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Abstract— Recently, Programmable Microfluidic Device (PMD)
has got an attention of the design automation communities as a
new type of microfluidic biochips. For the design of PMD chips,
one of the important tasks is to minimize the number of flows
for loading the reactant fluids into specific cells (by creating
some flows of the fluids) before the bio-protocol is executed.
Nevertheless of the importance of the problem, there has been
almost no work to study this problem. Thus, in this paper, we
intensively study this fluid loading problem in PMD chips. First,
we successfully formulate the problem as a constraint satisfaction
problem (CSP) to solve the problem optimally for the first time.
Then, we also propose an efficient heuristic called Determining
Flows from the Last (DFL) method for larger problem instances.
DFL is based on a novel idea that it is better to determine the
flows from the last flow unlike the state-of-the-art method Fluid
Loading Algorithm for PMD (FLAP) [Gupta et al., TODAES,
2019]. Simulation results confirm that the exact method can
find the optimal solutions for practical test cases, whereas our
heuristic can find near-optimal solutions, which are better than
those obtained by FLAP.

I. INTRODUCTION

An advanced architecture of continuous flow microfluidic biochips
(CMFBs) [1] is experimentally demonstrated by Fidalgo et al. [2]
known as programmable microfluidic device (PMD), which is a fully
software programmable chip. In order to execute a bio-protocol on a
PMD chip, first, the desired amount of different biochemical fluids
are to be loaded in the PMD cells. Then the subsequent operations
(mix, split, separate, perfuse, detect, etc.) are performed on that
PMD chip following the sequence of steps (denoted by a sequencing
graph [3]) indicated by the bio-protocol. Till now, a few design
methods have been reported in literature specific for only PMD chips.

A recent work by Gupta et al. [4] proposed a dilution algorithm
for sample preparation using PMD chips and the mapping (module
binding) of the dilution graph (a kind of sequencing graph with mix-
split steps [5]) into a PMD chip. Then, it tuned out that, for PMD
chips one of the important tasks is to load reactant fluids (reagents)
into specific cells before a bio-protocol is executed. In order to load
different reagents in the PMD chips with only one input port, we need
to create the flows of those fluids one-by-one. If the total number
of such fluid-flows increases, then we will need more amount of
expensive reagents, which incurs extra cost of the biochip. Hence, the
number of flows required to load all the reagents into different cells
of a PMD chip is an important factor to minimize. The minimization
of this number of fluid-flows along with determining the flow paths is
referred to as the fluid loading problem. To the best of our knowledge,
the state-of-the-art method for fluid loading problem is FLAP [4].
Since the problem is NP-hard, FLAP is a heuristic based on an idea
that one flow can always load a reagent into the “L-shaped” connected
cells of a PMD chip.

In this paper, we study the fluid loading problem intensively. First,
we successfully formulate the problem as a constraint satisfaction
problem (CSP) [6] to solve it optimally. We introduce a notion of
level of flow paths in our CSP formation to get rid of invalid loops
successfully. A CSP solver may not be able to solve the large CSP
instances in reasonable time. Thus, in addition to the CSP-based
optimal method (referred as an exact method), we also propose an

efficient heuristic named as Determining Flows from the Last (DFL)
method. DFL is based on an idea that it is better to determine flows
from the last, i.e., the order of determining flows is opposite to
that of FLAP [4]. Simulation results confirm that the CSP-based
optimal method (the exact method) can be applied to most of the
bio-protocols, and the heuristic DFL outperforms the state-of-the-art
technique FLAP [4].

The remainder of the paper is organized as follows. In Sec. II
the motivation and the problem formulation are discussed. Then we
explain the two proposed methods in Sec. III. The simulation results
are presented in Sec. IV and finally, Sec. V concludes the paper.

II. MOTIVATION AND PROBLEM FORMULATION

In this section, we discuss about the motivation and the formu-
lation of the fluid loading problem to be solved in order to execute
any bio-protocol on a PMD chip.

