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Abstract— Echo state network (ESN) is a class of recurrent
neural network, and is known for drastically reducing the
training time by the use of reservoir, a random and fixed
network as the input and middle layers. In this paper, we
propose a hardware implementation of ESN that uses practical
MOSFET-based reservoir. As opposed to existing reservoirs
that require additional tuning of network weights for improved
stability, our ESN requires no post-training parameter tuning.
To this end, we apply the circular law of random matrix to
sparse reservoirs to determine a stable and fixed feedback gain.
Through the evaluations using Mackey-Glass time-series dataset,
the proposed ESN performs successful inference without post
parameter tuning.

I. INTRODUCTION

Recurrent neural network (RNN), which contains loops in

the network, is a class of neural network model that is suitable

for analyzing time series data. Conventional RNN models

include backpropagation through time (BPTT) [1], real time

recurrent learning (RTRL) [2], and long short-term memory

(LSTM) [3]. Most of these models are known to require long

learning time until all the weights are trained. In addition,

the gradient may vanish or explode due to the loop topology,

making it difficult for the above models to attain stable training

result [4].

More recently, echo state network (ESN) [5] and liquid

state machine (LSM) [6] have been independently proposed in

different research domains. They are collectively referred to as

reservoir computing (RC) because both have the component

called reservoir (or liquid). The reservoir serves as the input

and the middle layers of the network. Under several constraints

explained later, connectivity and the weights in the reservoir

can be determined randomly, and they are fixed thereafter. The

training of the network is thus applied only for the output

layer, greatly reducing the computational cost of training.

The performances of various RNNs, including recently

proposed DeepESN [7], are compared in [8]. The DeepESN

uses series of multi-time scale reservoirs to enhance the

dynamics of the network. In [8], ESN and DeepESN presented

equal or higher accuracy than LSTM and gated recurrent

units (GRU) [9]. Meanwhile, the learning time of ESN

and DeepESN is considerably shorter than that of other

models. ESN and DeepESN are reported 18x and 22x faster,

respectively, than LSTM and GRU on some particular dataset.

Another advantage of ESN is the ease of hardware

implementation. Since the structure and the weights of the

reservoir are unchanged throughout the training as well as

the inference phases, no training circuit is required, making

ESN extremely area efficient. Moreover, hardware variations

can be effectively used as the source of the random weights.

Compared to software reservoir implementations, hardware

reservoir is expected to achieve lower power consumption and

faster operation in inference.

Due to its architectural simplicity and superior performance,

hardware reservoir has become an active research topic [10].

For example, a hardware reservoir consisting of a memristor

array is proposed in [11]. The advantage of using memristors

is their programmability, and the weights are indeed written

to the memristors in [11]. Here, the weights are calculated

off-line, i.e., using a software. As a result, the memristor

reservoir requires post tuning of the network parameters so

that the constraints of the reservoirs are satisfied. In addition,

due to the emerging nature of the memristor technology,

precise programming of the analog values on memristers can

sometimes be difficult [12] [13].

In this paper, we propose a tuning-free hardware

reservoir consisting of a MOSFET crossbar array. The main

contributions of this work are summarized as follows.

a) MOSFET-based Reservoir: The use of MOSFETs

as the hardware reservoir achieves more stable and

practical hardware implementation than the emerging devices.

Unavoidable threshold-voltage variations in MOSFETs are

used to determine the random weights. To the best of our

knowledge, this work represents the first design exploration

of hardware reservoir using intrinsic variations of MOSFET

arrays.

b) Bounding the Spectral Radius: The connectivity and

weights in the reservoir are represented by the elements in

a weight matrix that are randomly determined by intrinsic

MOSFET characteristics. However, as later explained in

Section II.II-A, it becomes hard to control the spectral radius

for MOSFET-based weight matrix, as the randomness are

built-in to each MOSFET. In this work, by applying the

circular law on sparse matrix, we derive a theoretical approach

to calculate the spectral radius of the weight matrix in any

MOSFET-based reservoir.

c) Tuning the Weights: The weights should be scaled

following the calculated spectral radius. On software
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platforms, we can freely scale the weights. Unfortunately,

on MOSFET-based reservoir, we cannot change the weights

(or MOSFET characteristics). In this work, we propose a

resistor-based technique in the crossbar array to scale the

weight arbitrarily. The value of the resistance can be calculated

before fabricating the hardware reservoir.

This paper is organized as follows. Section II reviews

the constraints placed on the reservoir to construct an ESN.

