
An FPGA based Network Interface Card with Query Filter
for Storage Nodes of Big Data Systems

Ying Li Jinyu Zhan* Wei Jiang
University of Electronic Science University of Electronic Science University of Electronic Science

and Technology of China and Technology of China and Technology of China

e-mail: lylyling wulala@qq.com Corresponding author: zhanjy@uestc.edu.cn e-mail: weijiang@uestc.edu.cn

Junting Wu Jianping Zhu
University of Electronic Science Tencent Technology Shenzhen

and Technology of China Company Ltd

e-mail: 1473692846@qq.com e-mail: felixzhu@tencent.com

Abstract— In this paper, we are interested in improving the data
processing of storage and computing separated Big Data systems.
We propose an Field Programmable Gate Array (FPGA) based
Network Interface Card with Query Filter (NIC-QF) to accelerate
the data query efficiency of storage nodes and reduce the workloads
of computing nodes and the communication overheads between them.
NIC-QF designed with PCIe core, query filter and NIC communication
can filter the original data on storage nodes as an implicit coprocessor
and directly send the filtered data to computing nodes of Big Data
systems. Filter units in query filter can perform multiple SQL tasks in
parallel, and each filter unit is internally pipelined, which can further
speed up the data processing. Filter units can be designed to support
general SQL queries on different data formats and we implement
two schemes for TextFile and RCFile separately. Based on TPC-H
benchmark and Tencent data set, we conduct extensive experiments
to evaluate our design, which can achieve averagely up to 46.91%
faster than the traditional approach.

Index Terms—Storage and computing separated Big Data systems;
Query filter; Network Interface Card; FPGA

I. INTRODUCTION

With the rapid development of big data techniques, the amounts

of data in emerging big data applications has exceeded the GB

level, but been reaching TB, even PB or EB level. Traditional

big data architectures are not suitable for such magnitude of data.

These architectures employ mixed role nodes suffers from bad

scalability and complex transmission scheduling further aggravate

the performance burden caused by the magnitude of data. In

traditional architectures, each node may have many different roles

and a physical machine may take responsibility for computing

tasks under high pressure transmission workloads. This will make

computing resources and storage resources tightly coupled with

each other. These problems also cause the intention from industries,

in recent years, companies like Tencent [1], IBM [2], Facebook [3],

and Microsoft [4] have developed storage and computing separated

architectures to overcome the shortages in scalability. In these

designs, storage nodes and computing nodes work independently

with each other and can be easily scaled.

In the existing big data systems, using FPGA as a coprocessor is

an effective implementation. The authors of [5] developed an Ibex

framework to accelerate the data processing by putting the FPGA

between the CPU and Solid State Disk(SSD), and performing filter

operations such as selection and projection. However, SSD with

low capacity are not suitable for storage nodes to store mass data.

And the current FPGA is actually unable to obtain directly data

from the hard disk. The authors of [6] [7] proposed a database

acceleration method based on CPU and FPGA memory sharing,

which can accelerate the processing on computing nodes, but the

communication overheads between computing nodes and storage

nodes are still very high. Microsoft [8] deploys FPGAs between

NICs and switches to accelerate network forwarding and storage

virtualization, but the FPGAs cannot deal with SQL tasks. To

further improve the query performance, some studies on data

processing are proposed. The authors of [9] designed an FPGA-

based data filter for RDF triples. The authors of [10] designed a

skeleton automaton for data query to filter XML. Both of them do

not support general SQL queries. In these designs, the coprocessors

can help storage nodes dropping most of those unnecessary data

packages before transmission, and reducing the bandwidth pressure.

The authors of [11] [12] proposed an FPGA based dynamic

configurable plug-in method for querying the database, to perform

some general queries. But this method deals with different queries

by the FPGA reconfiguration.

Although these design success in increasing the processing speed

over the entire system, it still remains many challenges. Using

hardware accelerating coprocessors can benefit in amortizing the

workloads and also causes a series of problems such as transmission

gap and scheduling overheads. For example, the I/O bandwidth

between the storage nodes and computing nodes fluctuates greatly

and the computing resources are centralized while the calculation

cost is very high. Moreover, simply embedding coprocessors into

big data architectures may introduce more encumbrances due to the

magnitude of data. At last, these designs are all used to speed up

very specific SQL tasks. How to support general SQL queries in

different storage formats, such as column-based storage, row-based

storage and key-value storage, is still an urgent problem. According

to the current works, reconfiguring the circuits to adapt to different

SQLs will result in a certain amount of time overheads and shorten

the FPGA lifetime.

As a supplementary work, we propose an FPGA-based Network

Interface Card with query filters (NIC-QF) for storage and comput-

ing separated Big Data systems, which can reduce corresponding

communication overheads and workloads of the computing node.

