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Abstract— With the latest advance in the non-volatile random-
access memory (NVRAM), NVRAM is widely considered as the
mainstream for the next-generation storage mediums. NVRAM
has numerous attractive features, which include byte address-
ability, limited idle energy consumption, and great read/write
access speed. However, owing to the high manufacturing cost
of NVRAM, the incentive of deploying NVRAM in consumer
electronics is lowered due to the consideration of profitability. To
resolve the profitability issue and bring the benefits of NVRAM
into the design of consumer electronics, avoiding storing duplicate
data on NVRAM becomes a crucial task for lowering the demand
and deployment cost of NVRAM. Such observation motivates
us to propose a data deduplication extended file system design
(DeEXT) to boost the profitability of NVRAM via the concept of
dual-chunking data deduplication while considering the charac-
teristics of NVRAM and duplicate data content. The proposed
DeEXT was then evaluated by real-world data deduplication
traces with encouraging results.

I. INTRODUCTION

In recent years, non-volatile random-access memory

(NVRAM) has become a reality with the efforts of both

academia and industry. Markedly, Intel has been co-working

with Micron for formulating a new NVRAM technology,

called 3D xPoint [8], and has also released their first NVRAM-

based solid state drive (SSD) for the consumer market. How-

ever, the cost of deploying NVRAM as the storage medium in

consumer electronics is typically higher than that of NAND

flash-based storage. For instance, the 3D xPoint-based SSD is

roughly 3 times more expensive than the NAND flash-based

competitor [9]. Nevertheless, NVRAM can still bring great

benefits to the consumer electronics since the access speed

of NVRAM is much higher that of NAND flash. Therefore,

to improve the profitability of NVRAM-based electronics,

avoiding storing duplicate data on NVRAM-based storage

devices becomes a crucial task for lowering the cost. With

such observation in mind, a data deduplication extended file

system design (DeEXT) is proposed to enable dual-chunking

data deduplication on NVRAM for improving the profit per

storage unit. The technical difficulty of DeEXT lies in how
to integrate data deduplication into NVRAM-based storage
systems while considering the duplicate data content and the
wearing issue of NVRAM.

NVRAM, such as Phase Change Memory (PCM) and

Resistive RAM (ReRAM), are regarded as great alternatives

for replacing hard disk-based or NAND flash-based storage

devices owing to NVRAM’s excellent characteristics. Table I

compares the features of NVRAM, NAND flash, and HDD.

More recently, 3D xPoint memory, which is a kind of PCM,

has emerged as another type of NVRAM. According to [11],

the performance/endurance of 3D xPoint memory is 1,000

times higher than that of conventional NAND flash. Various

studies have been proposed to exploit the potential benefits of

NVRAM, such as new caching mechanisms [10], performance

optimization strategies [13], file system designs [23], and data

updating policies [5]. From another perspective, researchers

have also tried to lower the storage space usage of NVRAM

via data deduplication mechanisms [20]. However, previous

studies mainly focus on how to improve the data deduplication

ratio1. Few of them have discussed how to achieve wear-level-
aware data deduplication into NVRAM-based storage systems
and consider the characteristics of the duplicate data content.

TABLE I
COMPARISON OF MEMORY/STORAGE MEDIUMS [3, 4, 2].

Type PCM RRAM NAND HDD

Byte-addressable Yes Yes No No

Access Unit 64 Bytes 64 Bytes 4 KB 512 B

Endurance 1010 108 105 N/A

Read energy 1 J/GB 0.25 J/GB 1.5 J/GB 65 J/GB

Write energy 6 J/GB 14.02 J/GB 17.5 J/GB 65 J/GB

Read Latency 50 ns 1.9 ns 25 μs 5 ms

Write Latency 150 ns 100 ns 500 μs 5 ms

Data deduplication is a kind of storage compression tech-

niques and is mainly used to eliminate duplicate data copies

within a storage system. Data deduplication techniques are

widely adopted by cloud storage service companies, such as

Dropbox and Microsoft OneDrive, due to the high duplicate

nature of data within storage systems. For instance, Microsoft

and EMC respectively estimate that 50% and 85% of data

in their storage systems are duplicate [14, 19]. Typically,

data deduplication technique labels each data chunk with a

fingerprint generated by hash functions, such as MD5 and

SHA-256, and compares with other fingerprints to check

whether the data chunk is duplicate or not. The methods

for dividing data streams into smaller data chunks include

fixed-size chunking (FSC) [17] and content defined chunking
(CDC) [15], where CDC can achieve higher deduplication

ratio than FSC. However, since CDC actually checks the data

content before chunking, the chunking overhead of CDC is

higher than that of FSC.

