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Abstract—Sparsification is an efficient solution to reduce the
demand of on-chip memory space for deep convolutional neural
networks (CNNs). Most of state-of-the-art CNN accelerators can
deliver high throughput for sparse CNNs by searching pairs
of nonzero weights and activations, and then sending them
to processing elements (PEs) for multiplication-accumulation
(MAC) operations. However, their PE scales are difficult to
be increased for superior and efficient computing because of
the significant internal interconnect and memory bandwidth
consumption. To deal with this dilemma, we propose a sparsity-
aware architecture, called Swan, which frees the search process
for sparse CNNs under limited interconnect and bandwidth
resources. The architecture comprises two parts: a MAC unit
that can free the search operation for the sparsity-aware MAC
calculation, and a systolic compressive dataflow that well suits
the MAC architecture and greatly reuses inputs for interconnect
and bandwidth saving. With the proposed architecture, only one
column of the PEs needs to load/store data while all PEs can
operate in full scale. Evaluation results based on a place-and-
route process show that the proposed design, in a compact factor
of 4096 PEs, 4.9TOP/s peak performance, and 2.97W power
running at 600MHz, achieves 1.5-2.1× speedup and 6.0-9.1×
higher energy efficiency than state-of-the-art CNN accelerators
with the same PE scale.

Index Terms—Sparse convolution neural networks, sparsity-
aware CNN accelerator, internal interconnect, memory band-
width.

I. INTRODUCTION

With continuous breakthroughs in deep learning, convo-

lutional neural networks (CNNs) [1]–[4] have been widely

applied in numerous computer version tasks such as image

classification and recognition. Recently, instead of pursuing

accuracy improvements, researchers, who concern the appli-

cability of CNNs in mobile or embedded systems, are inves-

tigating model compression based on neural network pruning

techniques [5]–[7], which not only significantly reduce the

memory storage but also succeed in preserving inference

accuracy. For example, Han et al. [5] achieves up to 35×
model size reduction for the representative Alexnet model

while preserving a top-5 accuracy of 80.3%. To fully utilize

sparse CNN models, it is expected to rely on sparsity-aware

hardware engines, especially those based on the low-power

application-specific integrated circuits (ASICs), to get high

throughput and energy efficiency.

Several dedicated accelerators have been proposed for s-

parse CNN accelerations. For example, Cambricon-X, EIE, C-

nvlutin, and SCNN are typical sparsity-aware accelerators that

support sparse weights and/or activations [8]–[11], as listed in

Table I. Compared with the non-sparsity-aware accelerators

TABLE I
RECENT REPRESENTATIVE ACCELERATORS.

Accelerator
On-chip weight/activation PE #

memory type (W/A) sparsity

Cambricon-X SRAM W 256
EIE SRAM W+A 64
SCNN SRAM W+A 1024

Dadiannao eDRAM+SRAM – 4096
Cnvlutin eDRAM+SRAM A 4096
Swan SRAM W+gated A 4096

[12], [13], the sparsity-aware ones can efficiently boost in-

ference performance by eliminating unnecessary data storage,

movement, and computation in sparse CNNs. For example,

Cambricon-X [9] achieves 7.2× speedup over Diannao [12]

by exploiting the sparsity of weights, and Cnvlutin [10] ex-

ploits activation sparsity and achieves 1.37× better throughput
than Dadiannao [14]. Since input activations and/or weights

are compressed and accommodated in on-chip memories in

an irregular fashion, prior accelerators need to search pairs

of nonzero weights and activations from all multiplication-

accumulation (MAC) operations. They use customized search

architectures to find nonzero patterns, and then send them to

processing elements (PEs) for MAC operations, which receive

multifold benefits:

–Sparsity-aware acceleration engines exhibit high throughput

by fully utilizing the PE resource, because the nonzero patterns

are detected before the MAC operations.

–The search process for nonzero patterns can be implemented

in constant cycles. For example, Cambricon-X utilizes an in-

dexing module (IM) to retrieve activations for the compressed

weights in only one cycle.