We use FPGA to design a NIC-QF for the storage nodes, by which

the FPGA is integrated as a coprocessor to increase the processing

efficiencies of storage nodes. The entire NIC-QF consists of PCIe

core, query fiter and NIC communication. Query filter deals with

different general SQL queries to filter data, which reduces data size

and lowers communication overheads and workloads of computing

nodes. Inside the query filter, several filter units are designed

to perform multiple SQL tasks in parallel. We implement two

schemes for filter units to support TextFile and RCFile. To avoid

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE 556

8B-3

the FPGA reconfiguration for different SQLs, the SQL conditions

are parameterized into boolean variables. We conduct extensive

experiments to evaluate our approach on TPC-H benchmark and

Tencent data set. To the best of our knowledge, this paper is the

first work to implement query filter enhanced NIC by FPGA to

accelerate the data processing of storage and computation separated

big data systems.

The primary contributions of this paper are listed as follows.

• Propose a NIC-QF on storage nodes of big data systems to

lower the communication overheads between storage nodes

and computing nodes and the workloads of computing nodes.

• Present an FPGA-based implicit coprocessor architecture to

reduce the CPU workloads of storage nodes.

• Formulate general SQL conditions of combined predicates into

boolean variables to avoid reconfiguring FPGA.

• Implement two schemes inside the filter units for TextFile and

RCFile formats.

The rest of this paper is organized as follows. Section II gives

the system architecture of storage and computing separated big data

systems considered in this paper. Section III and IV presents the

designs of NIC-QF and filter unit. We evaluate the proposed design

in Section V and draw the conclusion of this paper in Section VI.

II. SYSTEM ARCHITECTURE

In this paper we consider to accelerate the data processing of

storage and computing separated big data systems. For comparison,

we give both the traditional architecture and our improved archi-

tecture in Fig.1. In the traditional architecture shown in Fig. 1(a),

when the storage node receives SQL query tasks from computing

nodes, it requests the query data on the memory. If the data is not

in memory, storage node will retrieve all of the original data in

table from the hard disk and sent to computing nodes via NIC.

The attributes not in the SQL conditions are considered as the

unrelated data. Actually, there are a lot of data unrelated to SQL

conditions in the original data, which occupies a large amount of

communication overheads. The improved architecture is shown in

Fig.1(b). Comparing with traditional architecture, the difference

is marked in red. The original data is pre-filtered by filtering

accelerator of NIC-QF. Only filtered data needs to be transmitted to

the computing node, which results in less communication overheads

and less workloads in computing nodes.

Network Original

Data

Computing Node

CPU
Process

Memory

N
IC

Original

Data

Original

Data

Storage Node
Original

Data
CPU Memory

Hard Disk

SQL

Query
DMA

Original

Data

N
IC

(a) Traditional architecture

Network
Filtered

Data

Storage Node

CPU Memory

Hard Disk

SQL

Query
DMA

Original

Data

N
IC

-Q
F

Filtered

Data

Computing Node

CPU
Process

Memory

N
IC

Filtered

Data

Filtered

Data

(b) Our improved architecture

Fig. 1: Architecture comparison

III. NIC-QF DESIGN

In this section, we present the design of NIC-QF. To reduce the

CPU workloads, the NIC-QF implemented by FPGA is designed

as an implicit coprocessor on the storage nodes. As shown in

Fig. 2, NIC-QF is composed of PCIe core, query filter and NIC

communication, and can speed up data queries and transmissions.

The FPGA-based NIC-QF communicates with CPU using Direct

Memory Access(DMA) protocol through PCIe interface. When

receiving the SQL query requirements, CPU parses the SQL

NIC-QF

NIC
Communication

Original

Data

Filtered

Data

Ethernet
cable

OOPCIe

Core
lll FFFQuery

Filter

SQL task
messages

task

files

SQL

Queries
CPU

Hard
Disk

M
a
in

M
e
m

o
ry

P

C
PCIe

Fig. 2: NIC-QF design

queries into SQL task messages, and indicates the paths to the

corresponding files to ensure that data can be taken out from the

hard disk. SQL task messages and corresponding data are collected

in the main memory and are sent to NIC-QF through PCIe. Data are

filtered in query filter according to SQL task messages. Then NIC

communication transmits the filtered data as frames by ethernet

cable.

A. Query Filter

Task_File_N

Task_Message_N

RD FIFO n Result

FIFO n

FU_Count[n]

Filtered_N Result[n]

RD_EN_Result[n]Task_File_N

m bits

bus-width bits bus-width bits 1 bit

m bits

1 bit

Filter

Unit 1

Task_File_1

Task_Message_1

RD FIFO 1 Result

FIFO 1

FU_Count[1]

Filtered_1 Result[1]

RD_EN_Result[1]Task_File_1

m bits

bus-width bits bus-width bits 1 bit

m bits

1 bit

Filter

Unit 2

Task_File_2

Task_Message_2

RD FIFO 2 Result

FIFO 2

FU_Count[2]

Filtered_2 Result[2]

RD_EN_Result[2]Task_File_2

m bits

bus-width bits bus-width bits 1 bit

m bits

1 bit data stream

bus-width bits

FU_Count[n:1]

RD_EN_Result[n:1]

Result[0:bus-width][n:1]
F

s Filter

Unit n
b

b

b

D
istrib

u
to

r

Fig. 3: Query filter

To improve filtering efficiency, query filter performs multiple

filtering on the FPGA. As shown in Fig.3, query filter consists of a

distributor, several Read FIFOs (RD FIFO), filter units and Result

FIFOs, where different filter units deals with different SQL tasks at

the same time. The distributor decomposes different task files from

the continuous bus-width-bit data streams according to the total

length of each file or the symbol of end-of-file and allocates them

to corresponding RD FIFOs based on different storage formats.

