
iGPU Leak: An Information Leakage Vulnerability on Intel Integrated GPU

Wenjian HE∗ Wei Zhang† Sharad Sinha‡ Sanjeev Das§
∗†Hong Kong University of Science and Technology, China

‡Indian Institute of Technology Goa, India §University of North Carolina at Chapel Hill, USA
∗wheac@connect.ust.hk †wei.zhang@ust.hk ‡sharad@iitgoa.ac.in §sdas@cs.unc.edu

Abstract—Hardware accelerators such as integrated graphics process-
ing units (iGPUs) are increasingly prevalent in modern systems. They
typically provide multiplexing support where several user applications
can share the iGPU acceleration resources. However, security in this
setting has not received sufficient consideration. In this work, we
disclose a critical information leakage vulnerability due to defective GPU
context management. In essence, residual register values and shared local
memory in the iGPU are not cleared during a context switch. As a result,
adversaries can recover the secret key of a cryptographic algorithm
running on an iGPU from a single snapshot of the leaking channel.
User privacy is also under threat due to browser activity eavesdropping
through website-fingerprinting attack with high accuracy and resolution.
Moreover, this vulnerability can constitute a covert channel with a
bandwidth of up to 8 Gbps.

I. INTRODUCTION

Due to the ever-evolving performance demands, the central pro-

cessing unit (CPU) is no longer the only computation powerhouse in

many systems with the rise of hardware accelerators. The graphics

processing unit (GPU), which features a massively parallel archi-

tecture, has been the most popular co-processor. It can accelerate a

broad spectrum of data processing tasks, including, but not limited to,

cryptographic computation [1], browser rendering [2] and machine

learning [3].

As opposed to decades of development in CPU software protection,

vendors have failed to devote sufficient efforts on the security of

GPUs. Several attack vectors have been reported on NVIDIA discrete

GPUs (dGPUs). For instance, researchers discovered that the DRAM

contents of a dGPU can be leaked through the memory management

interface of the driver software [2]. Later, GPU-side programs are

found capable of dGPU memory stealing [4]. Furthermore, attackers

can probe the statistics of memory utilization and performance coun-

ters on a dGPU, constituting a side-channel to track user activities

including keystroke events and browser websites [5].

Although dGPUs attract more attention, the security of integrated

GPUs (iGPUs) is more crucial in consideration of their ubiquity

and capability. Every CPU is equipped with an on-chip iGPU on

most Intel’s desktop and mobile product series. Moreover, up to

71% of personal computers use iGPUs since they are not shipped

with a dGPU [6]. In addition, modern iGPUs support complex

programming models including general-purpose programmability.

The intricate software and hardware stack of iGPUs results in a large

attack surface for adversaries. Fortunately, we verify that they are

immune to the aforementioned dGPU attacks thanks to the vastly

different architecture of iGPUs. However, the reliability of the iGPU

infrastructure has not received much scrutiny.

In this work, we focus on vulnerability analysis of iGPUs whose

security has been underestimated for years. Our investigation dis-

covers a serious data breach flaw in Intel iGPUs. The problem is

caused by incomplete enforcement of the GPU context switch. When

multiple applications offload tasks to an iGPU, the graphics driver

is in charge of job scheduling by interleaving the occupation of the

iGPU. However, data remnants of a previous GPU client are left

uncleared in the micro-architecture of the iGPU, visible to the next

occupant. As a consequence, an attacker can launch GPU malware to

Display

LLC

L1 L2CPU
Core

iGPU

Video

Command Streamer

Slice

LLC: Last-level Cache
SLM: Shared Local Memory
GTI: Graphic Technology Interface

L3
SLMSubslice

SubsliceSubslice

G
TI M

em
or

y

3D

Fig. 1. Intel on-chip integrated GPU architecture

SIMD ALU

Branch
IO

EU 1
EU 2
EU 3
EU 4

EU 5
EU 6
EU 7
EU 8

SIMD ALU

Arbiter…

32 Bytes

…

r0
r1
.
.

r127

4KB per thread
(128 × 32 Byte)

Thread 1 GRF
EU: Execution UnitSubslice

Thread 2 GRF

Thread 7 GRF

GRF:
General Register File

Fig. 2. Subslice micro-architecture of Intel integrated GPU

spy on sensitive information of a victim iGPU user. The malware can

be written in accordance with standard specifications of the iGPU,

therefore it looks like a regular GPU program to the system.