Nevertheless, the scheme of customizing search architec-

tures makes their PE scale difficult to be increased because

of the significant interconnect and memory bandwidth con-

sumption. This is because all PEs need to be fed with

pairs of nonzero weights and activations concurrently. For

example, the demand of high-bandwidth on-chip storage and

interconnect makes Cnvlutin seek solutions from expensive

embedded dynamic random-access memory (eDRAM) and

high-speed interconnect, which makes them difficult to be

suited to resource-limited embedded systems. To sum it up,

existing sparse CNN accelerators cannot provide superior and

efficient accelerations for resource-limited systems.

In contrast, this work builds a search-free sparsity-aware ac-

celerator called Swan. Since weights are pre-trained, they are
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compressed offline, while activations are produced on-the-fly

so we do not compress them to avoid the runtime compression

overhead. To achieve the best efficiency by fully utilizing the

potential brought by both sparse weights and activations, we

propose a novel strategy that skips zero weights and gates zero

input activations. We develop a novel sparsity-aware MAC

unit that frees the search process from the sparsity-aware

MAC operations. The key technique to avoid search is that the

offset indexes of the compressed weights are utilized as the

trigger signals to pair the corresponding (uncompressed) input

activations directly. We then introduce a systolic compressive

dataflow that well suits the proposed MAC unit and reuses

input activations and compressed weights for interconnect

and bandwidth saving. Our work is a significant advance

over existing sparse CNN accelerators which need the search

process for pairing the nonzero weights and input activations.

Evaluations over a 65-nm place-and-route process show

that the proposed design, composed of 4096 PEs, fea-

tures 4.9TOP/s peak performance, 2.97W power running at

600MHz. Swan achieves 1.5-2.1× speedup and 6.0-9.1× en-

ergy efficiency compared with the state-of-the-art accelerators

with the same PE scale. The details of the contributions are

summarized as follow:

• We propose a search-free sparsity-aware accelerator to
efficiently exploit the sparsity of CNNs under limited

interconnect and bandwidth provision.

• We develop a sparsity-aware MAC unit that can free

the search process from sparsity-aware MAC operations.

More specifically, the offset indexes of the compressed

weights function as the trigger signals to couple the

corresponding activations for MAC operations.

• We present a systolic compressive dataflow to suit the

proposed MAC unit and move both activations and com-

pressed weights to adjacent PE columns for maximum

reuse for interconnect and bandwidth saving. Only one

column of the PEs load/store data, while all PEs perform

in full scale.

II. BACKGROUND

Basics of Sparse CNNs. The sparsity of CNNs denotes
the proportion of zero weights/activations in all weight-

s/activations. The weight sparsity comes from neural network

pruning techniques, where unimportant weight parameters are

replaced with zeros. Existing pruning approaches [5]–[7] have

well reduced the model size while preserving the accuracy. On

the other hand, the zero activations are dynamically generated

during the layers’ computation, especially after the rectified

linear unit (ReLU) function.

Key Challenge for Increasing PE Scale. To better under-
stand the challenge, Fig. 1(a) illustrates a simple conceptual ar-

chitecture for sparsity-aware MAC operations, which has been

utilized in Cambricon-X, EIE, and Cnvlutin. The architecture

comprises the on-chip buffers for data storage, the PEs for

MAC operations, and the customized search component (SC)

for finding pairs of nonzero weights (w) and activations (ia),
illustrated based on Fig. 1(b). SC searches pairs of nonzero

weights and activations, and then sends them to the PE array

for MAC operations. Therefore, they can provide sufficient

nonzero input patterns for high throughput.

PEPE

...

..
.

PEPE

wia

<wc,woff>
iar

PEPE

...

..
.

PEPE out += 
iawoff * wc

<ia1,…,iar>out

for (r=1:row, c=1:col){    

 match nonzero <iar,wc>;}

Search Component (SC)

(c)(b)

(a)

buffers

..
.

SC

..
.

interconnect

buffers

..
.

..
.

search-freeia

w

Fig. 1. Motivation example. (a) Interconnect overhead for nonzero pattern
search, and then send them to PEs for computing, illustrated based on the
sub-figure (b). And (c) interconnect overhead for search-free sparsity-aware
MAC operations.