And the distributor also distinguishes SQL task messages from data

streams to send to the corresponding filter units. Filter units work in

parallel to deal with different SQL tasks, the number of which are

restricted by FPGA onboard resources. Filter units can be designed

to support different data formats. We have realized the schemes for

TextFile and RCFile. Sometimes, it may occur that several result

sets of filter units wait to be transmitted at the same time in NIC

communication and the next tasks are also blocked. To solve this

problem, we set a counter in each filter unit to calculate how many

results match the SQL queries. Once the number of results reach

the size that needs to be transmitted, FU Count[n:1] are set to
inform NIC communication of transmitting the SQL results stored

in Result FIFOs.

B. NIC Communication

The NIC communication takes charge of ethernet transmission.

As shown in Fig.4, we implement the encapsulation of the UDP

protocol, IP protocol and MAC protocol in the modules of UD-

F TX, IP TX and MAC TX, respectively. Then the filtered data

can be sent to the network as frames through the ethernet cable.

FU Count[n:1] and Result[bus-width:0][n:1] are the inputs
whereas RD EN Result[n:1] is the output. To avoid disordering
the filtered data of different tasks, FU Count[n:1] is a n-bit

RD_EN_Result[n:1]

Result[0:bus-width][n:1]

N-bits

destination_IP_addr,

 source IP_addr,

destination_port,

source port

FU_Count[n:1]

N-bit

IP_TX

destination_MAC_addr,

source_MAC_addr

MAC_TX Send_ACK

MAC_Frame

UDP_TX
bus-width-bits

Fig. 4: NIC communication

557

8B-3

PCIe core NIC communicationQuery Filter

Filtering SendingReading

Fig. 5: Pipeline design

variable composed of the outputs of all filter units in Query

Filter to inform UDP TX to encapsulate the results of filter units

from the corresponding Result FIFOs. Since UDF TX module,

IP TX module and MAC TX module are independent, the protocol

encapsulations of the UDP, IP and MAC can be pipelined.

C. Pipeline Design

Since PCIe core, query filter and NIC communication are in-

dependent, we design the pipeline of our NIC-QF to improve the

overall performance of SQL tasks. There are three major stages in

the pipeline of NIC-QF shown in Fig.5.

1) Reading: Reading data from main memory through PCIe.

2) Filtering: Filtering data in filter units.

3) Sending: Encapsulating and transmitting data to the network.

When data arrives through PCIe interface, it will enter the

filtering stage. Once the results reach the amount of a packet, the

protocol encapsulation and data transmission will occur.

IV. DESIGN OF FILTER UNIT

In this section, we present the design of filter unit in detail. We

designed two filtering schemes for TextFile and RCFile.

A. Filter Unit

A filter unit consists of a data projection, a processing unit group

and a checker in Fig.6(a). The data projection decomposes the

attributes related or unrelated to the SQL conditions from the tuples

in data streams and send them to different processing units. One

tuple is a record in database tables. The processing unit group is

composed of several operator units and a storage unit. The attributes

of tuples related to the SQL conditions are filtered in the operator

units whereas the attributes unrelate to the SQL conditions are

stored in the storage unit. The checker determines whether this

tuple meets the SQL conditions.

1) Storage Format: The filter unit can support data in differ-
ent storage formats by different implementations, such as row-

based storage, column-based storage and key-value storage. We

have implemented the filtering for the two most common storage

formats (TextFile and RCFile) in big data systems. According to

the discrepancy of storage formats, the implementations of data

projection and processing unit are different.

2) SQL Condition: SQL queries contain multiple atomic condi-
tions, which are combined by logical operators (‘AND’ and ‘OR’),

as following.

WHERE col1 > α AND col2 = β OR col3 < γ

Each atomic condition contains the related attribute (col1, col2,
col3), an comparison operator(>, =, <) and a target value (α,
β, γ), which can be formulated into a boolean parameter to

support. Hence, we can formulate the SQL conditions of combined

predicates into boolean variables as task messages to the checker.

(a)((a))()

Filter Unit

C
h
eck

er

Storage Unit

Operator Unit 1

Operator Unit 2

Operator Unit k

Processing Unit
GroupD

ata P
ro

jectio
n

(b)

0Col 1

Col 2

Col 3

Checker

O 2 =

O 1 >

O 3 <

0

1

0

TT 11101010

1 1 1 1
1 1 0 1
1 0 1 1
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 1
0 0 0 0

Fig. 6: Filter unit

task message Data stream

010

TT

1

1

Operator

Unit2

0

Operator

Unitk

Result FIFO

Checker

Storage Unit

R*,1 ~ R*,m

When the output
of checker is 1

0

Operator

Unit1

g

TT

Location[0:k]

R*,kR*,2R*,1

T2T1 Tk

T1 T2 Tk

O1 O2 Ok

=> <Target value[0:k]

Operator[0:k]

...

...

...

Data Projection

...