We illustrate how the vulnerability undermines security and privacy

through three proof-of-concept attacks. Given the details about the

GPU program, an adversary can initiate attacks to obtain secrets such

as cryptographic keys. Even in the absence of understanding the GPU

program, we can launch a powerful black-box attack to track browser

activities with high precision. Besides these, the vulnerability can be

exploited for data transmission between two sandboxed programs that

ought to be prohibited from communicating with each other.

In summary, the main contributions of this work are as follows:

• We discover a critical information leakage vulnerability in

integrated GPUs. To the best of our knowledge, this is the

first work that reports an architectural vulnerability in integrated

GPUs.

• We develop practical attacks in which adversaries can steal

cryptographic keys, and snoop user activities on a popular

browser.

• We demonstrate an end-to-end covert channel that is 3 orders

of magnitude faster than other methods.

II. BACKGROUND

A. Intel Integrated GPU Architecture

Many Intel CPUs follow a system-on-chip design where a GPU

is tightly integrated with the processor cores [7]. Fig. 1 depicts

a simplified diagram of the Intel CPU-iGPU platform. In contrast

to discrete GPUs that maintain an isolated address space with a

dedicated physical memory, the Intel iGPU shares the cache-coherent

memory subsystem with CPU cores. In this architecture, the iGPU

can use the virtual memory space of a CPU-side application. This

architecture brings two advantages. First, the overhead of data trans-

fers can be eliminated by virtue of the unified physical connection.

Indeed, data copy between CPU and GPU is often a bottleneck for

discrete GPUs. Second, CPU and iGPU can concurrently operate on

pointer-rich data structures like trees and graphs.

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE
56

1D-2

Userland
OpenCL

OpenCL Code

Kernel

Hardware

GPU Binary

OpenGL

iGPU Hardware

GPU Binary

iGPU Device Driver

Compile Execute

App 1

IOCTL()

/dev/dri/renderD<N>

App 3App 2

IOCTL System Call Interface

1 12131

/m Call Interface

Batch Queue

Fig. 3. Intel iGPU driver stack in Linux

We brief the micro-architecture of Intel iGPUs on the basis of Intel

Gen 9 graphics [8]. An iGPU has one or more slices as the top-level

hierarchy of its computation engine. Each slice contains a cache and

three subslices. One of the components under inspection in this work

is the shared local memory (SLM), which is a special portion of the

cache. It serves as the internal storage of GPU subslices so that GPU

threads can efficiently exchange data. Each subslice has exclusive

access to 64 KB of the SLM space.

Within a slice, 24 execution units (EUs) are grouped into 3

subslices, so each subslice takes charge of 8 EUs. As illustrated in

Fig. 2, an EU is similar to a 7-way hyper-threading processor core.

These 7 threads share 4 functional units at the backend of the EU

pipeline to execute instructions. Every individual thread maintains

its own architectural state composed of an instruction pointer, an

architectural register file and a general register file (GRF). The GRF

is also a component we examine in this work. Each thread of the

Intel iGPU is facilitated with a GRF as large as 4 KB. As depicted

in Fig. 2, the GRF is logically divided into 128 registers, each of

which is 32 bytes wide.

B. Linux GPU Driver Stack

For ease of development, most user applications harness the

GPU with the help of high-level programming abstractions like

OpenCL [9], OpenGL [10] and CUDA [11]. For example, OpenCL

allows developers to create GPU programs in a C-flavor language.

When high-level code is ready, the GPU driver stack can compile

and execute it, as shown in Fig. 3. This is accomplished by the

cooperation of drivers in the user space and in the kernel space.

As an agent between the user and the kernel, the userland driver

provides a friendly interface to hide hardware details. This is usually

implemented as a software shared library that applications can link

with. In OpenCL, a compiler is shipped with the driver to compile

user code to the GPU instruction set architecture (ISA) [12]. Before

execution, the driver also helps to manage low-level data structures

for the GPU program.