The existing work of reservoir design comprising of a

memristor crossbar array is also reviewed. In Section III,

we propose a new reservoir consisting of MOSFET crossbar

array that autonomously satisfies the necessary constraints.

The evaluation of the ESN that uses the proposed MOSFET

reservoir will be shown in Section IV. Finally, Section V

concludes this paper.

II. ECHO STATE NETWORK

Throughout this work, we use x, y for scalar variables, x,y
for vectors, and X,Y for matrices.

A. Theory

Fig. 1 shows the general structure of ESN that consists of

three layers: input, middle and output. The input and middle

layers are collectively called reservoir and the output layer is

called readout. Each layer has nodes represented by vectors

u, x and y. Nodes are connected by edges with weights. x
and y at time t are updated by

x(t) = tanh (Winu(t) +Wx(t− 1)) (1)

y(t) = Woutx(t), (2)

where Win, W , and Wout are the weight matrices for the

input, middle, output layers, respectively. According to the

input x, tracking or predicting time-series data is achieved at

the output y. Here, during the training, only Wout is trained,

whereas Win and W are fixed. Though both Win and W
can be randomly determined, there exist the following three

constraints, referred to as weight constraints, on the matrix

elements.

a) Connectivity: The matrix Win is typically dense,

whereas the matrix W should be sparse in order for each node

to show modest interaction with other nodes. Connectivity

measures how dense a matrix is, and is basically the ratio

between the number of nonzero elements and the total

number of matrix elements. Concretely, 1.25, 5, 15, 20%
are suggested in [5] [14].

b) Mean: The mean of the elements in Win and W
should be 0 to suppress increased offset in the input layer

calculation and during the repetitive multiplication of W to

the internal node vectors.

c) Spectral radius: Spectral radius, i.e., the largest

absolute value of the eigenvalues of W , should be bounded

close to 1.0 [15] to avoid divergence or diminishment of x
during the repetitive multiplication of W and x in Eq. (1).

B. Memristor Reservoir

Hardware reservoir using memristor crossbar array is

proposed in [11]. Crossbar array has a form that can efficiently

calculate the matrix-vector product, such as Winu(t) and

u

u

x

x

x

x

x

x

x y

y

WinWW W WoWW ut

Fig. 1. General structure of ESN. The circles represent nodes and the arrows
represent connections with weights. The input layer nodes are fully connected
to the middle layer nodes. The middle layer nodes are randomly connected to
other nodes or self in the middle layer and are fully connected to the output
layer nodes.

Wx(t− 1), in Eq. (1). Fig. 2 shows a reservoir architecture

consisting of the memristor crossbar array [11]. In this circuit,

the voltages Vu and Vx correspond to u and x, respectively.

Win and W are respectively represented by the conductance

of memristors, Gin and G. Intersections with no memristor

expresses no connection (zero weight). Here, the size of Win

is 1×N and that of W is N×N . These weights are calculated

separately in a software, and programmed to the memristors

before the reservoir starts performing actual computations.

In order to express both positive and negative weights by

using positive conductance only, a pair of arrays, each of

which represents positive and negative values, is used. The

difference of these currents are calculated at the output of

the middle layer using summation amplifier (SA) shown in

Fig. 3(a). With an equal resistance value for R0 and R1, the

output voltage Vo is given by R2(I
+− I−). Here, I+ and I−

are the column currents of the positive and negative arrays,

respectively. As shown in Fig. 3(b), the output range of Vo is

limited by the supply voltages of the operational amplifiers.

The transfer characteristic of the SA, fSA, approximates tanh.

Hence, Vo follows:

Vo = fSA
[
R2(I

+ − I−)
]
= fSA

[
R2(G

+ −G−)V
]
, (3)

where the conductance difference G+ − G− represents a

negative value when G+ < G−.

In the memristor reservoir, Eq. (1) corresponds to the

following equation

Vx(t) = fSA
[
R2GinVu(t) +R2GVx(t− 1)

]
. (4)

The weights in the memristor reservoir can be programmed

so that the weight constraints are satisfied. Therefore, post

programming is required, where memristors are written with

the designated values determined off-line.