Fig. 7: Filtering Scheme for TextFile

3) Checker: To avoid reconfiguring the circuits according to
different SQLs as the reference [13], combined predicates of

different SQL conditions are formulated into boolean variables.

The truth table of the combined predicates is parameterized into

a variable called TT, as a part of task messages and stored in

checker. The Fig. 6(b) shows how the checker determines whether a

tuple meets the SQL conditions in one clock according to TT. Each

attribute related to SQL conditions is filtered by a operator unit.

Each operator unit has one boolean result that indicates whether

data meets an atomic SQL condition. The results corresponding to

n atomic conditions compose a 2n-bit boolean TT in the checker.

B. Filtering Scheme for TextFile

We present the implementation for TextFile storage format as

shown in Fig.7. TextFile is row-based storage format as shown in

Fig.8(a). Each tuple is stored contiguously and is distinguished by

a tuple terminator, and the attributes in each tuple are distinguished

by attribute separators. The length of each data is variable.

In the implementation of filter units for TextFile, data passes in

stream. Generally, the width of a tuple is wider than that of the PCIe

data bus. Therefore, it is impossible to process one entire tuple in a

clock cycle. Thus, one tuple is divided into several bus-width data,

which contains one or more attributes. In data projection, the tuples

are recognized by the tuple terminator like ‘/n’ while the attributes

are recognized by the attribute separator like ‘/t’. The attributes

related to the SQL conditions are sent to the corresponding operator

units for comparison, while the attributes unrelated to the SQL

conditions are stored in the storage unit.

The operators and target values in SQL task messages are

assigned to the corresponding operator units. Operator units support

various operators like ==, ! =, <, >, <=, >=. Each operator unit
is responsible for each attribute, whose output indicates whether

the attribute meets the corresponding atomic condition. Once the

checker receives the outputs of all operator units and determines

whether the tuple meets the conbined SQL conditions, the storage

unit will save or discard the tuple into the result FIFO.

C. Filtering Scheme for RCFile

The Fig.9 shows the implementation for RCFile storage format.

RCFile is similar to column-based storage format as shown in

Fig.8(b). A file in RCFile format consists of data identification

information, metadata information, and data segments. The same

attribute is consequent and length of each attribute is stored in

metadata information.

Name Age Gender Grade

Zhao 11 F 95

Qian 12 M 98

Sun 14 M 86

Li 13 F 93

(a) Format of TextFile

Zhao Qian Sun Li

11 12 14 13

F M M F

95 86 93

header

L 1 … L 2 ...

… L 3 ... L 4 …

98

(b) Format of RCFile

Fig. 8: Storage format

558

8B-3

TABLE I: SQL QUERIES
Q1 SELECT ∗ FROM test WHERE L PARTKEY > 0 AND L SUPPKEY > 0 AND L LINENUMBER > 0 AND L TAX = 0 GROUP BY L SUPPKEY
Q2 SELECT ∗ FROM test WHERE L PARTKEY > 0 AND L SUPPKEY > 5000 AND L LINENUMBER > 0 AND L TAX >= 0 GROUP BY L SUPPKEY
Q3 SELECT ∗ FROM test WHERE L PARTKEY > 0 AND L SUPPKEY > 0 AND L LINENUMBER > 0 AND L TAX > 0 GROUP BY L SUPPKEY
Q4 SELECT ∗ FROM test WHERE USER IP =′ 192.168.0.1′ AND PORT > 31600 AND SEND BY TES >= 0 AND CDN >= 0 GROUP BY CDN
Q5 SELECT ∗ FROM test WHERE USER IP =′ 192.168.0.1′ AND PORT = 31600 AND SEND BY TES > 10000 AND CDN >= 0 GROUP BY CDN
Q6 SELECT ∗ FROM test WHERE USER IP =′ 192.168.0.1′ AND PORT <= 31600 AND SEND BY TES > 0 AND CDN >= 0 GROUP BY CDN

Data of each column passes in stream through the filter units for

RCFile and data projection is simpler than that of TextFile filter

units. Data projection can not only decompose the data segments of

the file but also the length information in the metadata information

of RCFile. Unlike the filter units for TextFile, RCFile filter units can

obtain the total length of each columns in metadata information that

indicates different columns. Therefore, the corresponding attributes

can be continuously sent and stored to the corresponding FIFOs.

A FIFO delivers one-bus-width data to a separator, which contains

several attributes of a continuous storage column. In separator,

each attribute is taken out from one-bus-width columns. Data is

processed completely in parallel. The designs of operator units,

storage units and the checker for RCFile filter units are the same

as those for TextFile filter units. All the filtered data are stored in

Result FIFO.

Data Projection

Data stream

...
...

......

Ck,bus

. Separator k

Ck

Ck+1,*

Ck+1,bus

Separator k+1

Ck+1

Cn,bus

Separator n

Storage

Unit n-k

Cn

C2,bus

C2

Separator 1

Operator

Unit 1

C1,bus

C1 Lk Lk+1 LnL2L1

.

Ck b CCCk

FIFO k .

bk

FIFO k+1 ...

C b

FIFO n

b

FIFO 2

CCCC C

FIFO 1

0

Ck+1,* Cn,*

10

.Separator 2

1

1

Operator

Unit 2

0

Operator

Unit k

Result FIFO

Ck,*C2,*C1,*

Checker

Storage

Unit k+1

task message

...

