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Abstract– In modulo scheduling, the number of clock cycles
between successive inputs (the initiation interval, II) is tradi-
tionally an integer, but in this paper, we explore the benefits
of allowing it to be a rational number. This rational II can
be interpreted as the average number of clock cycles between
successive inputs. As the minimum rational II can be less than
the minimum integer II, this translates to higher throughput.
We formulate rational-II modulo scheduling as an integer linear
programming (ILP) problem that is able to find latency-optimal
schedules for a fixed rational II. We have applied our scheduler
to a standard benchmark of hardware designs, and our results
demonstrate a significant speedup compared to state-of-the-art
integer-II and rational-II formulations.

I. INTRODUCTION

Scheduling, the task of mapping operations to clock cycles

while respecting resource constraints and maximising through-

put, is an important stage in hardware synthesis. Particularly

high throughput can be achieved by interleaving schedules of

successive samples, as obtained using modulo scheduling [1],
[2], [3]. In modulo scheduling, the computation’s latency can

exceed the initiation interval (II), which is the number of clock
cycles between successive inputs.

In traditional modulo scheduling, the II is always an inte-

ger [2]. In this work, we explore the consequences of allowing

rational IIs, such as 3
2 . The idea of a rational II is not new

– it has been proposed by Fimmel and Müller in the domain

of VLIW architectures [4]. Our work lifts several restrictions

that limit the applicability of the Fimmel–Müller approach

(Section III) and is also the first to explore rational IIs in

the context of hardware design. The rough idea is to allow

the number of clock cycles between successive inputs to vary,

then to reinterpret the II as the average of these numbers. For
example, in a situation where the minimum integer II is 2 (i.e.,
a new sample can be inserted every two clock cycles) there

might be another solution where the II alternates between 1

and 2. This means that two samples can begin processing every

three cycles, which can be interpreted as a rational II of 3
2 .

A hardware implementation using this smaller, rational

II would show significant speedup, since throughput is the

reciprocal of the II. Additionally, recent work has shown

that only a very small and sparsely distributed number of

hardware/throughput trade offs are possible using integer-II

modulo scheduling [5]. Adding implementations that can only

be found using rational-II modulo scheduling provides more

fine-grained control over the design space.

In this paper, we present a novel integer linear programming

(ILP) formulation of rational-II modulo scheduling, signifi-

cantly improving on the state-of-the-art (Section IV). We show

that existing approaches fail to find any rational II in most

cases, whereas our algorithm can identify schedules with the
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Fig. 1. Example data-flow graph.

minimal rational II, leading to a functional unit utilisation of

close to 100%.

We evaluate the performance of our approach compared

to state-of-the-art modulo schedulers (Section V). Across a

standard benchmark set, we found that 35% of the scheduling

problems stand to benefit from a rational II, and of these,

the average speedup is 1.26×. Post-routing synthesis results
suggest that the additional control logic to support rational IIs

is negligible.

II. MOTIVATING EXAMPLE

Consider the example data-flow graph (DFG) shown in

Figure 1. It consists of five vertices of the same resource type

r, which has a latency of one cycle. The edge from o3 to o0
is labelled with a dependence distance of two, to indicate a
recurrence: operation o0 on sample n depends on the result
of operation o3 on sample n − 2. The other edges implicitly
have a dependence distance of zero.

The maximum throughput achieved using modulo schedul-

ing depends both on recurrences and on resource constraints.

This example has one recurrence where the dependence dis-

tance is two and the latency is three cycles, so the II must

not be less than 3
2 . This is called the recurrence-constrained

minimum II [2], written II⊥rec. In general, we have

II⊥rec = max
i∈ recurrences

(latencyi/distancei) (1)

where latencyi and distancei give the latency and distance of

the ith recurrence.
Moreover, because there are five r-operations, the II must

also not be less than 5/FUs(r), where FUs(r) is the number
of functional units that can execute operations of type r. This
is called the resource-constrained minimum II, written II⊥res.
In general, we have

II⊥res = max
r∈ resources (#r/FUs(r)) (2)

where #r is the number of type r operations in the DFG.
The ideal performance of our proposed approach on Fig-

ure 1 compared to optimal integer-II solutions, over all

possible resource allocations, is shown in Figure 2. In all

cases except FUs(r) = 1, our proposed approach leads
to a significantly improved throughput, reaching 33% when

FUs(r) ∈ {4, 5}.
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Fig. 2. Performance comparison for the DFG of Fig. 1.