A. Motivation
The low-level synthesis of a scheduled sequencing graph for a bio-

protocol includes the placement of corresponding modules (mixer,
storage, etc.) and the routing of fluids. Su et al. [7] presented a
collision-free routing algorithm for PMD chips, where parallel rout-
ing paths are considered those are assigned to transport fluid sections
of different volumes from multiple input ports to corresponding
output ports on the periphery of the PMD chip (Fig. 1(a)). Here,
collisions are possible only between the routing paths those are
overlapped in time. According to the routing paths as shown in
Fig. 1(a), the circular shaded region is the collision point between
those two routes. In contrast to fluid routing, the fluid loading
problem finds the routing paths of the fluids, which must pass through
a set of predefined cells in a PMD chip with one input and one output
ports. In Fig. 1(b) it is assumed that two reactant fluids (reagents)
“B” and “R” are to be loaded in the predefined cells (marked with
dotted polygons) of a PMD chip containing only one input and one
output ports. After the fluid “B” is already loaded with the first flow
(F1), the shaded cell containing fluid “B” acts as an obstacle for the
second flow (F2) for the loading of fluid “R”.

Consider that the sequencing graph of a bio-protocol [3] (as shown
in Fig. 2(a)) and the corresponding module placement information (as
shown in Fig. 2(b)) for a PMD chip of fixed dimension of n×m (here
n = 6 and m = 5 in Fig. 2(b)) are given. The desired placement of
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Fig. 1: (a) Simultaneous routing of two different fluid sections.

(b) Serial loading of two reagents (labeled as “B” and “R”)

in a PMD chip of 6× 5 dimension.
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Fig. 2: (a) A sequencing graph of an example bio-protocol considering sample fluid “S” and buffer fluid “B” as input fluids.

(b) Desired placement of fluids into the cells of a 6 × 5 PMD chip for all the mixing steps (same colors have been used

to indicate the one-to-one correspondences). For the same fluid loading problem, (c) a solution (five flows) determined by

FLAP [4], and (d) another solution (two flows) obtained by the CSP-based optimal method.

modules requires that T types of different reactant fluids (reagents),
denoted by t1, t2, · · · , tT , are to be loaded in different cells on the
PMD chip. In Fig. 2, t1 = B and t2 = S, where “S” stands for
sample and “B” stands for buffer. We can put any reagent (or no
reagent) in the cells labeled with “∗” as shown in Fig. 2(b). A cell
with a label other than “∗” (e.g., “S”, “B”, etc.) means that we need
to put that reagent indicated by the label into that PMD cell.

Note that for a PMD chip of n × m dimensions as shown in
Fig. 2, the bottom-left cell is Cell(1, 1) and the top-right cell is
Cell(n,m). In the following sections, Cell(i, j) is used to denote
a cell located at the position (i, j). Without loss of generality, we
assume Cell(n,m) is connected to the dispensing (input) port, and
Cell(1, 1) is connected to the output port of a PMD chip. So, a flow
of any fluid from Cell(n,m) to Cell(1, 1) through any cell can be
created by using the programability of a PMD chip. For example, a
red path, e.g., F3 (blue path, e.g., F1) in Fig. 2(c) is a flow of fluid
“S” (“B”) from Cell(6, 5) (the input port) to Cell(1, 1) (the output
port).

If some PMD cells on a flow path are occupied by some pre-
viously loaded reagents, then the current flow path may result into
an unintended mixing of different reagents. Thus, in the real-life
implementation of a bio-protocol on a PMD chip, we need a wash
flow (the flow of a wash fluid) to wash such previously loaded
reagents in some PMD cells before loading any new reagent. As
shown in Fig. 2(d), after the first flow F1 is completed, Cell(4, 2)
and Cell(4, 4) loaded with reagent “S” are needed to be washed
before the loading of reagent “B” (by flow F2) starts. After the
flow F1 is completed, the wash flow path would be the same as
that of F2. As we will always have to perform this wash process to
avoid unintended mixing of different reagents during loading, for
simplicity, we do not consider the number of wash flows in our
problem formulation. Instead, we simply consider that the current
flow of a reagent overrides the other reagents previously loaded by
any flow.