The userland driver submits jobs by means of system calls. On

Linux, the kernel exposes an IOCTL interface to control the Intel

iGPU, as shown in Fig. 3. Owing to the prevalence of graphical

desktop interfaces, a program can invoke this system call without

the superuser privilege. In a real machine, it is common that multiple

users or programs request GPU computation at the same time. The

device driver distinguishes them by associating a GPU context to

each of them. When a job is submitted, the driver encapsulates the

job and resources in the corresponding context into a batch, which is

then queued in a buffer for the iGPU hardware to fetch and execute.

Therefore, two neighboring batches in the queue can originate from

different contexts.

The aforementioned description introduces the typical usage of

iGPUs. However, an application is free to use the native IOCTL

system call without the help of conventional userland drivers, as

exemplified by App 3 in Fig 3. In this case, an application can

launch a GPU program as long as it properly organizes the low-level

metadata by itself.

TABLE I
SYSTEM CONFIGURATION

Machine Model Dell OptiPlex 7040
CPU Model Intel Core i7 6700 @ 3.4Ghz
iGPU Model Intel HD 530 (Gen 9)

OS
1. Ubuntu Desktop 16.04 LTS with 4.15.0 kernel
2. Ubuntu Desktop 18.04 LTS with 4.18.0 kernel

OpenCL Driver
Intel Graphics Compute Runtime for OpenCL [9]
version 18.42.11702 and version 19.26.13286

C. Threat Model and Testbed Setup

In this work, we strive to scrutinize whether an attacker can

compromise security boundaries as an ordinary GPU client. To this

end, we assume the adversary only has the permission to run a

program at the non-privileged level, i.e., the root privilege is not

available to the adversary. The adversary and the victim co-locate in

the same physical machine but they are isolated such that the attacker

cannot learn information about the victim. This can be a multi-user

situation where the adversary holds a non-privileged account and tries

to steal the secrets of another user on the same system. Given that

current anti-virus software does not scan GPU binaries, the attacker

can even be native spyware in the victim’s account.

Our investigation has been performed on a commodity off-the-shelf

machine detailed in Table I. The iGPU is an on-chip component

in the CPU as mentioned, and its device driver is embedded in

the kernel by default. The vulnerability can be reproduced in two

versions of the Linux kernel in the Ubuntu distribution. Regarding

the userland driver, we performed experiments on two versions of

the Intel OpenCL library [9].

III. IGPU LEAK VULNERABILITY

In this paper, we present a new information leaking attack vector

on iGPUs. The problem is caused by the lack of data clearance during

GPU context switches. In our study, we identify two sources of the

leakage, in particular, the general register files (GRFs) and the shared

local memory (SLM), which are detailed as follows.

A. Register Leakage

When a GPU job finishes, the device driver immediately hands

over control to the next job without overwriting the registers of the

GPU hardware threads. As a result, secret data left by a predecessor

can be obtained by a subsequent GPU program. We verify this

leakage by constructing two GPU programs: one is the victim writing

specific values to GRFs, and the other is the spy which reads the

GRFs. They are launched by different users on the system, and the

experiment shows that the spy program can observe the values of the

other.

This is a critical vulnerability by reason of the amount of private

data exposed to attackers. As mentioned in Section II-A, every GPU

hardware thread has 128 registers of size 32 bytes each, and the

whole iGPU has 168 threads, resulting in 672 KB in total. These

registers can always leak computation results of a victim, together

with intermediate values and input data in usual cases. This is because

the iGPU ISA does not support memory operand addressing [13], so

the results must employ the GRF as the intermediate station before

the store instruction can send them to the CPU. Similarly, the input

has to be read into the GRF before computation.

The register leakage would not exist when GPU executables

are generated by trusted compilers. However, as explained in Sec-

tion II-B, it is allowed for users to supply their own binaries. Next,

we describe how to craft and launch a malicious iGPU binary to read

register remnants of other GPU clients.

57

1D-2

.asm .isa

.cl

Malicious Assembly Code

2. Assembler

1. Generate

Dummy OpenCL Code
Malicious

Device
Binary

Device BinaryHeader

Hash
Check
sum Size

3. Replace 4. Update header

OpenCL Binary File (.bin)
.

iGPU Section

Fig. 4. Embedding malicious code into an OpenCL binary

TABLE II
OPENCL CODE FOR SLM LEAKAGE

Victim’s code Attacker’s code

1 void write slm(global uint *in){ void read slm(global uint *out){
2 local uint slm[N]; local uint slm[N];
3 size t base = N*get group id(0); size t base = N*get group id(0);
4 for(size t i=0; i<N; ++i) for(size t i=0; i<N; ++i)
5 slm[i] = in[base+i]; } out[base+i] = slm[i]; }

Spyware Programming A rational compiler does not emit read

instructions on undefined registers, therefore we cannot rely on high-

level code to generate the spyware. Instead, we turn to assembly

programming. The iGPU assembly syntax is well documented in [13].