III. MOSFET BASED RESERVOIR

In this section, we propose a novel crossbar array reservoir

that uses MOSFET current to express edge weights. Fig. 4

shows the overview of the ESN (MOS-ESN) that uses

proposed MOSFET crossbar array. The proposed MOSFET

crossbar array acts as the hardware reservoir in between

the input signals and the software readout. In contrast to

the memristor-based reservoir, the proposed MOSFET-based

reservoir requires neither the separate calculation of the edge
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Fig. 2. Hardware reservoir using memristor crossbar array. Summation
amplifier (SA) is shown in Fig. 3(a).
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Fig. 3. Schematic and transfer function of summation amplifier (SA) [11].
(a) SA has two current inputs (I+, I−) and a voltage output (Vo). When R0

and R1 are set equal, SA outputs a voltage Vo = R2(I+−I−). (b) Transfer
function of SA, which approximates tanh function.

weights nor the post programming of array elements. The key

idea of the proposed reservoir is to utilize threshold-voltage

variations in the MOSFETs to determine the random weights

of Win and W , and replaces memristors with MOSFETs in the

array-structured reservoir. However, as-fabricated reservoirs

using the MOSFET crossbar may not satisfy the weight

constraints that are presented in the previous section. Hence,

after quickly showing the structure of the proposed MOSFET

reservoir in Section III.III-A, we will study the property

of sparse random matrix to find an approximation formula

for the estimation of spectral radius in Section III.III-B and

Section III.III-C. Finally, utilizing the approximation formula,

we will show how the proposed architecture of MOSFET

based reservoir can satisfy the weight constraints without post

tuning in Section III.III-D.

A. MOSFET Crossbar Array Reservoir

Fig. 5 shows the proposed MOSFET crossbar array

reservoir. The basic structure is similar to the reservoir made

of memristors. At the intersections of the crossbar, MOSFETs

that are biased in the linear operation region are placed.

Crossbar array is duplicated as was done in the memristor

reservoir to represent negative conductances. In the MOSFET

crossbar, control of the gate terminal is necessary as MOSFET

is a three-terminal device. This is easily achieved by a 1-bit

input
signal

hardware
reservoir software

readout
output

inference

u Win
x

W
Wout y

Fig. 4. Architecture of MOS-ESN that uses MOSFET reservoir.
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Fig. 5. Proposed hardware reservoir using MOSFET crossbar array. The
structure is the same as that of memristor crossbar array except that the
MOSFETs are used in place of memristors. ADC represents analog-to-digital
converter for the interface to the output layer.

memory cell or a scan flip-flop that is connected to each of the

MOSFET. The connections between the nodes in the reservoir

can be determined through either writing connection patterns

to the memory bits, or implemented by a layout design as mask

patterns of connecting either VDD or VSS. Though all of the

MOSFETs are biased under the same condition, conductances

(weights) become random due to inherent device variations.

MOSFET based reservoir has several advantages over the

memristor one. Below we summarize the major advantages to

use MOSFETs to build a reservoir in ESN.

• Mature fabrication processes are available with low cost.

• MOSFET array can use compact periphery and power

supply circuits as no memristor programming is

necessary that requires high voltage and detailed timing

control.

• Similarly to the memristor array, one instance of the

reservoir can represent different node connections by

altering the memory patterns that control the MOSFET

states. The existence of the connection between nodes

can be represented by turning on the corresponding

MOSFET. There is no need to re-design mask layout nor

re-fabrication of the chip.

While there exist a number of obvious advantages,

MOSFET-based reservoir still has to satisfy the weight

constraints in order to operate correctly in ESN. We investigate

the characteristics of sparse random matrix generated by

MOSFET crossbar arrays, and propose an automated weight

tuning technique for MOSFET reservoirs.

B. Weights in MOSFET Reservoir

In general, the conductance of a MOSFET depends on the

drain-source voltage. However, the conductance has to be fixed

during the analysis. Hence, we firstly show that MOSFET
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conductance difference G = G+ − G− maintains a constant

value regardless of the changes of drain-source voltage.

When threshold-voltage variations of MOSFETs are

considered, the drain current IDS is expressed as

IDS = A

[{
VGS −

(
Vth −Δth

)}
VDS − 1

2
V2

DS

]
, (5)

where A is a constant gain factor, VGS is gate-source voltage,

VDS is drain-source voltage, Vth is a mean of threshold-voltage

and Δth is the deviation of the threshold-voltage. When a

drain voltage is applied, conductance difference G is obtained

as

G = (I+DS − I−DS)/VDS = A
(
Δ+

th −Δ−th
)
. (6)

Here, G is constant and random as long as the variation of

the gain factor is sufficiently small.