B. Problem Formulation
The fluid loading problem for a PMD chip can be formally defined

as follows.
Inputs: An n × m array of cells of a PMD chip and a desired
placement of on-chip mixing modules, i.e., T types of different
reactant fluids (reagents), denoted by t1, t2, · · · , tT , are to be loaded
in different cells on the PMD chip.
Output: A sequence of fluid-flows F1, F2, · · · , FK that loads all the
reagents in the PMD cells as desired by the module placement.
Objective: To find the solution with the minimum number of flows
(i.e., K in this case) that complete the loading of fluids in the PMD.

III. FLUID LOADING IN PMD CHIPS

In this section, we present an exact method called as CSP-based
optimal method and a heuristic method called as Determining Flows
from the Last, i.e., DFL method, for solving the fluid loading problem
on a PMD chip. We discuss these two proposed methods in the
subsequent subsections. Furthermore, a combination of both of these

methods is also discussed here, which incorporates the benefits of
both the exact and heuristic methods.

A. CSP-based Optimal Method: Exact Method
In this section, we explain the proposed exact method to find

the minimum number of fluid-flows to load the reagents. To find
the minimum number, our strategy is as follows: we first formulate
the condition that K flows can load the reagents successfully as a
constraint satisfaction problem (CSP) [6], and then we use a CSP
solver to check whether or not the condition is satisfied. We can
determine the minimum number of flows by solving the CSPs with
different values of K repeatedly.

Here, we explain how to formulate the CSP using the following
variables/notations:

S(i,j) denotes a reagent type number to be loaded at Cell(i, j),
e.g., if we want to load t2 at Cell(i, j), then S(i,j) = 2.

Xk,l is a 0/1 variable, which becomes 1 if the kth flow is for the
reagent type tl, otherwise, it becomes 0. By the definition,
we need the condition such that for all l, only one of the
Xk,ls should become 1.

Z(i,j),k is a 0/1 variable, which becomes 1 if the kth flow pass
through Cell(i, j), otherwise, it becomes 0.

Successful Fluid Loading Condition:
By using the above variables, we can express the conditions to

load the reagents successfully by K flows as Equation (1).

S(i,j) = l⇒
(Z(i,j),K = 1 ∧XK,l = 1)∨
(Z(i,j),K = 0 ∧ Z(i,j),K−1 = 1 ∧XK−1,l = 1)∨
(Z(i,j),K = 0 ∧ Z(i,j),K−1 = 0

∧Z(i,j),K−2 = 1 ∧XK−2,l = 1)∨
...

(Z(i,j),K = 0 ∧ Z(i,j),K−1 = 0 · · ·
Z(i,j),2 = 0 ∧ Z(i,j),1 = 1 ∧X1,l = 1)

(1)

Here in Equation (1), S(i,j) = l means that we need to load a

reagent of type tl at Cell(i, j). If the kth flow (i.e., the last flow) goes
to Cell(i, j), then the flow should be of reagent with type tl. This
condition corresponds to the second row in the above equation, i.e.,
(Z(i,j),k = 1 ∧Xk,l = 1). If the kth flow does not go to Cell(i, j)
and the (k − 1)-th flow goes to Cell(i, j), then the (k − 1)-th flow
should be of reagent with type tl. This condition corresponds the
third row in the above equation, i.e., (Z(i,j),k = 0 ∧ Z(i,j),k−1 =
1∧Xk−1,l = 1). We consider the similar conditions until the situation
where the first flow load the reagent of type tl at Cell(i, j), which
corresponds to the last row in the above Equation (1).

Next, we need to consider the condition of each flow to be valid.
For that purpose, we use the following variables/notations.

U(i,j),k is a 0/1 variable, which becomes 1 if the kth flow goes
into Cell(i, j) from the upper side of the cell, otherwise it
becomes 0.

B(i,j),k is a 0/1 variable, which becomes 1 if the kth flow goes
into Cell(i, j) from the lower side of the cell, otherwise it
becomes 0.
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L(i,j),k is a 0/1 variable, which becomes 1 if the kth flow goes
into Cell(i, j) from the left side of the cell, otherwise it
becomes 0.

R(i,j),k is a 0/1 variable, which becomes 1 if the kth flow goes
into Cell(i, j) from the right side of the cell, otherwise it
becomes 0.

By using these variables, we can express the conditions of each
fluid-flow path to be valid as the following Equations (2) to (6).
Valid Flow Path Condition:

When Z(i,j),k = 1, the kth flow path should go into Cell(i, j).
For this condition, we need the following.