To be more concrete, Table I shows one possible outcome of

scheduling our example graph when FUs(r) = 3, using both
integer and rational IIs. In the integer-II case, one sample is

inserted every two clock cycles. In the rational-II case, three

samples are inserted every five clock cycles. This results in

the integer-II schedule requiring 20 clock cycles to process 9

samples, but the rational-II schedule requiring only 18. Note

that in the integer-II schedule, FU3 is idle half of the time,

whereas the rational-II schedule keeps all functional units

100% utilised. It is also interesting that in the rational-II

schedule, all operations on one sample can be performed by

the same FU (see the thick borders in Table I), but note that

this is only one of many possible resource bindings.

III. RELATED WORK

Modulo scheduling is a multi-objective optimization prob-

lem, e.g., minimizing both II and latency, that has been formu-

lated as an ILP problem [1], [3]. Optimal modulo scheduling

can be very time-consuming, so heuristic algorithms have

also been proposed, often based on systems of difference

constraints [2], [6].
Fimmel and Müller have investigated the benefits of using

rational IIs in modulo scheduling for VLIW architectures [4].

However, their formulation has some drawbacks that we

address in this paper. First, their formulation only applies

when II⊥res < II⊥rec, an assumption that actually rarely holds
in our benchmarks, thus restricting the applicability of their

approach. Second, their formulation determines a dynamic

schedule, where each operation’s start time is not determined

until runtime, and thus incurs a significant hardware overhead.
Rational-II scheduling somewhat resembles partially un-

rolling the DFG then applying ordinary integer-II scheduling.

However, that approach is less effective than ours because it is

not always applicable when II⊥rec < II
⊥
res, it requires the user to

determine the unrolling factor manually, and the ILP problem

tends to be harder to solve, which means fewer solutions are

found. See Section V for an experimental comparison.

IV. RATIONAL-II SCHEDULING

We now describe our approach for rational-II modulo

scheduling under resource constraints using ILP. All constants

and variables used are listed in Table II.

TABLE I
INTEGER-II AND RATIONAL-II SCHEDULES FOR THE EXAMPLE GRAPH
WHEN FUS(r) = 3. THE TABLES ASSIGN EACH OPERATION (FOR THE
FIRST 9 SAMPLES) TO A CLOCK CYCLE AND A FUNCTIONAL UNIT (FU).
WE WRITE n:oi FOR OPERATION oi ON SAMPLE n. THE THICK BORDERS

SHOW THE SCHEDULE FOR THE FOURTH SAMPLE. THE � SYMBOL
INDICATES A CLOCK CYCLE THAT ACCEPTS A NEW SAMPLE; NOTE THE
NON-UNIFORM SAMPLE-INSERTION RATE IN THE RATIONAL-II CASE.

FU1 FU2 FU3

0:o0 0:o1
0:o2
1:o0 1:o1
1:o2 0:o3
2:o0 2:o1 0:o4
2:o2 1:o3
3:o0 3:o1 1:o4
3:o2 2:o3
4:o0 4:o1 2:o4
4:o2 3:o3
5:o0 5:o1 3:o4
5:o2 4:o3
6:o0 6:o1 4:o4
6:o2 5:o3
7:o0 7:o1 5:o4
7:o2 6:o3
8:o0 8:o1 6:o4
8:o2 7:o3

7:o4
8:o3

8:o4

(a) Integer II = 2
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FU1 FU2 FU3

0:o1
0:o0
0:o2 1:o1
0:o3 1:o0
0:o4 1:o2 2:o1
3:o1 1:o3 2:o0
3:o0 1:o4 2:o2
3:o2 4:o1 2:o3
3:o3 4:o0 2:o4
3:o4 4:o2 5:o1
6:o1 4:o3 5:o0
6:o0 4:o4 5:o2
6:o2 7:o1 5:o3
6:o3 7:o0 5:o4
6:o4 7:o2 8:o1