An iGPU assembler iga64 is found inside the repository of the Intel

open-source graphics compiler [12]. We use it to translate assembly

code to device binary.

Spyware Execution The next challenge is to orchestrate the

execution of the GPU spyware. Although direct interaction with the

device driver is feasible, for simplicity, we deceive the OpenCL

runtime into accepting our spyware to avoid manual handling of

low-level metadata. The procedure for building a malicious OpenCL

binary is shown in Fig. 4. First, we generate a dummy OpenCL

binary, which contains an empty GPU kernel. The compiled device

binary of the empty kernel is inside the iGPU section of the OpenCL

binary complex, and we replace it with our program. The checksum

and size values are also updated to pass the integrity check of

the OpenCL driver. Then, we can mislead the OpenCL runtime to

load our binary and schedule it to run on the GPU. We clarify

that our hacking of OpenCL binary is not a vulnerability but is an

informal way to enable assembly programming in Intel OpenCL. In

CPU software, assembly programming is a common optimization in

performance-critical scenarios. We believe this should be the same for

GPU programs, and security must not be compromised by assembly

programming.

GPU Thread Scheduling To collect all the register residues, the

spyware needs to be spawned to every GPU hardware thread. As the

scheduling scheme of the driver stack is not explicit, it is necessary

to validate the scheduling distribution to avoid incomplete coverage.

In this regard, we add instructions in the spyware to read the unique

identifiers of the hardware threads. In iGPU hardware. each thread

holds a pre-defined index as the identifier in an architectural register

dubbed sr0. We instruct each spawned instance of the spyware to read

and report the index back to the CPU so the CPU-side program can

verify the number of unique identifiers. According to our tests, the

driver assigns one instance of the spyware to each hardware thread

when we request to execute 168 independent instances in one GPU

invocation.

B. Shared Local Memory Leakage

In addition to registers, the SLM is also not cleared at GPU context

switches between tightly queued jobs. The SLM component in the

micro-architecture of an iGPU has a close relationship with the high-

level programming concept of local memory in OpenCL. As a result,

we can verify this leakage channel with the OpenCL code in Table II.

The local qualifier at Line 2 is used to describe a variable in the

OpenCL local memory scope, which is realized by the SLM in the

T T’
9 Rounds

Plain-
text

Cipher-
text

Input to
last �

AES
Key

Expand

Round key
[1] – [9]

Round
key [10]

r56.8:d =
Key[r23.8:d]

r23.4:d =
r26.5:d & 0xFF

r26.5:d =
r17.4:d | r18.5:d…

(a) (b) Lost
Preserved

Last Round

T = + MixColumnsT’ = SubBytes + ShiftRows T’

r32.0:d = r56.8:d � r23.4:d

Round
key [0]

…

Fig. 5. (a) AES-128 encryption flowchart; (b) Register flow graph

iGPU hardware. Note that a subslice only has access to its own SLM

space; therefore, we employ the get group id() OpenCL function

to attain hardware allocation knowledge. Specifically, the function

returns a unique index to GPU threads in the same subslice. Based

on this, the calculated base offset ensures different threads do not

read or write on overlapping memory space. To harvest SLM residues

associated with the three subslices, three independent instances (i.e.,

threads) of our SLM spyware are spawned in every GPU invocation.

A snapshot of SLM contents can leak up to 192 KB of data.

Fortunately, we monitored the SLM during the execution of various

programs, but none of these programs seemed to leverage the SLM.

By comparison, we can capture abundant traces of activity from the

GPU registers. Though the SLM may be a low-risk leakage source

for common users at present, it is unacceptable for mission-critical

applications.

IV. ATTACK CASE STUDIES

The iGPU leak flaw can invite serious violation of security and

privacy. In this section, we implement three different attacks to

highlight the severity of the problem. Our exploitation includes a key-

recovery attack against the Advanced Encryption Standard (AES),

a website-fingerprinting attack against the Chrome browser, and a

covert channel attack for unauthorized data transmission.