Z(i,j),k = 1⇒ U(i,j)k + L(i,j)k +R(i,j)k +B(i,j)k = 1 (2)

If the kth flow goes into Cell(i, j), then the flow should continue
to go into one of its three adjacent cells, which are not visited by
the flow. For this condition, we need:

U(i,j),k = 1⇒ (L(i+1,j),k +R(i−1,j),k + U(i,j−1),k) = 1 (3)

L(i,j),k = 1⇒ (L(i+1,j),k + U(i,j−1),k +B(i,j+1),k) = 1 (4)

R(i,j),k = 1⇒ (R(i−1,j),k + U(i,j−1),k +B(i,j+1),k) = 1 (5)

B(i,j),k = 1⇒ (R(i−1,j),k +B(i,j+1),k + L(i+1,j),k) = 1 (6)

At the surroundings of a chip, there may be no adjacent cell. In that
case, we remove the corresponding variable in the above equations
accordingly, if there is no adjacent cell.

Note that, without loss of generality, our problem formulation as-
sumes that Cell(n,m) is connected to the input port, and Cell(1, 1)
is connected to the output port of the PMD chip under consideration.
Thus, we need to add the following conditions for the kth fluid-flow:
U(n,m),k = 1, and only one of U(1,1),k and R(1,1),k should be 1.
No Loop Condition:

It is easy to see that the above-mentioned conditions guarantee the
following.

• Each flow path starts from the input port, and arrives at the
output port.

• Each flow path does not split at any cell.
• Each reagent is loaded to a specified cell by at least one flow,

and after the last flow to load that reagent, another flow does
not go to that cell.

Thus, it seems that we have already listed up the necessary
conditions in the above. Unfortunately, it is not true; there is an
invalid situation that satisfies all the conditions mentioned above.
Consider an example shown in Fig. 3, where the kth flow (shown
by the red arrows) is loading reagent “S”. It is easy to see that
all the above conditions are satisfied by the assignment of variables
corresponding to the situation in Fig. 3 because there is no split in
the flow path, and there is a valid flow path from the input port to
the output port. Moreover, the flow can go to all the cells where
“S” should be loaded. Thus, we would wrongly conclude that all
“S” can be loaded by only one flow by using our CSP formulation
as above. However, the flow path (denoted by the red arrows in
Fig. 3) obviously is invalid because it contains a flow in loop, which
is not connected to the input/output port (e.g., the loop consisting
of Cell(2, 4), Cell(2, 3), Cell(3, 3), Cell(3, 4) in Fig. 3). Hence,
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Fig. 3: Example of an invalid loop while solving the fluid

loading problem by the CSP-based optimal method.
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Fig. 4: The same fluid loading problem on a 6× 5 PMD chip

solved by (a) FLAP [4] and (b) CSP-based optimal (exact)

method with total number of flows (K) required to load the

reagents as 5 and 3, respectively.

we cannot exclude such a loop by using only the aforementioned
formulation.

To exclude a flow in loop (loop flow), our idea is to calculate the
level of each cell for each flow path and we can have a condition
to exclude a loop by using the values of level. First, we prepare an
integer variable level(i,j),k to denote the level of Cell(i, j) for the

kth flow. Then, we add the following condition to calculate the level
recursively.

• level(l,m),k = level(i,j),k + 1, iff the kth flow goes to
Cell(l,m) right after Cell(i, j). (This condition implicitly
assumes that Cell(l,m) and Cell(i, j) are adjacent with each
other, and we need to have this condition for each pair of two
adjacent cells.)

We also have the condition: level(m,n),k = 0, which defines the level
of the starting cell as 0. Then, the value of level is increased by 1,
when the flow enters into the next cell following the above condition.
Assume that, a loop flow of length L starting at Cell(i, j). Following
this last condition, the level is increased by 1 along the flow path.
The increment of the level is repeated L times before the path comes
back to Cell(i, j) by the above condition. Then eventually we have
level(i,j),k = level(i,j),k + L, which cannot be satisfied by any
variable assignment. Thus, we can exclude a loop flow with the help
of this new condition.