...
T2T1 Tk

T1 T2 Tk

O1 O2 Ok

=> <
Target value[0:k]

Operator[0:k]

TT

Ck,*C2,*C1,*

Location[0:k]

Cn-k,*...

...

......

......

Fig. 9: Processing of RCFile

V. EXPERIMENT EVALUATION

We conducted extensive experiments to evaluate the efficiency

of our NIC-QF design. We used a Ubuntu desktop machine with

Intel i5 CPU at 3.2 GHz to simulate a storage node. Our NIC-

QF is implemented on XILINX XC7K325TFFG900I FPGA board

with 326080 Logic Cells, 407600 FF and 16020Kb BRAM, which

supports PCIe 2.0 *4 interface and 2G DDR2.

For evaluation, we used TPC-H [14] benchmark whose table has

16 columns and the log data set from Tencent company whose table

has 49 columns to test our design. We conducted 6 SQL queries to

evaluate our design as representative examples, shown in TABLE.I.

The Q1, Q2 and Q3 queries are for TPC-H benchmark and Q4, Q5

and Q6 queries are aimed at Tencent data set, which request nearly

10%, 50% and 90% of test data as result sets respectively.

A. Filtering Performance Comparison

In this experiment, we deploy one Filter Unit(FU) on our NIC-

QF to evaluate the filtering performance by using Q2 and Q5

on TPC-H benchmark and Tencent data set in TextFile format

and RCFile format respectively. For the filtering performance

comparison in TextFile storage format, we chose MySQL [15] as

the candidate. And we chose Hive [16] and Presto [17] as the

candidates for the comparison of RCFile storage format.

2 4 6 8 10
0

40

80

120

160

200

T
im

e
O

v
er

h
ea

d
(s

)

Data Size(GB)

MySQL

FU

(a) TPC-H benchmark

2 4 6 8 10
0

40

80

120

160

200

T
im

e
O

v
er

h
ea

d
(s

)

Data Size(GB)

MySQL

FU

(b) Tencent data set

Fig. 10: Filtering performance comparison in TextFile format

1) TextFile: We test the performance of FU on the NIC-QF

for TextFile format. Time overheads of our design are shown in

Fig.10, using TPC-H benchmark and Tencent data set respectively.

The time overhead of our approach includes PCIe transmission

and data filtering whereas that of the MySQL is only data filtering.

According to Fig.10(a) using TPC-H benchmark, for the case of

2 GB data, the time overhead is 41.49% that of MySQL. But for

the case of 10 GB data, the time overhead is only 48.39% of the

MySQL. Our approach can reduce 46.23% time overhead of data

transmission on average. For the experimental results of Tencent

data set shown in Fig.10(b), the minimum time overhead is 21.62%

that of MySQL and the maximum time overhead is only 29.99%

of MySQL. Our approach can reduce 75.25% time overhead of

data transmission on average. According to the observations, we

can conclude that the FU on our NIC-QF can effectively reduce

the time overheads of filtering data in TextFile format.

2) RCFile: We make efforts to evaluate the performance of FU
for RCFile format. Time overheads of three approaches are shown

in Fig.11, using TPC-H benchmark and Tencent data set. According

to Fig.11(a), we can see that the time overheads are linearly to

the amount of data for TPC-H benchmark. For the case of 6 GB

data, the time overhead is 24.53% of Presto and 11.91% of Hive.

Our approach can reduce 73.61% and 88.59% time overhead on

average for Presto and Hive respectively. The experimental results

of Tencent data set shown in Fig.11(b). For the case of 6 GB

data, the time overhead is 42.03% of the Presto and is 38.24% of

Hive. Compared with Presto and Hive, our approach can reduce

58.69% and 63.92% time overhead of data filtering respectively on

average. Although the transmission between CPU and FPGA results

in certain time overheads, the results suggest that our design can

effectively reduce the time overheads compared with Presto and

Hive.

B. Impact of Filter Unit Number

We analyzed the resource occupancies of our NIC-QF design

with different filter units for different formats on the FPGA board

and how many filter units can be optimal. From TABLE.II, besides

the resources of the PCIe and NIC communication modules on

board, there are still many remaining resources, and the resource

2 4 6 8 10
0

15

30

45

60

75

Ti
m
e
O
ve
rh
ea
d(
s)

Data Size(GB)

FU
Presto
Hive

(a) TPC-H benchmark

2 4 6 8 10
0

5

10

15

20

Ti
m
e
O
ve
rh
ea
d(
s)

Data Size(GB)

FU
Presto
Hive

(b) Tencent data set

Fig. 11: Filtering performance comparison in RCFile format

559

8B-3

TABLE II: Resource occupancy of each module on FPGA

RESOURCE LUT FF BRAM BUFG IO
Total on board 203800 407600 445 32 500
PCIe core 20313 22870 59 6 5
NIC Communication 3215 3397 6 4 23
TextFile 470 262 15 1 -
RCFile 639 840 4 1 -

usage of each filter unit is very small whatever RCFile or TextFile.

