μsec
Latency Asynchronous Temporal Contrast Vision Sensro”. IEEE Jornal
of Solid-State Circuits 43.2 (2008), pp. 566–576.

[3] C. Posch, D. Matolin, and R. Wohlgenannt (2011). “A QVGA 143 dB
dynamic range frame-free PWM image sensor with lossless pixel-level
video compression and time-domain CDS”. IEEE J. Solid State Circ.
46, 259–275.

[4] J. A. Lenero-Bardallo , T. Serrano-Gotarredona , and B. Linares-
Barranco . “A 3.6 s Latency Asynchronous Frame-Free Event-
Driven Dynamic-Vision-Sensor.” IEEE Journal of Solid-State Circuits
46.6(2011):1443-1455.

[5] R. Berner, C. Brandli, M. Yang, S.-C. Liu, and T. Delbruck . “A
240×180 10mW 12μs latency sparse-output vision sensor for mobile ap-
plications,” VLSI Circuits (VLSIC), 2013 Symposium (Kyoto), 186–187.

[6] H. Liu, C. Brandli, C. Li, S. C. Liu, and T. Delbruck . “Design of a
spatiotemporal correlation filter for event-based sensors,” in Proceedings
of IEEE International Symposium on Circuits and Systems (Lisbon).
2015.

[7] Hui Tian. “Noise Analysis in CMOS Image Sensors”. PhD thesis.
Stanford University, 2000.

[8] D. Reverter Valeiras, G. Orchard, S.-H. Ieng, R. B. Benosman, “Neuro-
morphic Event-Based 3D Pose Estimation.” Front. Neurosci. 9 (2015)
522. doi:10.3389/fnins.2015.00522.

[9] J. Lee, T. Delbruck, P. K. J. Park, M. Pfeiffer, C. W. Shin, H. Ryu, et
al. “Live demonstration: Gesture-Based remote control using stereo pair
of dynamic vision sensors.” IEEE International Symposium on Circuits
& Systems 2012.

[10] M. Liu, W. Kao, T. Delbruck. “Live Demonstration: A Real-Time Event-
Based Fast Corner Detection Demo Based on FPGA.” The IEEE Confer-
ence on Computer Vision and Pattern Recognition (CVPR) Workshops,
2019.

[11] S. H. Ieng, C. Posch, and R. Benosman . “Asynchronous neuromorphic
event-driven image filtering.” Proc. IEEE 102, 1485–1499. 2014.

[12] A. Linares-Barranco, F. Gomez-Rodriguez, V. Villanueva, L. Longinotti,
and T. Delbruck (2015). “A USB3.0 FPGA event-based filtering
and tracking framework for dynamic vision sensors,” IEEE Interna-
tional Symposium on Circuits and Systems (Lisbon). doi: 10.1109/IS-
CAS.2015.7169172

[13] D. Czech, and G. Orchard. “Evaluating noise filtering for event-based
asynchronous change detection image sensors,” Proceedings of the
IEEE/RAS-EMBS International Conference on Biomedical Robotics and
Biomechatronics. 2016.

[14] A. Khodamoradi, and R. Kastner . “O(N)-Space Spatiotemporal Filter
for Reducing Noise in Neuromorphic Vision Sensors.” IEEE Transac-
tions on Emerging Topics in Computing PP, 1–1. 2018.

[15] https://github.com/yucicheung/CelexMatlabToolbox
[16] A. Amir, B. Taba, D. Berg, T. Melano, J. McKinstry, C. Di Nolfo, T.

Nayak, A. Andreopoulos, G. Garreau, M. Mendoza, J. Kusnitz, M. De-
bole, S. Esser, T. Delbruck, M. Flickner, and D. Modha, “A Low Power,
Fully Event-Based Gesture Recognition System,” IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017.

[17] M. Datar, N. Immorlica, P. Indyk, V. S. Mirrokni. “Locality-sensitive
hashing scheme based on p-stable distributions.” Twentieth Symposium
on Computational Geometry (pp.253).

[18] B.H. Bloom, “Space/Time Trade-offs in Hash Coding with Allowable
Errors”, Communications of the ACM, 13 (7): 422–426, 1970.

[19] E. Mueggler, C. Forster, N. Baumli, G. Gallego, and D. Scaramuzza
. “Lifetime estimation of events from Dynamic Vision Sensors.”
IEEE International Conference on Robotics and Automation (ICRA),
4874–4881, 2015.

[20] A. Mortara and E. A. Vittoz, “A communication architecture tailored
for analog VLSI artificial neural networks: intrinsic performance and
limitations,” IEEE Transactions on Neural Networks, vol. 5, no. 3, pp.
459-466, 1994

[21] P. Vandana , B. Arindam , and O. Garrick . “A noise filtering algo-
rithm for event-Based asynchronous change detection image sensors
on TrueNorth and its implementation on TrueNorth.” Frontiers in
Neuroscience 12(2018):118-.

457

7A-2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