On the other hand, previous data deduplication mechanisms

can be roughly classified into two major categories, includ-

ing inline deduplication and post-processing deduplication.

Inline deduplication eliminates redundant data before data

1The term “data deduplication ratio” refers to the ratio of the data amount
before deduplication to the data amount after redundancy removal.
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are actually written to storage devices, while post-processing

deduplication eliminates duplicate data chunks after data are

written to the storage devices. Since inline deduplication can

reduce the amount of data written to storage devices, inline

deduplication is more suitable for lifetime-limited NVRAM.

Based on the concept of inline deduplication, previous studies

mainly focused on optimizing the deduplication ratio and

fingerprint indexing2 performance for conventional block-

based [21, 22, 18] and NVRAM-based byte-addressable stor-

age devices [20]. Although these studies can further enhance

the deduplication ratio and improve indexing performance,

few of them have considered the design issues of utilizing

the characteristics of the duplicate data content to facilitate

data deduplication design on NVRAM-based storage.

To facilitate data deduplication by considering the character-

istics of duplicate data content and to improve the profitability

of NVRAM, this study is a pioneer work that attempts to

realize the concept of dual-chunking data deduplication on

NVRAM via proposing the design of data deduplication

extended file system (DeEXT). Different from previous op-

timization approaches, this study focuses on identifying and

utilizing the inherent data deduplication potentiality3 of a

data stream to lower the chunking overhead for data with

low deduplication potentiality and maintain the redundancy

removal ability for data with high deduplication potentiality.

To facilitate the concept of dual-chunking data deduplication

within NVRAM-based file systems, the proposed DeEXT de-

sign introduces 4 different components, including a compress-

ible check module, a dedupe extent structure, a pool-based

space allocator, and a space reclamation scheme. On the other

hand, in order to retain portability between different operating

systems, this study chooses the fourth extended file system

(ext4) as the base for enabling the concept of dual-chunking

data deduplication. In addition, to take advantage of the byte-

addressability feature of NVRAM within ext4, corresponding

adjustments are made to the ext4 to allocate/deallocate storage

space and read/write files at the byte-level granularity.

In the proposed DeEXT design, a compressible check

module is firstly included for predicting the deduplication po-

tentiality of a data stream by its compressibility. Data that are

compressible tend to be uncoded data and usually have higher

deduplication potentiality than incompressible data. According

to the compression sampling result, CDC and FSC are applied

to divide compressible and incompressible data into smaller

data chunks. With this dual-chunking approach, the proposed

design can achieve higher redundancy removal ratio for data

with higher data deduplication potentiality, while lowering

the chunking overhead for data with lower data deduplication

potentiality. Furthermore, the compressibility information can

also be used as a hotness indication for illustrating the update

frequency of each data chunk. After deduplicating data with

two different chunking methods, the proposed design manages

those deduplicated data chunks via the dedupe extent structure

based on the original metadata structure of ext4. Then, a

pool-based space allocator is included to divide the storage

2Fingerprint indexing searches the existing pool of fingerprint for identify-
ing identical fingerprints.

3In this study, the term “deduplication potentiality” refers to the potential
amount of duplicate data that can be deduplicated from a data stream.

space into small resource pools and accommodate data chunks

within different pools based on the predicted data update

frequencies of the compressible check module. In addition, the

proposed design only allow sequential-write operations within

each pool to ensure NVRAM cells of the same pool will have

similar wearing. Finally, due to the added sequential-write

constraint within each pool, the space reclamation scheme

reclaims those invalid pools based on the amount of invalid

data in a pool. With the designed components, the proposed

DeEXT design can reduce the storage space usage by 41.84%

on average and improve the read/write performance by an

average of 37.76% when compared with the conventional ext4

design.