However, the internal interconnect and the on-chip memory

bandwidth consumption become the paramount bottleneck

when building superior PE scale for high-performance sparse

CNN accelerations. This is because they need to send pairs

of nonzero weights and activations to all PEs concurrently for

computation. As a result, significant interconnect and memory

bandwidth are required to ensure fast data transmission. For

example, Cnvlutin has to deploy the expensive eDRAM and

high-speed interconnect to satisfy the provision of 65,536-bit

weights for 4096 PEs.

Our goal is to accelerate sparse CNNs with pruned weights

on enlarged PE arrays with limited bandwidth and inter-

connect consumption. Based on our observations, the search

process and MAC operations can be coupled and implemented

in a constant cycle, as shown in Fig. 1(c). The corresponding

activations (iawoff
) for the compressed weights can be directly

indexed by the offset indexes of the weights. Therefore, the

corresponding process and MAC operations can be completed

in the same cycle. In this case, the search process looks like to

be freed from the sparsity-aware MAC operations. We further

seek to save the interconnect and bandwidth based on the

search-free sparsity-aware MAC architecture. We reorganize

the dataflow and increase the reusability of inputs in the PE

array. It is known that all activations on each output feature

map share the same weights in convolutional (Conv) layers,

which offers the opportunity of reusing more data in the PE

array. In our design, activations and/or compressed weights

are supplied to only one column of PEs, and at most one

column of PEs needs to store the output activations in each

cycle, while all PEs can operate in full scale.

III. PROPOSED COMPRESSIVE DATAFLOW

In this section, we first illustrate the offline compression

process for sparse weights, and then introduce the mapping

scheme for sparse CNNs. Finally, we outline how we free the

search process for sparsity-aware MAC operations.

Fig. 2 depicts the weight compression and the accommo-

dation of compressed weights in on-chip buffers. In a Conv

layer, the weight tensor features M output channels, N input

channels, and a K × K ′ kernel size, as shown in Fig. 2(a).
The nonzero weights are compressed along the input channel,

where each nonzero weight is encoded in an offset manner

[10]. woff records the offset of a nonzero weight located in

its input channel to the first channel. Fig. 2(b) depicts how
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Fig. 2. Compression and accommodation for sparse weights.

Inputs: R: # of output rows, M: # of output channels; 

    C: # of output column, N: # of input channels, ia:activation;

    w: weights, woff: weight offset, w_num(.): weight index;   

    K and K’: # of kernel, Tm, Tn, and Tu: tiling parameters.

Initialization: c1=0; c2=1.

1  for (ro = 1:R; co = 1:Tn:C){

2    max = (co+Tn<C)? Tn:(C-co);

3    for (mo = 1:Tm:M){ 

4    for (ni=1:Tu:N; i=1:K){c1=0;

5    for(j=1:K’){      <addr, count>=w_num(mo, ni, i, j); 

6    for(ni2=1:count){ ro2 = S*(ro-1)+i; co2 = S*(co-1)+j;

          //shift weights and offsets of PEs from left to right;
7        Shift-right (w(col(0:max-2), col(1:max-1)));

          //load Tm weights (<w,woff>) to col 0
8        Load (w(Tm, addr, ni2), col(0));

9        if(c1<max){co3=co2+c1*S//load Tu activations to c1-th col
10            Load (ia((ni, Tu), ro2, co3), col(c1));  c1++;  }//end if

11      if(j>1){  //shift ia from c2-th  to (c2-1)-th col
12            if(c2<max){Shift-left(ia(col(c2), col(c2-1))); c2++;}       

13            else{co4=co2+(max-1)*S//load Tu ia to (max-1)-th col
14  Load(ia((ni, Tu), ro2, co4), col(max-1)); c2=1;  }}

          //trigger one of Tu activations (iawoff), MAC in PEs
15      out[Tm][max][co2] +=ia(ni+woff, ro2, co2) *  ...

                           w((mo,Tm), (ni,max), i, j);                 }}} //end ni

       //store Tm output activations sequentially for 1:max PE col
16   Store (no, (mo, Tm), ro, (co,1:max));                    }} //end ro

..
. E

N

ia outw
MR

TmTu

C

..