A. Attack I: AES Key Recovery

The AES is one of the most popular cryptographic algorithms. We

use the AES implementation from engine-opencl [14], an extension

of the OpenSSL toolkit [15]. As the name suggests, engine-opencl
leverages OpenCL to accelerate cryptographic algorithms on a GPU.

We first brief basic knowledge of the AES and then detail our attack

to recover the complete AES keys.

AES encryption transforms a fixed length chunk of plaintext to

ciphertext according to the AES key. Fig. 5(a) illustrates the diagram

of AES-128 encryption. Before the transformation, a stream of bytes

is derived from the initial AES key, which forms 11 round keys in

AES-128. The key expansion is a reversible algorithm such that we

can recover the AES key given any consecutive portion of the gener-

ated stream. The length of the portion needs to be at least the length

of the AES key. As shown in Fig. 5(a), the plaintext input is XOR’ed

with the first round key at the beginning of the AES. Subsequently,

the AES algorithm applies several rounds of processing steps. In

rounds 1-9, the data block goes through SubBytes, ShiftRows and

MixColumns steps followed by an XOR operation with one of the

round keys. In the last round, the MixColumns step is omitted, and

the block is XOR’ed with the last round key at the end. Compared

to AES-128, AES-196 has a longer AES key and more rounds of

operations.

Next, we explicate our key-recovery attack against the AES

algorithm. By principle, our white-box attack methodology can be

generalized to compromise other iGPU programs, and consists of

the following 4 steps.

1. Variable Identification: In the first step, an attacker tries to

identify a set of sensitive variables of the victim program. In the

58

1D-2

TABLE III
AES ATTACK RESULTS

Algorithm AES key length Leaked bytes Full key recovery
AES-128 16 bytes 13 0.15 s
AES-192 24 bytes 20 2 min

case of AES, the goal of the attacker is to get the AES key. Given

the aforementioned reversibility of the key expansion, the AES key

can be recovered from round keys. Therefore, we classify round

keys as sensitive variables. If round keys are not erased in GRFs, an

adversary can steal their values via the register leakage vulnerability.

Even if these registers get overwritten by other instructions in the

AES program, we still have a chance to obtain a round key from

the last-round XOR operation by the inverse of XOR: given one of

the operands and the result of an XOR calculation, we can retrieve

the other operand by taking the XOR of the known operand and

the result. In AES, the XOR result, i.e., the ciphertext, has a high

probability of remaining intact in registers since the iGPU needs to

place outputs in the registers before sending them to the CPU, as

mentioned in Section II-A. To conclude, an attacker can acquire the

AES key from either the round keys or the data operand of the last

XOR operation.

2. Register Flow Graph Generation: With the register leakage

vulnerability, an attacker can capture the register state left by a

victim GPU program. However, if the register mapping of the victim

program is unknown, the attacker cannot determine the location of the

sensitive variables. Worse still, variables are composed of long bytes

that may irregularly scatter over many registers. Given the large size

of the GRF, it is challenging to match registers with the variables

in a GPU program. To solve the analysis difficulty, we develop a

symbolic execution engine to produce a register flow graph of the

GPU program. The graph contains information to reveal the register

allocation as well as the data flow between registers. An example of

the graph is depicted in Fig. 5(b). Each node in the graph represents

a register write. A highlighted node means the written value is

preserved until the program exits; in other words, these values are

observable to adversaries due to the register leakage. By contrast, the

data in white nodes are lost due to later writes to the same register.

We record how the value is calculated in a node, while the edges

between nodes help us to backtrace the source operands.

3. Register Mapping Analysis: With the help of the register flow

graph, an attacker can enumerate every preserved register to find data

of interest. In the case of AES, we can reduce the search space to the

nodes with an XOR operator because they have a close relationship

with our targets—the round keys and the input to the last XOR.

In the example in Fig. 5(b), the attacker can learn one byte of the

last round key. Specifically, we find that the round key in the r56
register is lost, but the r32 register divulges the XOR output. Hence,

if the other input to the XOR operation exists, we can recover the

key by the inverse of XOR. Though the required value in the direct

parent r23 is missing, we notice it also resides in the ancestral node

r26, resulting in the leakage of the key byte. After the analysis, the

attacker can gain sufficient understanding of the register remnants to

steal information about the victim.