The rest of this paper is organized as follows. Section II

reports the background and the motivation of this paper.

Section III presents the mechanism of the proposed DeEXT

design. Then, in Section IV, the proposed design was evalu-

ated with real-world traces. Finally, Section V concludes this

paper and the research remarks.

II. BACKGROUND AND MOTIVATION

NVRAM has emerged as a promising storage medium for

both the industry and consumer electrics owing to its attractive

features. When compared with NAND flash, NVRAM has the

advantages of byte-addressability, shorter access latency, and

higher endurance. On the other hand, when compared with

DRAM, NVRAM also has the advantage of higher density.

Such characteristics have increased the incentive of coexisting

NVRAM and DRAM on the memory bus so as to exploit

the benefits of byte-addressable NVRAM. The architecture

of coexisting NVRAM and DRAM on the memory bus has

inspired numerous excellent designs. For example, a log-

structured file system, called NOVA [23], has been proposed

to exploit the fast random access feature of NVRAM and

to enhance the degree of access concurrency. In additional,

Chen et al. [5] also proposed the idea of union page cache to

boost the file access performance for the conventional block-

based file system on NVRAM storage devices. From another

perspective, researchers also tried to boost the data dedupli-

cation ratio or performance of data deduplication algorithm

on NVRAM. For instance, Wang et al. [20] proposed an

inline deduplication algorithm, called NV-Dedup, to improve

data deduplication performance on NVRAM via managing the

deduplication metadata with finer granularity and consistency

consideration.

To enforce inline deduplication, chunking is the first and

the most critical step. To chunk a data stream into small

data chunks for deduplication, FSC is a fast and easy way

but may face the issue of low data deduplication ratio owing

to the boundary-shift problem. For instance, if a few bytes

are inserted or removed from a data stream, the boundaries

identified by FSC will be shifted, thus lowering the number

of deduplicated data chunks. To resolve this boundary-shift

problem, CDC is proposed to utilize a sliding window for

calculating the fingerprint. A chunking boundary will then be

declared if the calculated fingerprint meets certain conditions.

An example is give in Figure 1 to illustrate the difference

between FSC and CDC. As shown in Figure 1(a), to chunk

an updated file, FSC cannot effectively identify the original
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deduplicated data chunk and will generate new deduplicated

data chunks, thus lowering the deduplication ratio. On the

other hand, in Figure 1(b), the CDC method can still identify

the original boundary and those deduplicated data chunks,

such as C1, C3 and C4, the content of which are not changed.

As a result, CDC can achieve higher deduplication ratio than

FSC. However, since CDC actually checks the data contents of

each data stream or file, the chunking latency of CDC is longer

than that of FSC. Besides the chunking latency, the fingerprint

calculation latency and fingerprint indexing latency could also

affect the performance of an inline deduplication storage

system. To resolve the latency issue of inline deduplication,

Xia et al. [22] proposed the FastCDC approach to simplify

the procedure and enhance the performance of the latest Gear-

based CDC. In addition, parallelizing techniques [7] have been

identified to speed the fingerprint calculation process. Further-

more, other studies [1] explored the methods for speeding up

the indexing performance in large-scale deduplication storage

systems. However, previous works have not considered the
possibility of utilizing the characteristics of duplicate data
content to shorten the latency and lower the management
overhead of inline deduplication.

Fig. 1. Comparison of the FSC and CDC methods.

To resolve above issues, this study proposes the concept of

dual-chunking data deduplication to draw the benefits from

both the FCS and CDC approaches. The key observation

of dual-chunking data deduplication concept is that applying

CDC for chunking data with lower deduplication potentiality

could cause unnecessary latency and fingerprint management

overhead for an inline deduplication mechanism. Therefore,

the proposed concept firstly utilizes FCS to lower the chunking

latency and fingerprint indexing overhead for those data that

have lower deduplication potentiality. Data with low dedu-

plication potentiality are usually coded data, including video,

image, and compressed data. On the other hand, CDC is used

to enhance the deduplication ratio for those data with higher

deduplication potentiality, including uncoded raw data and

text files. In the end, the technical difficulty lies on how to
realize the concept of dual-chunking data deduplication for
considering the characteristics of deduplicated data content
while utilizing the feature and improving the profitability of
NVRAM-based storage devices. To realize the concept of

dual-chunking data deduplication and improve the profitability

of NVRAM-based storages, we propose the design of data

deduplication extended file system (DeEXT) to predict the

deduplication potentiality of each data stream via compression

sampling and utilize the metadata structure of extended file

system for fingerprint indexing. The details of the proposed

DeEXT design are described in Section III.