Tn

K’
K

Tm

M

Fig. 3. Tiling-based compressive dataflow on an m × n PE array with
compressed weights.

we accommodate the compressed weights in on-chip buffers.

Both the nonzero weights and their offsets (< w,woff >)
are stored in a weight buffer, while their start address and

maximum count (< addr, count >) for each group of the
compressed weights are recorded in an index buffer (w num).
Since our work is only for CNN inference, the sparse weights

are compressed and reorganized offline.

Fig. 3 depicts the sparsity-aware tiling schedule for anm×n
PE array. To fit the m × n PE array, the M output channels

and C column of the output feature maps are partitioned

into groups of sizes Tm and Tn (Tm = m and Tn = n),
respectively, as shown in lines 1 and 3. That is, each output

channel group has Tm channels and each group of output

feature maps has Tn columns. Along the input channel

direction, we partition all the N input channels into groups of

size Tu, as shown in line 4. That is, each input channel group
has Tu channels.

The key operations of the sparsity-aware tiling schedule

include four steps: weight provision, activation provision,

MAC operations, and output activation storage. The weight

(b) load ia(a) load w

PEPE

...

..
.

PEPE
...

... ...

out

(c) shift ia  (d) store out

PEPE

...

..
.

PEPE
w

...

... ...

PEPE

...

..
.

PEPE

ia ...

...

...

c2
PEPE

... ..
.

PEPE

...

...

c2 - 1

...

Fig. 4. Weights and activations operations on the PE array.

provision process is shown in lines 5-8. Specifically, the

addresses for loaded compressed weights and their offsets are

generated based on line 5. All weights and their offsets in

the PE array are moved from left to their adjacent right PE

column (line 7). At the same time, Tm compressed weights

are loaded to the leftmost PE column (line 8). Details of the

operations in lines 7-8 are summarized in Fig. 4(a).

The activation provision process includes two key oper-

ations: loading activations to one column of PEs (lines 10

and 14) and shifting the activations in one PE column to

their adjacent left one (line 12). c1 and c2 are two signals
respectively identify the current PE column for the load and

shift-left operations. Specifically, when c1 < max (max is
defined in line 2, where max equals to Tn if co+ Tn < C,
otherwise it equals to C − co), the c1-th PE column is

loaded with Tu input activations, and c1 is updated by a self-
increment operation, as shown in lines 9 and 10. Details of the

operations are illustrated in Fig. 4(b). c1 is reset to zero when
computing next kernel row, as shown in line 4. When j > 1
(line 11), which denotes that the previously loaded activations

can be reused by the shift-left operation. Specifically, when

c2 < max, as shown in line 12, the activations in c2-th
PE column are shifted to the adjacent PE column in left

side, and c2 is updated by a self-increment operation. The
shift-left operation for activations is illustrated in Fig. 4(c).

Otherwise, it needs to add Tu input activations to the (max-
1)-th PE column and reset c2 to 1, as shown in line 14.
The MAC operations are described in line 15, which will be

discussed in the following paragraph. Finally, we store the

output activations after the MAC operations, as shown in line

16 and summarized in Fig. 4(d). At most one PE column needs

to store output activations in a cycle because of the scheme

of shifting weights.

Search-free Sparsity-aware MAC Operations. During
MAC operations, the required input activations can be indexed

by the offsets of the compressed weights (iawoff
), as shown

in line 15. woff is utilized as the trigger signal to activate one

of the Tu activations for the MAC operations directly. In this
case, the corresponding process and the MAC operations can

be coupled to free the search process for the sparsity-aware

MAC operations.

For the proposed dataflow that shifts activations to adjacent

PE columns for data reuse, large-than-1 strides may degrade

the performance. To solve this issue, for larger-than-1 strides,

the loaded adjacent input activations are also located in the

same input row but with the corresponding stride size. As

a result, adjacent PEs can also reuse the adjacent input

activations. Consequently, the proposed design can efficiently

avoid the impacts of the stride size.
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The weight loading operations may temporally be stalled

to wait the activations to be updated. This is because the

weight loading operations can be conducted only after the

corresponding input activations are loaded to the PE array.