4. Remnant Source Recognition: With the iGPU register spyware

developed in Section III-A, an adversary can capture the register

residues of other GPU programs. However, since the adversary is a

non-privileged user who has no control over the GPU scheduling,

the captured snapshots may be from many GPU clients. To precisely

strike on a specific program, we need to filter out unrelated snapshots.

With the help of the register flow graph, we can construct a rough

fingerprint of the victim based on its invariable remnants of two

types. The first type arises from constants loaded by the program.

Victim

Browser
www.aspdac.com

iGPU GRF

Use

Leave data

www.aspdac.comClassifier

Read

InferSpyGPU
Malware

Fig. 6. Web-fingerprinting attack through iGPU

Alternatively, all-zero bits or all-one bits in registers, which are typ-

ically produced by mask instructions, could be helpful. For instance,

in Fig. 5(b), the AND computation of the node r23 sets some bits

of r23 to zero, which can be exploited in fingerprint construction if

the value is not overwritten.

Based on the procedure above, we finally launch the key-recovery

attack against the AES algorithm. In the experiment, while the

attacker repeatedly executes the spyware to collect iGPU register

residues, the victim launches AES tasks on the iGPU simultaneously.

Once the captured data matches the fingerprint of the AES program,

the attacker reads and reports the leaked bytes of round keys from the

register dump. As summarized in Table III, our attack can steal most

bytes of the secret key in AES-128 as well as in AES-196. With a

pair of authentic plaintext and ciphertext blocks, it is computationally

feasible to recover the entire AES key by brute force. On our

machine, the brute-force attack can succeed within minutes, as shown

in the last column of Table III.

B. Attack II: Website Fingerprinting

The previous attack exhibits the power of an adversary when

the implementation details of the program are available. In this

subsection, we explore whether attacks are possible if the program is

unknown. To this end, we demonstrate a web-fingerprinting attack

against the prevalent Chrome browser. We take a stable Chrome

release of version 73.0.3683.103 as the testbed, and we launch the

browser with the default settings.

The attack overview is illustrated in Fig. 6. Modern browsers

leverage GPUs to accelerate webpage rendering. As a consequence,

when a user visits a website, rendering traces remain in the registers

of the iGPU. Due to the iGPU leak vulnerability, these traces are ex-

posed to adversaries. An attacker can train a machine learning (ML)

model to monitor the browser activity, undermining the privacy of

the victim. With the aim of a black-box attack, during the training of

the classifiers, we do not adopt any prior knowledge of the rendering

algorithms.

As a proof of concept, our attack targets the top 40 websites ranked

in the world according to Alexa Top Sites [16]. Next, we elucidate

our attack approach in the classic order of ML model development.

Training Set We collect a set of register dumps when visiting

the frontpage of each website. During the visit, we imitate common

viewing behaviors by hovering the mouse cursor randomly over the

page, and we refresh the webpage several times. In consideration of

the size of the GRFs, we cluster the register residues from one GPU

thread as one training sample, meaning every snapshot of the iGPU

yields up to 168 samples. The garnered samples are converted into

feature vectors, as explained next in the feature construction step.

During data collection, we face two problems that could introduce

noise if we use the naive register spyware developed in Section III-A.

First, when the registers wake up from a power saving event, they

provide our spyware with random numbers rather than leftovers

of the browser. Second, due to the lack of register clearance,

two consecutive snapshots may have strong correlation because the

footprint of a previous rendering program may not be fully covered

by an successor. In this regard, we instruct the spyware to reset the

registers to zero before exit. Besides the benefit of sample correlation

reduction, the clearance also helps to filter out samples from power

saving events: when the spyware cannot detect any zeroed register, it

59

1D-2

1007.9

10142.1

t.co
taobao.com

twitch.tv
average

samples/s
0 4000 8000 12000 16000

Fig. 7. iGPU utilization in terms of average sample harvest per second

rejects the sample inasmuch as the power-on values of registers are

most likely non-zero.

Feature Construction As said, we regard register residues of one

thread from one GPU snapshot as one sample. However, due to the

intentional blindness to prior knowledge, we do not know the best

way to arrange the feature vector. Instead, we directly decompose

the data of a sample into individual bytes, i.e. one byte constitutes

one dimension of the feature vector. Lastly, we trim some of the

dimensions with a low variance.