We can find an assignment of variables that satisfies all the
conditions using a CSP solver, if there is such an assignment. We
can easily determine the kth flow by the assigned values of U(i,j),k,
B(i,j),k, L(i,j),k, R(i,j),k those are determined by the CSP solver.
Therefore, we can also find the smallest number of flows by invoking
the CSP solver many times with different values of K.

For a fluid loading problem with three reagents “S”, “R” and “B”,
FLAP requires K = 5 flows as shown in Fig. 4(a), whereas the CSP-
based optimal (exact) method determines a sequence of fluid-flows
with the total number of flows as K = 3 (Fig. 4(b)).

B. An Efficient Heuristic Method: DFL Method
Although our exact method should work for most of the cases, it

may not find a solution for a large size problem instance. In such
a case, we need to have a heuristic method as FLAP [4]. However,
we observe that the number of flows can be further reduced; if we
carefully consider the effect of a flow, i.e., a flow overrides the
reagents those are already loaded by previous flows. In order to
utilize this idea, we propose a more efficient heuristic method that
determines flows from the last, i.e., the order of determining flows
is opposite to FLAP. We name this heuristic method as Determining
Flows from the Last (DFL) method.

Here, we explain the idea behind the proposed heuristic DFL
method. Consider the flow F last

1 in Fig. 5(a) is the last flow, which
is the first flow in FLAP. The flow F last

1 loads the reagent of type
“B” on its path. This means that it overrides the reagents in the
cells on its path indicated by green lines); i.e., any flow before F last

1

is allowed to load a reagent of any type into a cell on the path of
F last
1 . Therefore, for our example, we can consider the ‘L-shaped’

area (encircled by a green dotted box) as “∗” as shown in Fig. 5(b) for
the flows before F last

1 . By this consideration, we have more freedom
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Fig. 5: Solution to an example fluid loading problem obtained by DFL method. (a) The last flow, (b) situation before the last

flow, (c) second flow to the last flow, and (d) all flows.

to find a “good” flow before F last
1 . Based on this consideration, our

overall strategy is as follows:

• We determine the flows in reverse order unlike the normal
methods.

• We consider the cells on the already determined flows as “∗”,
and find a “good” flow, which loads the reagents before the
already determined flows.

In this paper, we consider a “good” flow should contain as many
cells of the reagent type as possible, and also a shorter path would
be better. Hereafter, we use the following notation:

• Weightti(Fj) is the number of cells of reagent type ti on the
path of a flow Fj .

Algorithm 1 provides the pseudo-code of the DFL Method. First,
we initialize FlowList at line 1 as empty, and then we try to find
the good flows one-by-one in the while loop between lines 2 to 14
until there is no undetermined cell, which means that we have found
all the necessary flows for the given fluid loading problem. As we
mentioned, unlike normal methods, we try to find a flow from the
last. So we add a flow to the beginning of FlowList at line 12. After
we find a flow path, we consider all the cells on that path to have “∗”
labels, and continue to find flow paths until there is no undermined
cell. At line 6, the “best” flow is found to load the reagent of type
ti by BestFlow(ti), which will be explained later. Between lines 4
and 11, we try to find the “best” flow for each reagent type and then
we choose the best one among all types as BestF lowFound by
replacing it at line 8, when we find a better one.

Algorithm 2 describes the method BestFlow(ti), which is a
heuristic to find a possibly “best” flow to load the reagent of type ti.
Here, we consider a flow F is good, if Weightti(F ) is large. Here,
we explain how we find a flow for reagent “R”, when the situation
of cells is as shown in Fig. 5(c). The method BestFlow(R) finds the
flow F last

2 indicated by blue arrows in Fig. 5(c), which is the second
last flow in the given fluid loading problem. For the same problem
with three reagents “S”, “R” and “B” as shown in Fig. 4 for FLAP
and the exact method, here the DFL method determines a sequence
of flows as depicted in Fig. 5(d) with the total number of flows as
K = 3.