The number of stalled cycles SC is formulated as follow:

SC =

⎧
⎨

⎩

max−
∑

1≤j≤K′
w num(j); if SC > 0

0; otherwise

(1)

where max is the maximum active PE column index, which is
defined in line 2. w num(j) denotes the number of nonzero
weights in the j-th kernel column, which is counted based
on input channels (Fig. 2(b)). One extreme situation is the

Conv-1 layer of CNNs with only 3 input channels. We enlarge

the input channels virtually like [13] by utilizing the large-

than-1 stride. Differently, we do not need adder-trees for

accumulation. In fact, stalling is almost not occurred because∑

1≤j≤K′
w num(j) is almost always larger than max.

The proposed sparsity-aware dataflow can achieve efficient

computation under limited internal interconnect and band-

width. The bandwidth saving comes from three aspects. First,

only the leftmost PE column needs to load m compressed

weights, and all the other PEs reuse the weights by shifting

them from left to right. Second, at most Tu input activations
are loaded to one column of PEs. Third, the maximum stored

output activations reach only m number for the PE array. The

consumed internal interconnect and memory bandwidth only

depend on the row number of the PE array, so that we can

dramatically save the bandwidth to increase the PE scale, and

in turn, achieve higher performance.

Though the proposed dataflow dramatically reduces the

internal memory bandwidth by data reuse in Conv layers, it

does impose some challenges when tackling fully-connected

(FC) layers. This is because there are not any reusable weights

in the FC layers. At most 1/m of the PEs are active for

FC layers. Nevertheless, we can achieve efficient accelerations

for sparse CNNs, owing to two sources. First, compared with

Conv layers, the FC layers involve less computation in CNNs.

For example, the FC layers occupy less 10% of the total

operations in most popular CNNs such as Googlenet and

Resnet [15]. Second, the sparse weights in FC layers can

significantly reduce the volumes of both computation and

memory access. For example, 89.9% of the weights of the

FC layers in Alexnet can be pruned without accuracy loss

[5]. To sum it up, the proposed design can achieve efficient

sparsity-aware accelerations under limited internal bandwidth.

IV. HARDWARE DESIGN

Fig. 5 outlines the proposed sparsity-aware CNN accelerator

architecture. The accelerator comprises three main compo-

nents: a neural processing element (NPE), a central controller

(Ctl), and on-chip buffers (a weight buffer (WB) and two

activation buffers (ABin and ABout)). NPE mainly perform-

s the sparsity-aware MAC operations. WB accommodates

compressed weights, their offsets, and w num. Ctl triggers
the data movements and schedules the sparsity-aware MAC

operations. Ctl activates the direct memory access (DMA)

..
.

..
.

..
.

...

...

..
.

..
.

NPE

n

PE PE

PE

ABoutABin

mm m

Tu

m

WB

PE

m

DMA

M
e
m

o
ry

Ctl

...

m

Fig. 5. Overview of the proposed architecture.
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.
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m
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if (iawoff ≠ 0){

 out+=w*iawoff}

m ...
Tu

ia

woff

(a) (b)

Fig. 6. Search-free MAC unit. (a) Architecture of one column of PEs. (b)
Architecture for iawoff in a PE.

component to perform data movements between the on-chip

buffers (i.e., WB, ABin, and ABout) and off-chip memory.

ABin and ABout. ABin and ABout store the input and
output activations alternately. At most m output activations

need to be stored from the NPE to ABout/ABin in each cycle.

During the activation load operations, ABin/ABout needs to

supply Tu input activations to one column of the PEs. The
operation of loading Tu input activations can be implemented
by partitioning the m activations of a buffer row into m/Tu
groups.

NPE. NPE comprises m× n PEs for sparsity-aware MAC
operations. It receives m input weights and their offsets in

the leftmost PE column and shifts them from left to right

for weight reuse. Each column of PEs shares the same Tu
input activations. NPE performs MAC operations based on

the compressed weights and offset indexes and generates at

most m output activations in each cycle.

NPE functions as a systolic array that can move compressed

weights and uncompressed activations in the PE array for

reuse. Comparatively, the activations and weights are reused in

three aspects. First, the weights in each PE column share the

input activation register vector. Second, the input activations

are reused by adjacent left PEs according to the shift-left

operation. Third, the compressed weights are reused by the

adjacent PE columns on the right side.