7:o3 8:o0
7:o4 8:o2

8:o3
8:o4

�

�

�

�

�

�

�

�

�

(b) Rational II = 5
3
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A. Integer and Rational Minimum II

In state-of-the-art modulo scheduling, the recurrence-

constrained minimum II and the resource-constrained mini-

mum II, as defined in (1) and (2), provide a lower bound for

the II. The integer minimum II is defined as

II⊥
N
= max(�II⊥res�, �II⊥rec�) . (3)

The rational minimum II, on the other hand, avoids the ceiling
functions and can be determined as

II⊥
Q
= max(II⊥res, II

⊥
rec) . (4)

It follows that II⊥
N
= �II⊥

Q
�, and hence that rational-II sched-

ules will always attain a throughput that is at least as good as

integer-II schedules.

When II⊥
Q
is already an integer, we have II⊥

Q
= II⊥

N
, so

switching to rational-II scheduling cannot improve throughput

(speedup = 1). This situation can be identified quickly before
scheduling, and standard integer-II algorithms can be applied.

On the other hand, the maximum speedup is obtained when

II⊥
Q
= 1 + ε for small, positive ε. In this case, the speedup is

�1+ε�
1+ε , which tends towards 2. In summary, we have

1 ≤ speedup < 2 . (5)

In our experiments (Section V), we observe that potential

speedups are widely spread from 1 up to 1.98.

569

8C-1



TABLE II
CONSTANTS (TOP) AND VARIABLES (BOTTOM) FOR

RESOURCE-CONSTRAINED RATIONAL-II MODULO SCHEDULING

Constant / Variable Meaning

O Set of operations in the DFG

E Set of edges in the DFG

dij ∈ N≥0 Dependence distance on edge oi → oj

R
Set of resource-constrained operation types (e.g.,
add, mult)

Ǒ ⊆ O Set of resource-constrained operations

Ǒr ⊆ Ǒ
Set of resource-constrained operations of type
r ∈ R, i.e.,

⋃
r∈R Ǒr = Ǒ

FUs(r) ∈ N≥1 No. of allowed hardware instances of resource
type r ∈ R

Di ∈ N≥0 Latency of operation oi ∈ O

M ∈ N≥1
No. of cycles before the rational II modulo
schedule repeats

S ∈ N≥1 No. of samples inserted every M cycles

0 ≤ s ≤ S − 1 Range of sample indices

IIQ = M
S

Rational initiation interval

L ∈ N≥0 Maximal latency constraint

ti,s ∈ N≥0 Start time of operation oi on sample s

tv Virtual node

bi,s,τ True iff τ is the start time of operation oi ∈ Ǒ
on sample s

〈II0 ... IIS−1〉 Latency sequence

Is ∈ N≥0 Insertion time of sample s

B. Prerequisites

We consider the input to be a DFG (O,E) where operations
oi ∈ O are connected by directed edges (oi, oj) ∈ E that

have a latency Di. We write Ǒr for the set of operations that

require resource type r (adder, multiplier, etc.). The number of
available functional units of type r is FUs(r). As in state-of-
the-art integer-II modulo scheduling formulations, we consider

the II to be a constant input to the ILP problem, as calculated

using (4). We write II in the form II = M
S , where M is the

number of cycles before the insertion sequence repeats, and

S is the number of samples inserted every M cycles.

Each operation oi gets assigned S different clock cycles,

ti,0, . . . , ti,S−1, where ti,s holds the clock cycle in which
operation oi is operating on sample s. Similar to Eichenberger
et al. [1], the binary variable bi,s,τ models whether operation
oi of sample s is scheduled in clock cycle τ . We assume that
the maximum allowed latency L is provided by the user. It
follows that it is sufficient to build a schedule based only on

the first P clock cycles, where P = M+L. This is because we
can assume, without loss of generality, that the sample with

index 0 will arrive at clock cycle 0, hence that the sample
with index S− 1 will arrive before clock cycle M , and hence

that the sample with index S − 1 will complete before clock
cycle M + L.