III. DATA DEDUPLICATION EXTENDED FILE SYSTEM

A. Overview

In this section, we present the data deduplication ex-

tended file system (DeEXT) for improving the profitability

of NVRAM-based storage by utilizing the concept of dual-

chunking data deduplication to remove data redundancy and

lower the chunking overhead. To the best of our knowledge,

this work is a pioneer work that aims to consider the character-

istics of duplicate data content while integrating data dedupli-

cation mechanisms into NVRAM-based storage systems. The

goal of the DeEXT is to adaptively utilize different chunking

methods, such as FSC and CDC, for data with different

inherent deduplication potentiality. On the other hand, to retain

portability between different systems, the proposed DeEXT is

designed and implemented based on the conventional ext4 file

system. The system architecture of the proposed DeEXT can

be illustrated as Figure 2.

Fig. 2. The system architecture of DeEXT.

As shown in Figure 2, the proposed DeEXT design utilizes

the compressible check module [12] for inferring the dedu-

plication potentiality of each data stream via the results of

compression sampling. Based on the predicted deduplication

potentiality of each data stream, data streams are sent to

the data deduplicator for chunking and deduplicating. For

instance, data with high deduplication potentiality will be

chunked with the CDC method for achieving higher dedupli-

cation ratio, while data that are less likely to be deduplicated

will be chunked with the FSC method to lower the chunking

and fingerprint indexing overhead. Note that the DeEXT

design performs compression ratio sampling without actually

compressing the whole data content, thus inducing limited

decompression overhead. Then, based on the extent structure

of ext4, the proposed DeEXT firstly lowers the fingerprint

indexing overhead of those deduplicated data chunks via

a dedupe extent structure (see Section III.III-B), which is

designed based on the original extended structure of ext4.

Then, a pool-based space allocator (see Section III.III-C) is

included to store deduplicated data chunks within different

resource pools with the consideration of data update frequen-

cies; meanwhile, a sequential-write constraint is included to

ensure that NVRAM cells of the same resource pool will have

similar wearing. Finally, due to the sequential-write constraint

used for ensuring similar wearing, a space reclamation scheme

(see Section III.III-D) is designed to reclaim invalid space

based on the amount of invalid data in each resource pool.
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With the aforementioned designed components, the proposed

DeEXT design can effectively integrate data deduplication into

NVRAM-based storage systems while considering duplicate

data content and the wearing of NVRAM.

B. Dedupe Extent Structure
To manage the data chunks of two different chunking

methods, the proposed DeEXT design merges the management

of deduplicated data chunks and fingerprints into the design of

extended file system. Therefore, the DeEXT design manages

deduplicated data chunks by following the management ap-

proach of conventional file data in extended file systems. The

difference is that the original extent structure is now replaced

with the dedupe extent structure, including dedupe header and

dedupe index. The details of the dedupe extent structure are

summarized in Figure 3.

Fig. 3. The dedupe extent structure of DeEXT.

As shown in Figure 3, by following the file management

approach of conventional ext4, DeEXT manages the dedupli-

cated data chunks of each chunking method as an ext4 inode
instance, also known as the hidden dedupe file in this study.

Then, within the hidden dedupe file, multiple dedupe indexes
are utilized to track deduplicated data chunks, their fingerprint,

and reference count. The instance of dedupe indexes are then

grouped into dedupe internal nodes and dedupe leaf nodes,

which are managed by Red Black (RB) Tree structure to

enhance the performance of fingerprint indexing. In other

words, the proposed DeEXT design can lower the overhead

of deduplication metadata by managing the deduplicated data

chunks and their fingerprints with a single dedupe extent

structure. Note that the hidden dedupe file are hidden in the

metadata of DeEXT design and invisible to front-end users.