We also clearly find that the number of filter units is actually

restricted by the on-board resource BRAM. In order to maximize

resource utilization, we conduct a series of experiments at different

data size(i.e. 2 GB, 4 GB, 6 GB, 8 GB and 10 GB) to analyze

the relationship between the filtering performance and resource

usage, shown in Fig. 12. Since the filtering speed of one TextFile

filter unit is much lower than the transmission speed of PCIe, it is

possible to increase the efficiency by adding the number of filter

units. However, the filtering speed of the RCFile filter unit is much

higher than that of PCIe, so one filter unit has already reached the

maximum speed.

As shown in the Fig.12, time overheads decrease with the

increasing number of filter units and tend to be stable at a certain

amount of filter units on both TPC-H benchmark or Tencent data

set. The number of filter unit is determined by the speeds of single

filter unit and PCIe. From the observations, we find that the filtering

speed of the TPC-H benchmark is 0.096 GB/s, and that of Tencent

data set is 0.297 GB/s, while the transmission speed of PCIe 2.0

is nealy 1.7 GB/s. It can be seen from Fig.12(a) and Fig.12(b) that

data filtering of TPC-H benchmark basically reaches the bottleneck

when the number of filter units reaches 10, whereas the bottleneck

occurs when the number is 6 for Tencent data set. Therefore, we can

conclude that more filter units can help to accelerate the filtering.

If a faster PCIe interface is used, more filtering units can be added

to get better performance.

C. Overall Performance Comparison

In this section, we conduct a group experiments to evaluate the

overall performance of the proposed design. We conduct Hadoop

Distributed File System (HDFS) [18] with version of 2.7.4 as a

storage node and Hive as a computing node. For comparison, we

take the traditional NIC as the candidate. In our design, the overall

time overhead consists of the filtering time of FU on our NIC-QF

(i.e. WHERE clause), the network transmission time of the filtered
data, and the filtering execution time of the subsequent complex

queries(i.e. GROUP BY clause) on computing nodes. While the

time overhead of original method includes the network transmission

time of original data and the filtering execution time of original

data(i.e. complete SQL) on the computing nodes. We test the

impact of different data sizes on the overall performance in both

TextFile and RCFile formats.

1) TextFile: We deploy 10 filter units for TPC-H benchmark

in TestFile format to test overall efficiency using Q2 and Q5 in

TABLE.I, shown in Fig.13. Meantime, the overall performances

are compared using 6 different SQLs of TABLE.I in Fig.14. For

1 2 5 10 15 20
0

25

50

75

100

125

T
im

e
O

v
er

h
ea

d
(s

)

Number of FU

2G

5G

10G

15G

20G

(a) TPC-H benchmark

1 2 4 6 8 10
0

10

20

30

40

50

T
im

e
O

v
er

h
ea

d
(s

)

Number of FU

2G

4G

6G

8G

10G

(b) Tencent data set

Fig. 12: Performance comparison under different Number of FU

2 4 6 8 10
0

100

200

300

400

500

600

T
im

e
O

v
er

h
ea

d
(s

)

Data Size(GB)

Filtering on computing nodes with NIC

Transmission with NIC

Filtering on computing nodes with NIC-QF

Transmission with NIC-QF

Filtering on 10 FUs of NIC-QF

(a) TPC-H benchmark

2 4 6 8 10
0

100

200

300

400

500

600

T
im

e
O

v
er

h
ea

d
(s

)

Data Size(GB)

Filtering on computing nodes with NIC

Transmission with NIC

Filtering on computing nodes with NIC-QF

Transmission with NIC-QF

Filtering on 6 FUs of NIC-QF

(b) Tencent data set

Fig. 13: Overall time overhead comparison in TextFile format

TPC-H data set shown in Fig.13(a), in the case of 2 GB data, the

overall performance of our design is 53.01% of that of Hadoop

with traditional NIC, while the overall performance of our design

has only 39.94% of that of Hadoop with traditional NIC for

the case of 10 GB data. Specifically, filtering time on NIC-QF

accounts for averagely 7.27% of the total time overheads within our

design. Comparing with Hadoop with traditional NIC, our design

can greatly reduce the transmission time and computing time in

computing nodes. For Tencent benchmark in TestFile format shown

in Fig.13(b), we deploy 6 filter units on NIC-QF. We observe

that filtering time on computing nodes takes the most overheads

on the original Hadoop. In our design the FPGA filter only

accounts for 5.78% of the total time overheads, which helps reduce

filtering time on computing nodes. The minimum overall time

overhead is 37.68% of that of Hadoop with traditional NIC. The

maximum overall time overhead is only 45.03% of that of Hadoop

with traditional NIC. Our approach can reduce 58.76% overall

time overhead on average. Therefore, our design can efficiently

accelerate the speed of TextFile data query processing of Big Data

systems.

From Fig.14, the overall performances of the 6 SQLs in TABLE

I are almost the same in original Hadoop with traditional NIC

whereas the overall performances of the 6 SQLs are improved

by our NIC-QF. For TPC-H data set using Q1, Q2 and Q3, our

approach can reduce 87.30%, 56.12% and 26.17% overall time

overhead on average, shown in Fig.14(a). For Tencent data set

using Q4, Q5 and Q6 in Fig.14(b), the overall time overheads of

our design are 11.27%, 41.24% and 72.64% of that of original

Hadoop with traditional NIC, respectively.