C. Sequential Sample Insertion

We assign every sample s an insertion time Is modulo M .

For our motivating example in Table I where II = 5
3 , we

would have I0 = 0, I1 = 2, and I2 = 4. This means that for

all n ≥ 0, we have sample 3n inserted at cycle 5n, sample
3n + 1 inserted at cycle 5n + 2, and sample 3n + 2 inserted
at cycle 5n+ 4. We fix the first insertion time to 0.
The repeating sequence of insertions lets us calculate the

latency in clock cycles between successive samples. For this,

we adopt the concept of latency sequences [7], which take the

form

〈II0 II1 ... IIS−1〉 (6)

where

IIs =

{
Is+1 − Is if s < S − 1

M − Is if s = S − 1
. (7)

The sample insertion times from the motivating example

lead to a latency sequence of 〈2 2 1〉. This yields a modulo-
5 schedule where new samples will be inserted in cycles

{0, 2, 4, 5, 7, ...}. Note that integer IIs correspond to latency
sequences of length 1, such as 〈3〉.

D. Causality

The introduction of latency sequences requires us to revisit

the causality constraint used in integer-II scheduling. A typical

causality constraint [1], [3] is

ti +Di − di,j · II ≤ tj ∀(oi → oj) ∈ E (8)

which expresses that the start time of operation oj (which is
given by tj) must not precede the end time of operation oi
from di,j samples ago (which is given by ti + Di − di,j ·
II). Here, the dependence distance (algorithmic delay) di,j is
multiplied by II because this is the number of cycles between

successive samples.

As an example, consider the integer-II schedule from Ta-

ble I(a), and the edge from o3 to o0 in Figure 1. We have
t3 = 3, t0 = 0, D3 = 1, d3,0 = 2, and II = 2, so (8) holds in
this instance.

However, the introduction of latency sequences means that

the number of cycles between successive samples can vary, de-

pending on the sample index, s. Assuming a latency sequence
〈II0 II1 ... IIS−1〉, the number of cycles between sample s and
sample s− d can be calculated as

Δs(d) =
d∑

n=1

II(s−n) mod S . (9)

Starting at sample s, the calculation steps backwards through
the latency sequence, adding up the last d latencies. Thus, the
causality constraint becomes

ti,s +Di −Δs(di,j) ≤ tj,s ∀(oi, oj) ∈ E, ∀s < S . (10)

As an example, consider the rational-II schedule from

Table I(b), and the edge from o3 to o0. When s = 0, we
have t3,s = 3, t0,s = 1, D3 = 1, d3,0 = 2, and Δs(2) = 3,
so (10) holds in this instance. It also holds for s = 1 and
s = 2. However, with an alternative latency sequence 〈1 1 3〉,
obtained by shifting the FU2 column in Table I(b) up by one

cycle and the FU3 column up by two cycles, we would get

Δs(2) = 2, and hence (10) would be violated – the third
sample is being inserted too soon.
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E. ILP Formulation

Since the II is an input to the ILP, the objective of the ILP is

to minimize the latency of each sample. Following Cong and

Zhang [8], we add a ‘virtual’ node tv . By adding constraints
to the ILP, we ensure that tv is scheduled in a cycle after
all nodes are finished (ti,s +Di) processing. Minimising the

start time of the virtual node is then the same as minimising

latency for all samples.

The overall problem of rational-II modulo scheduling is now

formulated as follows:

min(tv)

subject to

D1: ti,s +Di −Δs(di,j) ≤ tj,s ∀(oi, oj) ∈ E, ∀s < S

D2: ti,0 +Di ≤ tv ∀oi ∈ O

D3: tv ≤ L

M1: I0 = 0

M2: Is ≤ Is+1 ∀s < S − 1

M3: ti,s+1 − Is+1 = ti,s − Is ∀s < S − 1

R1:
∑

0≤τ<P

τ · bi,s,τ = ti,s ∀r : ∀oi ∈ Ǒr, ∀s < S

R2:
∑

0≤τ<P

bi,s,τ = 1 ∀r : ∀oi ∈ Ǒr, ∀s < S

R3:
∑

0≤s<S

∑
0≤τ<P

τ mod M =m

bi,s,τ ≤ FUs(r) ∀r : ∀oi ∈ Ǒr, ∀m < M

D1 enforces the causality constraint introduced in (9). The
latency of each sample is constrained by the user-specified