First, we find Cellstart, which is a cell with label ti (for reagent
type ti) and is reached first from the output, i.e., Cell(1, 1) at line 1.
Note that for the problem instance shown in Fig. 5(c), in order to find
a flow of reagent type “R”, we consider that a flow can go through
only cells with labels “R” or “∗”. It is easy to find such a cell by just
extending paths from Cell(1, 1) to reach at a cell with label “R”. In
this example, Cellstart is Cell(2, 2) as shown in Fig. 6(a) indicated
by a circle around reagent “R”. The next task is to find a flow path
containing as many “R” as possible from Cellstart to the input port
Cell(6, 5). The path from Cell(1, 1) to Cellstart is indicated by red
arrows in Fig. 6(a), and thus we cannot use this path for the path
to the input port. Hence, we put “P ” labels in the cells as shown
in this figure, which means these cells are also obstacles for a path
from Cellstart to the input port.

For the remaining task, our idea is as follows. We consider every
cell has four incoming and four outgoing edges, which are connected
to its neighboring cells as shown in Fig. 6(a). Each edge has a value

Algorithm 1: DFL Method: Finding a list of flows

required for loading the desired placement of reagents.

1: FlowList = empty;
2: while there exists an undetermined cell do
3: BestWeight = 0; /* Number of reagents in the best flow

found so far */
4: for all ti ∈ {t1, · · · , tT } do
5: BestF lowFound = empty;
6: FlowFound = BestFlow(ti);
7: if Weightti(FlowFound) > BestWeight then
8: BestF lowFound = FlowFound;
9: BestWeight = Weightti(FindF low);

10: end if
11: end for
12: Add BestF lowFound to the beginning of FlowList;
13: Update all the cells with label “∗” on the path of

BestF lowFound;
14: end while
15: return FlowList;

Algorithm 2: BestFlow(ti): Finding a best flow to load

reagents of type ti.

1: Find a cell Cellstart with label ti such that there is a path
consisting of only “∗”s from Cell(1, 1) to Cellstart, and
Cellstart is the nearest to Cell(1, 1);

2: if there is no such Cellstart then
3: return Null;
4: end if
5: Flag = True;
6: while Flag == True do
7: UpdateCells(ti);
8: if there is any change in UpdateCells then
9: Flag = True;

10: else
11: Flag = False;
12: end if
13: end while
14: if the outgoing edge from input port cell has a positive value

then
15: BestF low is set as a path related to the outgoing edge from

the input port cell;
16: return BestF low;
17: else
18: return Null;
19: end if

that means the number of “R”s contained in the path from Cellstart.
At first, every edge has value 0 except for the outgoing edges from
Cellstart as shown in Fig. 6(a). The outgoing edges from Cellstart
has value 1, and this value is propagated towards the input port.
While propagating the values, if we enter into a cell with label ti
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(c)

Fig. 6: Use of the function UpdateCells() in DFL method for problem instance shown in Fig. 5(c). (a) Initial situation, (b) the

first call of UpdateCells() and (c) the second call of UpdateCells().

(“R” in this example), the value is increased by 1 because the path
now finds a cell with “R”. This propagation should be stopped by
the cells with labels other than tis or “∗” as indicated by red “X”s
in Fig. 6(a). If we try all the possible propagation processes, we will
find the path containing the maximum number of cells with reagent
ti.

However, this should be time consuming, so our idea is to omit
the propagation of the values only when they are increased. The
above propagation is done by UpdateCells(ti) at line 7. The function
UpdateCells(ti) simulates each flow to go through only one cell.
As we update values only when they are increased, we check only
the cells such that the values of their incoming edges are updated
(increased) at the previous call of UpdateCells. In our example shown
in Fig. 6(b), at the first call of UpdateCells we check only Cell(2, 1)
and Cell(3, 2), which are adjacent to Cellstart and indicated by
circles around the “∗”s. This is because only their incoming edges
have value 1 at the initial situation as indicated in Fig. 6(b). More
formally, UpdateCells updates the values of the outgoing edges by
the following way:

• If the value of one of the incoming edges is updated (increased),
we update the values of the outgoing edges in three other
directions. The updated value is the same as the incoming edge
for a cell with label “∗”. The value is increased by 1 for a cell
with label ti.