2) RCFile: We only deploy 1 filter unit on FPGA board using

Q2 and Q5 firstly. Network transmission accounts for the most

time overheads in original Hadoop, as shown in Fig.15. Numerical

results on TPC-H benchmark are shown in Fig.15(a). Specifically,

in the case of 2 GB and 10 GB data, the overall performances of our

design are 59.54% and 59.68% of that of Hadoop with traditional

2 4 6 8 10
0

200

400

600

T
im

e
O

v
er

h
ea

d
(s

)

Data Size (GB)

Q1 in Hadoop with NIC-QF

Q1 in Hadoop with NIC

Q2 in Hadoop with NIC-QF

Q2 in Hadoop with NIC

Q3 in Hadoop with NIC-QF

Q3 in Hadoop with NIC

(a) TPC-H benchmark

2 4 6 8 10
0

200

400

600

T
im

e
O

v
er

h
ea

d
(s

)

Data Size (GB)

Q4 in Hadoop with NIC-QF

Q4 in Hadoop with NIC

Q5 in Hadoop with NIC-QF

Q5 in Hadoop with NIC

Q6 in Hadoop with NIC-QF

Q6 in Hadoop with NIC

(b) Tencent data set

Fig. 14: Overall time overhead comparison in TextFile format with
different SQL queries

560

8B-3

2 4 6 8 10
0

50

100

150

200

250

300

T
im

e
O

v
er

h
ea

d
(s

)

Data Size(GB)

Filtering on computing nodes with NIC

Transmission with NIC

Filtering on computing nodes with NIC-QF

Transmission with NIC-QF

Filtering on FU of NIC-QF

(a) TPC-H benchmark

2 4 6 8 10
0

35

70

105

140

175

210

T
im

e
O

v
er

h
ea

d
(s

)

Data Size(GB)

Filtering on computing nodes with NIC

Transmission with NIC

Filtering on computing nodes with NIC-QF

Transmission with NIC-QF

Filtering on FU of NIC-QF

(b) Tencent data set

Fig. 15: Overall time overhead comparison in RCFile format

NIC. We can observe that the improvements of our approach can

reduce 41.96% of that of traditional NIC on average. The results on

Tencent benchmark are shown in Fig.15(b). The minimum overall

time overhead is 57.13% of that of Hadoop with traditional NIC.

The maximum time overhead is only 58.37% of that of Hadoop

with traditional NIC. Our approach can reduce 42.28% overall

time overhead on average. According to the observations, we can

conclude our NIC-QF can accelerate the data filtering in RCFile

format of Big Data systems.

We also use 6 different SQLs to test overall performance in

Fig.16. For TPC-H data set using Q1, Q2 and Q3 in Fig.16(a),

the overall time overheads of our design are 16.34%, 55.39%

and 86.39% of that of original Hadoop with traditional NIC,

respectively. For Tencent data set using Q4, Q5 and Q6, our

approach can reduce 87.89%, 50.45% and 22.58% overall time

overheads on average, shown in Fig.16(b). Therefore, the higher the

proportion of filtered data is, the better performance improvements

are obtained by our design.

2 4 6 8 10
0

100

200

300

T
im

e
O

v
er

h
ea

d
(s

)

Data Size (GB)

Q1 in Hadoop with NIC-QF

Q1 in Hadoop with NIC

Q2 in Hadoop with NIC-QF

Q2 in Hadoop with NIC

Q3 in Hadoop with NIC-QF

Q3 in Hadoop with NIC

(a) TPC-H benchmark

2 4 6 8 10
0

100

200

T
im

e
O

v
er

h
ea

d
(s

)

Data Size (GB)

Q4 in Hadoop with NIC-QF

Q4 in Hadoop with NIC

Q5 in Hadoop with NIC-QF

Q5 in Hadoop with NIC

Q6 in Hadoop with NIC-QF

Q6 in Hadoop with NIC

(b) Tencent data set

Fig. 16: Overall time overhead comparison in RCFile format with
different SQL queries

Based on these experiments, we conclude that the design of

our NIC-QF can efficiently reduce communication overhead and

filtering workload of computing nodes to accelerate data query

processing in Big Data systems.

VI. SUMMARY AND CONCLUSIONS

In this paper, we have proposed an FPGA-based NIC-QF design

on storage nodes to improve the performance of storage and com-

puting separated big data systems. The main idea is to add a query

filter in the traditional NIC, which can lower the communication

overheads and the workloads of computing nodes. The query

filter can support the general SQL queries, inside which several

filter units perform multiple SQL tasks in parallel. Two filter unit

schemes are implemented to support TextFile and RCFile storage

formats. Based on TPC-H benchmark and Tencent data set, we

evaluated our design by extensive experiments. The experimental

results demonstrate the efficiency of our approach, which can

significant beat the traditional method. At present, our experiments

are based on PCIe 2.0 transmission. If using PCIe 3.0 transmission,

the performance will be further improved. Our approach is more

suitable for filtering a large amount of data. For future work, we

will support more filter unit schemes for different storage formats,

besides TextFile and RCFile.