value L, which can be seen in D2 and D3.
The modulo constraints M1–M3 enable sequential IIs. M1

ensures that the schedule starts in the first clock cycle. M2
prevents any samples being inserted after their successor. M3
expresses that each of the S samples follows the same schedule
(and hence that every sample is fully processed within L cycles
of its insertion), except that each schedule is offset by that

sample’s insertion time. This constraint is one that would not

be enforced if we used partial unrolling and integer-II schedul-

ing (see discussion in Section III). It is a useful constraint

because it reduces the search space yet remains satisfiable by

all the solvable scheduling problems we have encountered. In

future work, we plan to investigate relaxing this constraint,

so different samples can follow different schedules. This may

enable better schedules to be found, at the cost of further

complicating the ILP.

To enforce that the number of FUs used does not exceed

FUs(r) we use binary variables. The Boolean value bi,s,τ in
R1 is true if and only if ti,s = τ . This is ensured by R2, which
allows one (and only one) bi,s,τ to be true for each ti,s. This
information is then used in R3 to make sure that the upper
limit FUs(r) for each resource type r is respected. The inner
sum in R3 adds all occupations of resource r in clock cycle
m mod M . This is done for all samples, thus preventing the

scheduling of more than FUs(r) operations of resource r in
any clock cycle.

V. EXPERIMENTS

We evaluated the proposed rational-II modulo scheduling

approach on a set of fourteen test instances from digital signal

processing and embedded computing, as listed in the first

column of Table III. The vanDongen benchmark was used
by Fimmel and Müller [4]; we include it because it is the only

example we could find where their assumption of II⊥rec > II
⊥
res

can actually be met. Ten of the remaining benchmarks are the

same test instances used by Sittel et al. [18]; the remaining

three (gen, srg [10] and cholesky [17]) are new. The source
code of all our benchmarks is available at [19].

Our proposed formulation was implemented in the open-

source HatScheT library [20]. ScaLP was used to generate
the ILP and Gurobi 8.1 (single thread mode) was used as

solver [21]. All problems were solved on a server system with

an Intel Xeon E5-2650v3 2.3 GHz CPU with 128 GB RAM.

The hardware description after scheduling was generated using

[19] which uses FloPoCo [22] for VHDL generation. The
examined hardware implementations were synthesized, placed

and routed for a Xilinx Virtex7 xc7v2000t g1925-2G targeting

250 MHz using Vivado v2018.1.

First, we analyse the potential speedup for rational-II

scheduling by evaluating II⊥rec and II
⊥
res for all possible re-

source allocations (#FUs) for each problem. Every operation

of the same type is implemented in hardware using homoge-

neous FUs. The results of this experiment are displayed in

Table III. To provide a complexity overview, the number of

operations (#ops) and the II⊥rec of the DFGs are given. For each
benchmark, we enumerate all possible resource allocations

(#allocs). The ‘avg. II⊥res’ column reports the average value of
II⊥res over all of these allocations. We then report how many
of the possible resource allocations lead to II⊥res > II⊥rec. For
example, in test instances biquad and lms, we find that II⊥rec
always dominates II⊥res, and since II

⊥
rec is an integer in both

cases, no speedup can be obtained using rational-II scheduling.