C. Weight Constrains

The weight matrix of the MOSFET array must also satisfy

the weight constraints in Section II.II-A: connectivity, mean
and spectral radius. The first two constraints are easy to

satisfy.

a) Connectivity constraint: The connectivity constraint

requires a certain level of sparsity in the random weight

matrix. This constraint can be satisfied as we can set arbitrarily

connections by controlling the gate voltage of the MOSFETs.

b) Mean constraint: The mean constraint requires that

the mean of the matrix elements is 0. This constraint is always

satisfied since Vth variation follows normal distribution [16]

and the active MOSFET elements are the samples from the

normal distribution.

c) Spectral radius constraint: As opposed to the above

two constraints, the spectral radius constraint, which requires

the spectral radius is about 1.0, is nontrivial. In order to

compute the spectral radius of a matrix, all the matrix elements

should be known in advance. However, as the matrix elements

come from random variations, it is impossible to know them

in advance. Satisfying this constraint without trial and error is

the salient feature of the proposed method.

Circular law [17] is about the distribution of eigenvalues of

a large square random matrix. The circular law states that for

a ”dense” matrix of size N×N whose elements follow normal

distribution with mean 0 and standard deviation σ, the spectral

radius converges to σ
√
N as N becomes large. Now we want

to know the spectral radius of a ”sparse” matrix W , where

the size and the connectivity are N ×N and C, respectively.

The elements in this matrix follow normal distribution with

mean 0 and standard deviation σ as well.

As mentioned above, the derived spectral radius bound

for a dense matrix is σ
√
N , where N is the dimension of

the (square) dense matrix with N × N non-zero elements.

Consequently, we can see that the spectral radius of a sparse

matrix with dimension N ×N and connectivity C cannot be

larger than σ
√
NC. This fact is also experimentally confirmed,

where the spectral radius does converge to σ
√
NC as NC

becomes large. Fig. 6 shows the results of Monte Carlo

simulations on the spectral radii of sparse random matrices

with different sets of parameters, N , C and σ. The histograms

(a) N = 50, C = 0.1, σ = 1 (b) N = 200, C = 0.025, σ = 1

(c) N = 200, C = 0.1, σ = 0.5 (d) N = 200, C = 0.1, σ = 1

Fig. 6. Distribution of normalized spectral radii for different sets of N , C
and σ. The peak of the distribution converge 1.0 as NC becomes large. The
number of samples is 10,000.

of the radii divided by the estimation σ
√
NC concentrate

about 1, indicating that σ
√
NC serves as a good bound.

Considering that the elements of conductance difference

follow a normal distribution of mean 0 and standard deviation

of
√
2Aσth (see Eq. (6)), the spectral radius of the proposed

MOSFET reservoir, ρW , can be estimated as:

ρW =
√
2Aσth

√
NC. (7)

Then, the next objective is to find a way to adjust the

spectral radius to the target value α. One way to achieve

this is to multiply a scalar α/ρW for all the elements in

the matrix, but it is impossible to control the conductance

of fabricated MOSFETs. Instead, according to Eq. (4), we

propose to use the value of R2 to control the spectral radius.

More specifically, spectral radius becomes α when R2 in SA

is set as:

R2 =
α

ρW
=

α√
2Aσth

√
NC

. (8)

Note that the parameters A, σth, N , and C are all available

once the process technology to fabricate the MOSFET

reservoir and the structure of the reservoir is determined.

D. Accuracy Improvement with Inverted Inference

As observed later in the next section (e.g., in Fig. 8), the

inference accuracy suffers from the errors generated in the

process of circuit simulation. The main source of this errors

is that, instead of a perfect Gaussian, the simulated weight

matrices Win and W are slightly biased (mean-shifted).

In other words, the simulated weight matrices used in the

calculations are Θin = Win+Ein and Θ = W +E. Since the

errors do not have a mean of 0, the output of Eq. (2) becomes

biased, and the inference accuracy drops.

To solve the issue, we propose a double reservoir structure,

illustrated in Fig. 7. The key insight here is that, the mean-shift

induced by the simulation errors can be cancelled by an

inverted inference. More concretely, let uinv = 2 · μ − u,

where μ is the mean of the inputs (μ is fixed to be 0.35 V in
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Fig. 7. The architecture of Dual-MOS-ESN that uses two reservoirs for
normal and inverted inputs. The reservoir having counter input compensates
the distortion observed when single reservoir is used.

the experiment as shown in Fig. 9), instead of only computing

Eq. 1 on u, we also apply the same equation on uinv, and the

results are summed as

z = fSA(Θin · u+Θ · x) + fSA(Θ
′
in · uinv +Θ′ · x′)

= fSA(Winu+Eu+W ′
in(2μ− u) +E′u+Θx+Θ′x′)

= fSA((Win −W ′
in)u+ (E −E′)u+ c) (9)

for some constant c, and the output can be calculated as

y = Wout·z. Here, fSA is assumed to be a linear operator, and

(Θin,Θ) and (Θ′in,Θ
′) represent the two different hardware

reservoirs in Fig. 7. By combining the results of the normal

and inverted inferences, any mean shift induced by the

simulation error E can be cancelled. Note that this technique

also has practical significance, in the sense that real-world

hardware also induces errors with non-zero means, and can

still be cancelled by adopting the proposed double reservoir

structure. The effectiveness of this technique is demonstrated

in Section IV.IV-B.