To link user files with those deduplicated data chunks in

the hidden dedupe files, modifications are also made to the

original ext4 inode structure of user files, which is illustrated

in Figure 4. As illustrated in the figure, the extent indexes of

conventional ext4 inode are altered for pointing to the dedupe
indexes of hidden dedupe files, instead of the physical location

of the data chunks in the resource pools. With this approach,

the proposed DeEXT can relocate deduplicated data chunks

without updating all the extent indexes of visible system files

for pointing to a new physical location of the deduplicated

data chunk. On the other hand, in the proposed DeEXT, in-

stead of allowing random-write operation, DeEXT only allows

sequential-write operations to avoid excessive wearing issue

on NVRAM-based storage devices (see Section III.III-C).

C. Pool-based Space Allocator
To consider the wearing issue of NVRAM within the design

of DeEXT, a pool-based space allocator is included to divide

the storage space into multiple resource pools for ensuring

NVRAM cells of a single pool will have similar wearing.

To enforce the resource pools design, the DeEXT introduces

the virtual block group to store all the file-system-related

metadata. The physical location of this virtual block group can

be adjusted to avoid the issue of uneven wear. Following the

design of resource pools, the pool-based space allocator also

considers the data update-frequency when allocating resource

pools for incoming write requests. The design of resource

pools is summarized in Figure 5.

As shown in Figure 5(a), the virtual block group is ini-

tialized to the beginning location of the storage space and

the rest storage space is divided into multiple resource pools.

To facilitate the management of resource pools, pool lists are

included in the pool-based space allocator. As illustrated in

Figure 5(b), a free pool list is utilized to track those free pools,

which are sorted according to the accumulated write count of

each pool. In the free list, to consider the wearing condition

of each pool, the free list is virtually divided into 4 regions,

including youngest, young, old, and oldest, for serving write

request with different update frequency. Then, the resource

pools of youngest and young regions will be allocated for data

with high update frequency. On the other hand, the resource

pools of old and oldest region will be allocated for serving

data with lower update frequency for prolonging the lifetime

of pools with larger write count.

In order to differentiate data chunk of different update

frequency, 4 additional lists, which are shown in Figure 6,

are included in the included pool-based space allocator. The

four included lists are new CDC, updated CDC, new FSC

and updated FSC. These four lists are used to accommodate

newly-written CDC data chunk, updated CDC data chunk,

newly-written FSC data chunk, and updated FSC data chunk.

In addition, by storing CDC and FSC data chunks in different

resource pools, the proposed DeEXT can achieve higher space

utilization by eliminating the alignment problem between

CDC and FSC data chunks since the length of CDC data

chunk may vary while the FSC data chunk has fixed data

length. Furthermore, storing data of similar update frequency

Fig. 4. The overall extent structure of DeEXT.
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Fig. 5. The design of resource pools.

in the same pool can also benefit the procedure of invalid

space reclamation since data of similar update frequency tend

to be invalidated at the similar time point and can lower the

overhead of live-data copies during invalid space reclamation.

To reclaim those invalid space in each pool, the proposed

DeEXT includes a space reclamation scheme to relocate valid

data and reclaim invalid space (see Section III.III-D).

Fig. 6. Resource pool lists.

D. Space Reclamation Scheme
Due to the added sequential-write constraint within each

pool, the proposed DeEXT design includes a space reclama-

tion scheme to reclaim invalid resource pools based on the

amount of invalid data in a resource pool. When DeEXT

design runs out of free pools, the space reclamation scheme

is initialized to reclaim space from all resource pool lists.

Resource pools are selected as victim resource pools based

on their invalid space ratio, which can be calculated as

Size of valid data/Size of a pool. The procedure of

reclaiming resource pools is summarized in Figure 7.

Fig. 7. Reclamation of resource pools.

As shown in Figure 7, when a resource pool is selected as

a victim resource pool, the valid data of the victim resource

pool will be packed to the tail pool of the same list. During

packing those valid data, the corresponding extent entries

maintained in the dedupe extent structure need to be updated

accordingly. Therefore, the included space reclamation scheme

also constructs a temporal data chunk information structure of

each pool list based on the maintained dedupe extent structure.