We then report how many of the remaining resource al-

locations have a minimum II that is not an integer (column

‘rational II’). For example, test instance dlms has II⊥res > II
⊥
rec

in three out of its 15 possible resource allocations, but still the

minimum II in each case is an integer. This can be explained

by the fact that the resource type with the largest number of

operations is mult, with five instances. No allocation can lead
to a rational II between 4 and 5 and, thus, no speedup can

be obtained using rational-II scheduling. Note that this can

always be determined quickly before attempting scheduling

and an integer-II scheduler can be used instead. In all other

cases, there exist resource allocations where the minimum II

is not an integer. On average, 35% of all resource allocations

show speedup potential for rational-II scheduling (see bottom

row of Table III). Of those, the average potential speedup is

1.26×. In the larger models (sam, cholesky), the maximum
speedup possible was 1.98×. In larger benchmarks, potential
speedups are tightly distributed within the possible range we

derived in Section IV A

We solved the scheduling problems using three approaches

besides our own: (1) Fimmel and Müller’s rational-II formu-

lation [4], (2) the Moovac integer-II formulation [3], and (3)

Moovac after partially unrolling the problem having identified
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TABLE III
RATIONAL-II MODULO SCHEDULING: SPEEDUP THAT CAN BE POTENTIALLY OBTAINED (IF SCHEDULES CAN BE FOUND)

DFG properties Allocation info (sweep over all possible resource allocations) Potential speedup

instance #ops II⊥rec #allocs avg. II⊥res #(II⊥res > II⊥rec) rational II avg. max.

vanDongen [9] 10 5.33 10 2.93 1 9 (90%) 1.13× 1.13×
dlms [10] 16 4 15 2.71 3 0 (0%) – –
gen [10] 15 1 15 2.71 14 7 (47%) 1.3× 1.6×
gm [11] 16 1 24 3.04 23 5 (21%) 1.47× 1.67×
hilbert [12] 14 1 18 2.42 17 3 (17%) 1.33× 1.33×
lms [10] 15 18 15 2.71 0 0 (0%) – –
linear phase [13] 29 1 91 4.11 90 71 (78%) 1.25× 1.87×
srg [10] 17 1 8 2.29 7 1 (13%) 1.5× 1.5×
sam [14] 121 1 1770 6.77 1769 1403 (79%) 1.21× 1.97×
biquad [15] 14 10 16 2.69 0 0 (0%) – –
rgb [16] 24 1 64 3.07 63 7 (11%) 1.5× 1.5×
spline [16] 26 1 64 3.78 63 26 (41%) 1.3× 1.75×
ycbcr [16] 22 1 32 2.78 31 3 (9%) 1.5× 1.5×
cholesky [17] 266 1 113386 9.31 113385 100235 (88%) 1.15× 1.98×
average 43.2 3.4 – 3.66 – – (35%) 1.26× 1.49×

TABLE IV
RATIONAL II SCHEDULER COMPARISON LIMITING SOLVING TIME TO 60 SECONDS FOR EACH PROBLEM

F.–M. [4] Moovac [3] unroll+Moovac prop. ILP speedup w.r.t.

instance #
al
lo
cs

av
g
.
II

so
lv
ed

o
p
t.

av
g
.
II

so
lv
ed

o
p
t.

av
g
.
II

so
lv
ed

o
p
t.

av
g
.
II

so
lv
ed

o
p
t.

F
.–
M
.

M
o
o
v
ac

vanDongen 9 5.4 9 9 6 9 9 5.3 9 9 5.3 9 9 1.02× 1.13×
gen 7 2.3 7 7 2.3 7 7 1.8 7 7 1.8 7 7 1.3× 1.3×
gm 5 2 5 5 2 5 5 1.4 5 5 1.4 5 5 1.5× 1.5×
hilbert 3 2 3 3 2 3 3 1.5 3 3 1.5 3 3 1.3× 1.3×
linear phase 71 3.7 71 10 3.3 71 68 3.2�� 24 22 3.0�� 43 3 1.2× 1.1×
srg 1 2 1 1 2 1 1 1.3 1 1 1.3 1 1 1.5× 1.5×
sam 100� – 0 0 2.9 20 19 – 0 0 2.9�� 1 1 – 1.0×
rgb 7 2 7 7 2 7 7 1.3 7 5 1.3 7 7 1.5× 1.5×
spline 26 2.4 26 7 2.4 26 26 2.2�� 15 8 2.1�� 20 11 1.2× 1.2×
ycbcr 3 2 3 3 2 3 3 1.3 3 3 1.3 3 3 1.5× 1.5×
cholesky 100� – 0 0 – 0 0 – 0 0 – 0 0 – –

total 332 – 132 52 – 152 148 – 74 65 – 98 49 – –

� For the larger benchmarks, a random subset of all possible resource allocations was chosen.
�� To provide a fair average speedup comparison, II⊥N was used as a fallback whenever no result was found.