Search-free MAC Architecture. Fig. 6 depicts the search-
free sparsity-aware MAC architecture based on m PEs in

the same column. Tu input activations are shared by the m
nonzero weights, as shown in Fig. 6(a). Each PE includes a

multiplier, an accumulator, an input weight register for storing

an input weight and their offset, and an output register for

partial sum accumulation. The PE can be gated for energy

saving if the input activation is zero. In MAC computation,

the Tu input activations are indexed by each PE according to
the offset indexes of the weights so that the search process is

avoided, as shown in Fig. 6(b). Therefore, the proposed archi-

tecture can outperform prior accelerators, Cambricon-X, EIE,

and Cnvlutin, which utilize customized search architectures
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TABLE II
STATISTICAL NONZERO WEIGHTS AND ACTIVATIONS OF BOTH CONV AND

FC LAYERS IN CNN MODELS.

Weights Total Conv FC

Alexnet 21.67M(18.6%) 0.56M(12.6%) 21.11M(18.9%)
Googlenet 4.95M(37.1%) 4.77M(41.9%) 0.18M(9.3%)
Resnet18 4.15M(16.5%) 3.82M(17.9%) 0.33M(8.5%)
Zfnet 14.68M(12.4%) 2.17M(30.6%) 12.51M(12.6%)

Activations Total Conv FC

Alexnet 0.87M(79.4%) 0.86M(81.0%) 0.97e−2M(29.2%)

Googlenet 5.0M(56.0%) 5.0M(56.0%) 0.15e−2M(77.1%)

Resnet18 2.79M(61.0%) 2.78M(61.0%) 0.34e−2M(88.1%)
Zfnet 0.71M(58.5%) 0.69M(58.5%) 0.02M(61.9%)

TABLE III
COMPARISONS OF REPRESENTATIVE ACCELERATORS WITH SWAN.

Cambr-
icon-X

Dadian-
nao

EIE SCNN Cnvl-
utin

Swan

Technology (nm) 65 28 45 16 28 65
Clock (MHz) 1000 606 800 1000 606 600
# of PEs 256 4096 64 1024 4096 4096

Area (mm2) 6.38 67.7 40.8 7.9 – 51.5
Peak perf. (GOP/s) 512 5580 102 – 5580 4915
Power (W) 0.799 15.97 0.59 – 14.85 2.97
Power efficiency
(GOP/s/W)

640.8 349.4 172.8 – 334.3 1654.9

for sparsity-aware MAC operations.

V. EVALUATION

A. Experimental Setup

We use four representative CNNs, Alexnet, Googlenet,

Resnet18, and Zfnet, with image inputs from ImageNet as

our benchmarks. The weights are pruned based on the pruning

technique introduced in [5]. Details of the proportion of the

nonzero weights and activations are shown in Table II. The

nonzero activations are statistical results based on randomly

1000 input images. We compare our accelerator with several

state-of-the-art accelerators, including Cambricon-X, Dadian-

nao, EIE, SCNN, and Cnvlutin.

We implement the proposed accelerator with RTL in Ver-

ilog. We synthesize the proposed design by Synopsys Design

Compiler under TSMC 65-nm technology, and then place

and route it in Synopsys IC compiler. The on-chip memory

is generated by Memory Compiler. The off-chip memory is

evaluated by CACTI [16]. The total capacity of the on-chip

buffers for weights and activations is 417KB. Specifically, the

on-chip buffers include 161 KB WB for compressed weights,

128KB ABin for input activations, and 128KB ABout for

output activations. In particular, WB comprises 128KB of

nonzero weights, 32KB of the offsets of the nonzero weights,

and 1KB of w num. The proposed design has 4096 PEs in
total, with m = 256, n = 16, and Tu = 16. Weights and
activations are encoded in 16-bit fixed points, and the offset

of each weight is 4-bit.