IV. NUMERICAL EVALUATION

A. MOS-ESN

In this section, the proposed ESN structures with single

(MOS-ESN) and dual (Dual-MOS-ESN) hardware reservoirs

are evaluated by the Mackey-Glass equation time-series

dataset [18]. This is a nonlinear time-delayed differential

equation written as:

dx

dt
= β

x(t− τ)

1 + (x(t− τ))n
− γx(t), (10)

where β, γ are real numbers and τ is time delay of variable

x(t). A series data generated from this equation have a chaotic

behavior. In addition, the data at time t + 1 is generated

depending on the present data and t − τ . This time-delayed

system is important for evaluating memory capacity.

In the evaluation, the proposed MOS-ESN is trained to

estimate the next time value. When the input is the data at

t, the target output value is set to the data at t + 1. β, γ,

τ , and n are set 0.25, 0.1, 17 and 10, respectively. These

parameter values are taken from [11]. The beginning of the

series, from t = −τ to −1, are 0 in both training and testing

series. The data at t = 0 is set to 1.2 for the training and 0.2
for the testing. The different initial values lead to different

series. This is to verify that the proposed MOS-ESN learns

Eq. (10), not the training series. Note that the initial values

are not restricted to these values.

The reservoir is simulated by a commercial circuit

simulator [19] with a 65-nm device model. We first evaluate

Fig. 8. Inference results of software ESN, MOS-ESN, and Dual-MOS-ESN.

Fig. 9. Scaled normal and inverted Mackey-Glass series.

the MOS-ESN architecture based on Fig. 4. The size of input

layer K = 1, the size of middle layer N = 100, and the

connectivity of middle layer C = 0.05. R0 is determined so

that the voltage I+R0 fits within the output voltage range of

the opamp. In this work, R0 and R1 are 1 kΩ. According to

Eq. (8), R2 is determined as 10kΩ. The number of output

layer L is 1, which is linear, and it is implemented using

Python programming language. The loss function is mean

square error, the optimizer is Adam [20], the length of training

series and testing series are both 2000, batch size is 100,

and epoch is 1000. All the simulations are executed on a

workstation with Intel Core i9-7980XE processor running at

2.60 GHz with 128 GB of RAM.

The estimation result from the MOS-ESN and that from the

software reservoir ESN written in Python are compared with

the original series in Fig. 8. Inference by the software reservoir

matches closely to the original series, while inferences by

the MOS-ESN sees unignorable error particularly when the

original series takes values at around the local maxima

and local minima. Though the accuracy may be satisfactory

depending on the application, the accuracy improvement is

needed when higher accuracy is required.

B. Dual-MOS-ESN

In order to further improve the accuracy of the inference,

Dual-MOS-ESN is then evaluated. The parameters of each

layer are the same as that of MOS-ESN. By adding the

inverted input (shown in Fig. 9) and a reservoir, inference error
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Fig. 10. Mean square errors of ESN simulations.

has been reduced to about 1/5 of MOS-ESN, from −0.2 ∼ 0.1
to −0.03 ∼ 0.03, also indicated in Fig. 8. Meanwhile, Fig. 10

shows the mean square error of reference software, MOS-ESN,

and Dual-MOS-ESN. The Dual-MOS-ESN achieves better

accuracy than MOS-ESN. After epoch 800, Dual-MOS-ESN

fits best among three, which confirms the effectiveness of the

proposed simple data augmentation.

V. CONCLUSION

In this paper, we proposed a new reservoir of the

MOSFET crossbar array for building a weight-tuning-free

ESN. The use of MOSFET enabled practical and stable

implementation and its variations are effectively used as the

source of the random weights. In order for the MOSFET

reservoir to satisfy necessary constraints, we showed a

method that autonomously controls the spectral radius of

the random weight matrix without programming the weights

represented by the MOSFET conductance. The evaluation

using Mackey-Glass dataset showed that the proposed method

successfully gave accurate inference. The Dual-MOS-ESN

structure, consisting of two independent reservoirs by adding

inverted input, further improved the inference accuracy.
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