In the example of Fig. 6, UpdateCells updates the values of the
outgoing edges of Cell(2, 1) and Cell(3, 2) to 1 at the first call.
The updated values are circled in Fig. 6(b). At the next call of
UpdateCells, we update the values of the outgoing edges of the three
cells, which are indicated by circles in Fig. 6(c). The updated values
on the outgoing edges are surrounded by circles. The values of the
outgoing edges of Cell(3, 3) are updated as 2 because the flow, which
stars from Cell(1, 1) and goes throughout this cell, contains two
“R”s.

We should be careful not to make a flow loop during the above
process. To do so we attach the path information to each value on
an edge. For example, consider the outgoing edge of Cell(3, 1) to
Cell(3, 2) after the second call of UpdateCells as shown in Fig. 6(c).
The value of this edge has just updated to 1, which is indicated by
a circle in the figure. This updated value 1 corresponds to a path:
{Cell(2, 2), Cell(2, 1), Cell(3, 1)}, which has one “R”. We keep
this information with the value of the edge.

At the third call of UpdateCells after Fig. 6(c), we consider to
update the outgoing edges of Cell(3, 2) because it has the updated
incoming edge from Cell(3, 1). However, we do not update the
values of the outgoing edges to Cell(4, 2) and Cell(3, 3) because
they are already 1. Moreover, we do not update the value on the
edge to Cell(2, 2) from the current vale 0 to 1. This is because if
we do so, we will make a loop flow. It is easy to know this by
checking whether the path information of the incoming edge, i.e.,
{Cell(2, 2), Cell(2, 1), Cell(3, 1)} has Cell(2, 2) or not.

Finally, we do not update the values when we make a loop flow,
but we update the values only when they are increased. So, it is easy
to see that the number of calls of UpdateCells should not exceed the
minimum length of the paths that contains the maximum number of
labels tis. Thus the algorithm can be practically used. Note that the
algorithm is not theoretically optimal because we check the change
of incoming edges only when their values are increased.

If there is no more change by UpdateCells, then it goes to line 14
in Algorithm 2, and get the best flow as BestFlow to return it. If there
is no possible flow path from Cellstart to the input port (because of
obstacles), we cannot find a flow. Hence, when we go out the while
loop between line numbers 6 to 13, the outgoing edge of the input
port cell will have a value as 0 and an empty list as Null is returned
at line 18. In some cases, we may not find a path for a particular
reagent. For example, if all “S”s are enclosed by other reagent(s),
then we cannot have any flow path for reagent “S”, whose weight is
greater than zero. Here, first we load the other reagent(s), by which
these cells become “∗”, and then we can have a flow path to load
reagent “S”.

C. Combination of the Exact Method and Heuristic Method
If we can find the smallest number of flows to load the reagents

by the exact method, then obviously there is no problem. However,
we consider that the exact method cannot treat a large size fluid
loading problem because the method needs to solve a CSP. Indeed,
the number of variables in this CSP formulation is obviously O(n ·
m ·K), where K is the number of flows and the chip size is n×m.
Again, the formula size (i.e., the number of variables in the formula)
of Equation (1) is O(K2). Thus, the CSP formulation becomes larger,
when the chip size and/or the value of K becomes larger.

Instead, the heuristic method is not time consuming, which will
also be confirmed by the simulation results in Sec. IV. The reason
is that the number of repetitions of calls of the function UpdateCells
in DFL method is bounded by the length of the longest path, which
is linear to the chip size.

Here, we propose one possible way to utilize the heuristic method
along with the exact method.
A Practical Method Utilizing both Heuristic and Exact Methods:

Step 1 Invoke a heuristic method (note that any heuristic would
work) to solve the problem. Let the number of flows found
by the heuristic be Kh.

Step 2 Invoke the exact method with the number of flows to be
(Kh − 1). If a CSP solver confirms that the CSP is not
satisfied in reasonable time, we consider that the solution
by the heuristic method is optimal, and terminate this
algorithm. Otherwise, go to Step 3.

Step 3 Invoke the exact method to find the number Koptimal such
that the CSP with Koptimal is satisfied, but the CSP with
(Koptimal − 1) is not satisfied for the current problem
instance. We can find such a number by a binary-search
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TABLE I: Simulation results of 10 test cases for the exact method and the heuristic DFL over FLAP [4].