S andM . For each experiment, a solver timeout of 60 seconds

was used. These results are shown in Table IV. Benchmarks

dlms, lms and biquad do not appear in this table because
there were no allocations with a non-integer minimum II.

Compared to the existing approaches, we could identify

rational-II schedules with a speedup between 1.1× and 1.5×
on average across all benchmarks except vanDongen, sam
and cholesky. In all cases where a solution was obtained, the
optimal II could be identified. The vanDongen benchmark
was chosen by Fimmel and Müller to motivate their approach.

For one resource allocation, our formulation was able to find

a better II than theirs. The benchmarks spline and linear
phase could be solved completely by Fimmel–Müller and

Moovac. But, the II found by Fimmel–Müller is worse on

average. We observed that the proposed approach tends to

timeout whenever S becomes larger than four, blowing up the
number of variables in the ILP problem significantly. This can

be detected before scheduling and a heuristic approach could

identify smaller values for S such that the problem is more

likely to be solvable. Moovac was able to identify 20 modulo

schedules for sam, the proposed ILP found one solution and
the other approaches timed out in all cases. All examined

schedulers failed to find a modulo schedule for cholesky.
Regarding II, the unrolling approach performs the same as the

ILP formulation, but far fewer solutions were found (only 74

compared to 98), especially for the larger models. However, a

larger proportion of schedules (65/74 instead of 49/98) were
proven to be optimal with regard to latency.

To understand the possible hardware overhead (after place

and route), we studied all 71 resource allocations of the linear
phase benchmark model. We define the resource usage, RU,
of an implementation as RU = slicesUsed +N ·DSPsUsed ,
where N denotes the slice-to-DSP ratio of the given FPGA

device; in our experiments, N = 142. The Pareto frontier
for II and resource usage is shown in Figure 3. The Pareto-

optimal implementations that were found using integer-IIs are
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Fig. 3. Pareto-optimal implementations of the linear phase benchmark after
synthesizing all possible allocations.

displayed as crosses. New Pareto-optimal designs that are

revealed using our proposed rational-II formulation (labelled A
to D) could only be found using our formulation. Note that all
implementations are able to support the demanded 250 MHz,

and implementing rational-II scheduling does not affect the

operating frequency of the final hardware. Note also that,

at least on this benchmark, rational-II scheduling does not

change the fact that the best possible II is still 1 (top-left
point), and the best possible resource usage is still provided

by the bottom-right point; the value here is the finer-grained

control over the design-space exploration. This ‘fine-grained

control’ can be quantified by taking the area (highlighted in

grey) between the two Pareto frontiers.

VI. CONCLUSION AND OUTLOOK

We present a novel ILP formulation that is able to determine

optimal rational IIs whenever the number of operations in

the DFG is less than about 100. Compared to state-of-the-
art methods, we achieve throughput improvements of up to

1.5×. We show that in 35% of the encountered scheduling

problems, speedups of 1.26× on average and up to 1.98× are
possible.

To solve larger problems, heuristics for adapting S will

be required. One solution could be the adaptation of iter-

ative modulo scheduling from integer-II modulo scheduling

to the rational-II case. Gradually increasing the II, such an

algorithm could make repeated attempts as a fallback strategy

for complex scheduling problems. The idea is that when the

II is larger, the scheduling constraints are easier to satisfy.

Finally, Pareto frontiers can be improved using our ap-

proach, thus enabling a more fine-grained control over the

design-space. In addition, the theoretical analysis of the mini-

mum II in combination with synthesis results from Section V

indicate that it is possible to identify resource allocations that

lead to the Pareto frontier before scheduling and synthesis.

We envision to reduce overall design time for multi-objective

optimisation in custom hardware design by our approach

significantly.
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