When a resource pool is selected as the victim resource pool,

the extent entries of those valid data chunks can be updated

when the valid data chunks are packed into other resource

pool.

IV. PERFORMANCE EVALUATION

A. Experiment Setup

In this section, experiments are conducted to evaluate the

capability of the proposed DeEXT regarding the storage space

usage and the access performance of different percentage of

compressible file data. In this paper, the proposed DeEXT

is implemented based on the structure of ext4 and evaluated

on an extended file system simulator [6]. The experimental

results of DeEXT are then compared with the results of

conventional ext4. To evaluate the performance of DeEXT

and its compared designs, real-world deduplication traces

collected by Microsoft Research are used in this evaluation.

The deduplication traces are collected via scanning around 850

file systems and chunking data with FSC of 16 KB chunk

size and CDC of 16 KB statistical mean chunk. Then, a

salted MD5 is utilized as the hash function for generating

the fingerprint for each data chunk. As for the parameters

setting, we refer to PCM [4] as a case study because PCM

is one of the commercialized NVRAMs. The latency of the

included compressible check module is also considered by

referring to the Incompressible Data Predictor (IDP) [16]

module proposed by Park et al. The experimental I/O latency

settings of the studied PCM and compressible check module

are summarized in Table II. Note that this experiment setup

assumes the percentage of compressible file data is between

0% and 100%.

TABLE II
EXPERIMENTAL PARAMETERS [4, 16].

Item Specification Unit

Storage size 512 GBs

Read latency 50 ns/byte

Write latency 150 ns/byte

Compressible check latency 165 ns/4 KB

Chunk size of FSC 16 KB

Statistical mean chunk of CDC 16 KB

B. Experimental Results

Fig. 8. Storage space usage
comparison.

Fig. 9. Access latency compar-
ison.

In this section, real-world deduplication traces were used

to conduct the experiments to reflect the real-world usage

scenario. Figure 8 compares the average storage space usage

of the conventional ext4 and the proposed DeEXT deign

with 50% of compressible data. As shown in the figure, the

DeEXT design can effectively reduce the storage space usage
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Fig. 10. Energy consumption
comparison.

Fig. 11. Access latency comparison with different
percentage of compressible file data.

Fig. 12. Energy consumption comparison with
different percentage of compressible file data.

by 41.84% when compared with the conventional ext4 design.

On the other hand, Figures 9 and 10 show the comparison

of average access latency and the energy consumption of the

DeEXT and conventional ext4. As the results show, owing to

the lower write traffic of data deduplication, the DeEXT design

can enhance the access latency by 37.76% and reduce the

energy consumption by 40.47%. It is worth noting that, even

though DeEXT requires extra read operations for indexing

through the dedupe extent structure to retrieve the file data

from hidden dedupe file, DeEXT can maintain similar read

performance when compared with conventional ext4 because

DeEXT can effectively lower the fingerprint indexing overhead

with the dual-chunking data deduplication concept.

On the other hand, the access latency and energy consump-

tion results with different percentage of compressible data are

summarized in Figures 11 and 12. As shown in both figures,

even with 0% of compressible data, DeEXT can still achieve

21.49% and 19.21% of access latency and energy consumption

reduction by utilizing only the FSC method.

V. CONCLUSION

To resolve the profitability issue of NVRAM via data dedu-

plication, this study proposes the concept of dual-chunking

data deduplication for lowering the management overhead

for data with lower deduplication ratio and ensure effective

redundancy removal for data with higher deduplication ratio.

To realize the proposed concept, a new data deduplication

extended file system, DeEXT, is proposed. The proposed De-

EXT introduces a compressible check module for predicting

the deduplication ratio of data streams and applying suitable

chunking method for each data stream. In addition, a pool-

based space allocator is used to store deduplicated data chunk

with small resource pools with data hotness consideration.

Finally, a space reclamation scheme is used to reclaim invalid

space while balancing the wearing of each resource pool.

With those introduced components of DeEXT, the proposed

DeEXT can lower the storage space usage by an average of

41.84% with 50% of compressible data when compared with

the conventional ext4 design. In addition, DeEXT can also

improve the access performance by 37.76% on average due to

the lowered amount of write traffic.
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