Sl. No. Test Case Chip Exact Heuristic FLAP

Size K
Time

(in seconds) K
Time

(in seconds) K
Time

(in seconds)
1 cell-culture [8] 9× 9 3 571.643 5 0.014 12 0.002
2 pcr-mix [3] 6× 6 8 7.528 8 0.008 8 0.002
3 protein [3] 7× 8 3 15.061 3 0.008 9 0.002
4 invitro1 [3] 8× 10 7 − 7 0.024 15 0.002
5 invitro2 [3] 10× 10 8 − 8 0.052 20 0.033
6 rsm [9] 4× 9 3 3.301 3 0.006 7 0.002
7 mtcs [10] 6× 7 3 2.746 4 0.006 9 0.002
8 flospa-em [11] 5× 5 5 1.26 5 0.005 8 0.002
9 synthetic1 5× 5 4 1.782 5 0.005 8 0.001
10 synthetic2 5× 6 2 2.177 3 0.004 5 0.001

strategy. If a CSP solver can finish in a reasonable time,
we consider Koptimal is the optimal number of flows and
terminate this algorithm. Otherwise, go to Step 4.

Step 4 Find one best flow, which is the last flow as our DFL
method provides, for the current problem instance by a
heuristic method. Let the found flow to be the last flow,
and we consider that reagent type on the flow to be “∗” in
the current problem instance to make a smaller problem.
Then go to Step 3 with the smaller size problem instance
to be solved at Step 3.

The idea is that if a given problem is larger for the exact method,
we determine the last flow by a heuristic method, and then the
remaining problem becomes smaller, with which we can try the exact
method. Thus, we continue to make the problem smaller until the
exact method can be applied to get the solution in reasonable time.

IV. SIMULATION RESULTS

We evaluated the proposed heuristic DFL and the exact method
(CSP-based) with the FLAP [4]. For performance comparison, we
considered total ten (10) test cases (out of which eight are for the
sequencing graphs corresponding to the bio-protocols taken from the
literature and two are synthetically generated by us) namely cell-
culture [8], pcr-mix [3], protein [3], invitro1 [3], invitro2 [3], rsm
(mixing tree for target ratio 7 : 14 : 11 obtained by RSM) [9], mtcs
(mixing tree for target ratio 7 : 14 : 11 obtained by MTCS) [10],
flospa-em (mixing tree for target ratio 22 : 14 : 14 : 14 obtained by
FloSPA-EM) [11], synthetic1 and synthetic2.

Table I presents the number of flows (K) required to solve the
fluid loading problems in the PMD chips corresponding to these ten
bio-protocols obtained by the exact method, the heuristic method
and FLAP [4], in the fourth, the sixth and the eighth columns,
respectively. The fifth, seventh and ninth columns report the CPU
time (in seconds) of the exact method, the heuristic method DFL
and FLAP, respectively, while executing the programs with Ubuntu
18.04 OS in a computer with Intel(R) Core(TM) i7-6700K CPU @
4.0GHz and 8GB memory. We used Sugar [12] to solve the CSP in
the exact method.

The proposed heuristic DFL can find better solutions than FLAP,
and indeed it can find almost optimal solutions for most of the test
cases. As expected, in case of the two test cases namely invitro1
and invitro2, we found that the exact method could not determine
the flows even within one hour, whereas the same number of flows
(7 and 8 flows, respectively) are determined by the heuristic method
DFL within a second. Hence, we used “−” in Table I to indicate
that the exact method needs much more CPU time. Thus, for these
two bio-protocols, we can confirm that DFL can find the optimal
solutions same as obtained by the exact method. As we discussed at
the end of the last section, in case of large size test cases, we can
use the exact method in combination with DFL.

V. CONCLUSIONS AND FUTURE WORK

This paper proposes an exact method and a near-optimal heuristic
method DFL for automation of fluid loading into the cells on a PMD

chip. Simulation results confirm that the exact method can be useful
for most of the bio-protocols, and the proposed heuristic DFL can
provide the near-optimal solutions as obtained by the exact method.
Both the methods outperform the state-of-the-art technique FLAP.
As a future work, one can consider the existence of multiple input
and output ports, and solve the simultaneous fluid loading problems
on a PMD chip.
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