ACKNOWLEDGEMENTS

This work was partly supported by the Research Fund of

National Key Laboratory of Computer Architecture under Grant

No.CARCH201811, the Fund of Science and Technology Depart-

ment of Sichuan Province under Grant No. 2018CC0136, and the

Fundamental Research Funds for the Central Universities of China

under Grant No. ZYGX2018J077.

REFERENCES

[1] “Tencent:cloud file storage.” [Online]. Available: http-
s://cloud.tencent.com/product/cfs

[2] IBM, “Ibm netezza data warehouse appliances,” 2014. [Online]. Available:
http://www01.ibm.com/software/data/netezza/.

[3] Y. He, R. Lee, Y. Huai, Z. Shao, N. Jain, X. Zhang, and Z. Xu, “Rcfile: A fast
and space-efficient data placement structure in mapreduce-based warehouse
systems,” 2011.

[4] D. Lomet, “Microsoft sql server’s integrated database approach
for modern applications and hardware,” Proc. VLDB Endow.,
vol. 6, no. 11, pp. 1178–1179, Aug. 2013. [Online]. Available:
http://dx.doi.org/10.14778/2536222.2536248

[5] L. Woods, Z. István, and G. Alonso, “Ibex: An intelligent storage
engine with support for advanced sql offloading,” Proc. VLDB
Endow., vol. 7, no. 11, pp. 963–974, Jul. 2014. [Online]. Available:
http://dx.doi.org/10.14778/2732967.2732972

[6] D. Sidler, Z. István, M. Owaida, and G. Alonso, “Accelerating pattern
matching queries in hybrid cpu-fpga architectures,” in Proceedings of the
2017 ACM International Conference on Management of Data, ser. SIGMOD
’17. New York, NY, USA: ACM, 2017, pp. 403–415. [Online]. Available:
http://doi.acm.org/10.1145/3035918.3035954

[7] D. Sidler, Z. Istvan, M. Owaida, K. Kara, and G. Alonso, “doppiodb:
A hardware accelerated database,” in Proceedings of the 2017 ACM
International Conference on Management of Data, ser. SIGMOD ’17.
New York, NY, USA: ACM, 2017, pp. 1659–1662. [Online]. Available:
http://doi.acm.org/10.1145/3035918.3058746

[8] A. Caulfield, E. Chung, A. Putnam, H. Angepat, J. Fowers, S. Heil, J.-Y.
Kim, D. Lo, M. Papamichael, and T. Massengill, “A cloud-scale acceleration
architecture,” in Ieee/acm International Symposium on Microarchitecture,
2016, pp. 1–1.

[9] S. Werner, D. Heinrich, M. Stelzner, S. Groppe, R. Backasch, and
T. Pionteck, “Parallel and pipelined filter operator for hardware-accelerated
operator graphs in semantic web databases,” in Proceedings of the 2014
IEEE International Conference on Computer and Information Technology,
ser. CIT ’14. Washington, DC, USA: IEEE Computer Society, 2014, pp.
539–546. [Online]. Available: https://doi.org/10.1109/CIT.2014.162

[10] J. Teubner, L. Woods, and C. Nie, “Skeleton automata for fpgas:
Reconfiguring without reconstructing,” in Proceedings of the 2012 ACM
SIGMOD International Conference on Management of Data, ser. SIGMOD
’12. New York, NY, USA: ACM, 2012, pp. 229–240. [Online]. Available:
http://doi.acm.org/10.1145/2213836.2213863

[11] D. Ziener, F. Bauer, A. Becher, C. Dennl, K. Meyer-Wegener,
U. Schürfeld, J. Teich, J.-S. Vogt, and H. Weber, “Fpga-based dynamically
reconfigurable sql query processing,” ACM Trans. Reconfigurable Technol.
Syst., vol. 9, no. 4, pp. 25:1–25:24, Aug. 2016. [Online]. Available:
http://doi.acm.org/10.1145/2845087

[12] D. Koch, J. Tørresen, C. Beckhoff, D. Ziener, C. Dennl, V. Breuer, J. Teich,
M. Feilen, and W. Stechele, “Partial reconfiguration on fpgas in practice ł
tools and applications,” ARCS 2012, pp. 1–12, 2012.

[13] C. Dennl, D. Ziener, and J. Teich, “On-the-fly composition of fpga-based
sql query accelerators using a partially reconfigurable module library,” in
Proceedings of the 2012 IEEE 20th International Symposium on Field-
Programmable Custom Computing Machines, ser. FCCM ’12. Washington,
DC, USA: IEEE Computer Society, 2012, pp. 45–52. [Online]. Available:
https://doi.org/10.1109/FCCM.2012.18

[14] “Tpc-h:benchmark.” [Online]. Available:
http://www.tpc.org/tpc documents current versions

[15] “Oracle mysql.” [Online]. Available: https://www.mysql.com/
[16] “Apache hive.” [Online]. Available: https://hive.apache.org/
[17] “Facebook presto.” [Online]. Available: https://prestodb.github.io
[18] “Apache hadoop.” [Online]. Available: http://hadoop.apache.org

561

8B-3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