B. Evaluation Results

Profile of the Proposed Design. Table III shows the
comparison of the proposed Swan accelerator with the re-

cent representative works. Based on the 65-nm technology,

Swan features 4915GOP/s peak performance, 2.97W power,

Power (W) Area (mm
2 
)Component

WB

ABin

ABout

NPE

other

Fill cell

Total

0.090(3.0%)

0.094(3.2%)

0.087(2.9%)

2.625(88.4%)

0.074(2.5%)

-

2.97

6.72(13.0%)

5.38(10.5%)

5.45(10.6%)

14.88(28.9%)

1.10(2.1%)

17.97(34.9%)

51.5WB

ABin

ArighmArighmA
B

o
u

t

A
B

o
u

t

Fig. 7. The layout achieved after placed and routed on 65-nm technology.
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Fig. 8. Normalized speedup comparison with the Cnvlutin and Dadiannao
baselines.

and 51.5mm2 area running at 600MHz frequency. The peak

performance of the accelerators for comparison are calculat-

ed according to the PE number and the default operating

frequency reported in prior literatures. It can be observed

that Swan gains over 2.6× better peak power efficiency than

previous representative sparsity-aware accelerators. This is

because Swan can efficiently save internal interconnect and

on-chip memory bandwidth resources for the superior PE

scale. Fig. 7 shows the power and area breakdowns of Swan.

“other” refers to the controller and the interconnect. It can be

observed that NPE dominates the power with 88.4% of the

total power, owing to the big PE scale.

Performance. We compare our accelerator with sparsity-
aware Cnvlutin and non-sparsity-aware Dadiannao baselines,

which have the same PE array size, based on all benchmarks

listed in Table II. For a fair comparison, we evaluate the

performance of our accelerator for dense representation (i.e.,

Swan-dense) as well. Fig. 8 shows the normalized performance

comparison. The performance of all accelerators are normal-

ized to that of the Dadiannao baseline. It can be observed

that Swan achieves 2.1× speedup than Cnvlutin though the

frequency is only 0.99×, because Swan can effectively tackle
the Conv layers for sparsity-aware computation. On average,

Swan-dense achieves 1.5× speedup than Dadiannao, because

we can efficiently avoid the PE under-utilization impact by

tiling the Conv layers based on the output channel, input

channel, and output column, to well suit the PE array, while

Dadiannao tiles only the input and output channels.

Energy Efficiency. Fig. 9 shows the normalized energy
efficiency comparison against the baselines. Compared with

Cnvlutin, Swan achieves 9.1× better energy efficiency for

the sparse workloads. The better energy efficiency come

from the higher performance and significantly lower power

consumption for CNN benchmarks. Also, Swan-dense gains
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Fig. 10. Normalized performance breakdown. Swan (S), Swan-dense (Sd),
and Cnvlutin (C) are normalized to the Dadiannao (D) baseline. Both FC
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6.0× higher energy efficiency than the non-sparse workloads.

Consequently, the proposed design can achieve significant

energy efficiency improvement for CNN deployments.

Breakdown. Fig. 10 shows the performance breakdown
compared with the Cnvlutin and Dadiannao baselines, includ-

ing the impacts of Conv and FC layers and the stalled cycles

in weight loading. It can be observed that (1) the performance

benefits of our accelerator mainly come from the Conv layers;

(2) Swan can efficiently alleviate the performance overhead for

FC layers by exploiting the sparsity of inputs. For example,

Swan takes only 38% of the execute time than Swan-dense

in FC layers; And (3), the stalling overhead of Swan is very

small. On average, the stalling latency of Swan occupies 3.0%

of the total execution time (the percentages are respectively

3.1%, 5.7%, 4.1% and 1.1% for the four workloads). To sum

it up, the proposed design can achieve efficient accelerations

for sparse CNNs.

VI. CONCLUSION

In this work, we propose a superior sparsity-aware acceler-

ator that can significantly reduce the internal interconnect and

bandwidth for embedded systems. The proposed accelerator

comprises (a) an elaborate MAC unit that can free the search

process for sparsity-aware MAC operations and (b) a com-

pressive dataflow that can well suit the proposed MAC unit

and fully exploit data reuse with restricted interconnect and

on-chip memory bandwidth. Evaluation results show that the

proposed design can achieve 1.5-2.1× speedup and 6.0-9.1×
higher energy efficiency than the state-of-the-art accelerators

under the same PE scale.
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