Pre-processing We observe that the browser produces identical

register residues in some of the GPU threads despite the fact that

the user views different websites. This imposes confusion in model

training because identical samples are given different labels. We

mitigate this issue by introducing a dummy class, and we move all

misleading samples from their original classes to the dummy class.

In this way, we intend to make the classifier focus on the unique

characteristics of the websites, as their shared samples are categorized

into a separate class. After this step, the dataset of the dummy class

accounts for 7% of the whole training set.

Training Two popular machine learning frameworks are employed

to develop classifiers. For the random forest (RF) model, we use

sklearn [17]. For the convolutional neural network (CNN) and the

multi-layer perceptron (MLP) model, we adopt keras [18]. The input

shape of the RF and MLP classifiers is the same as the feature vector,

while the input to the CNN is a matrix converted from the feature

vector by reshaping. The classifiers learn to guess a website based

on an input sample, or they report uncertainty by an output of the

dummy class.

Inference We devise a two-step inference scheme to boost the

accuracy of our attack. First, the classifier makes a guess for each

sample. Then, we group a batch of guesses to vote for the final

decision. In case the top voted guess is the dummy class, we select

the guess in the second place to yield an informative result. We

assume 3 inferences per second is a reasonable frequency for this

attack, so we accumulate guesses every 0.33 second to form a voting

pool.

Our scheme takes advantage of the extraordinary level of activ-

ity in iGPU threads. On average, an attacker can gather around

10142 samples per second when a victim browses different websites,

as illustrated in Fig. 7. We also list the average sample production

of three representative websites. Two of them require high GPU

utilization owing to the complexity of their webpages, whereas the

low-profile website has a simple page.

Test Set and Results The test set is built using the same process

as the training set, followed by the feature construction step to match

with the classifiers. For practical considerations, the test set is not

collected on the same day as the training set but the next day. As

shown in Fig. 8(a), our approach can achieve up to 90.7% accuracy at

the resolution of 3 inferences per second, which implies the feasibility

of the black-box attack. Among the three classification models, the

RF model with 100 base estimators (RF-100) demonstrates the best

performance. In addition, we test different inference frequencies on

RF-100 in Fig. 8(b). As expected, we can reach even higher accuracy

if a lower resolution is acceptable. Lastly, we evaluate the long-term

performance of multiple RF models with a new test set gathered 21

days after the training of the models. Though the general layouts of

the websites may remain unchanged, the content can have significant

90.7%
80.3% 83.5%

40%

60%

80%

100%

RF-100 CNN MLP
(a) (b)

89.4% 90.7% 92.0% 94.2%

80%

90%

100%

4 3 2 1
Number of inferences per second

RF-100

Fig. 8. (a) Accuracy of the web-fingerprinting attack based on different
classifiers; (b) Inference accuracy at different time resolutions

90.7% 90.5% 90.4% 90.5%
80.1% 79.8% 80.2% 80.2%

50%
60%
70%
80%
90%

100%

RF-100 RF-110 RF-135 RF-150

Next Day

3 Weeks
Later

Fig. 9. Durability of the models against test sets collected at difference time

differences after 3 weeks. As illustrated in Fig. 9, the accuracy of our

attack drops by around merely 10%, which implies that the attacker

can reuse a trained model for a considerable amount of time.

C. Attack III: Covert Channel

The iGPU leak vulnerability constitutes a covert channel to

exchange data. When the system prohibits direct communication

between two entities, for instance, programs in isolated containers

or virtual machines, they can abuse the iGPU to communicate. This

is a violation of the access control of the system, and we evaluate

this channel in this section.

In this attack, two cooperative iGPU clients repeatedly launch a

GPU program to communicate. We design the program such that

both sides can send and receive data simultaneously; therefore, the

program first reads leftovers of the iGPU and then writes payload.

For reliability, the payload is fragmented into packets. We refer to the

design of the transmission control protocol (TCP) for the structure

of the packet. Specifically, the header of our packets contains a

sender identifier, a sequence number, an acknowledgment number,

and a checksum. In case two identical iGPU jobs of the receiver

are executed in succession, the sender identifier helps the receiver

ignore the packets sent by itself. The sequence number assists the

receiver to reassemble the payload from the sender. The sender

decides the subsequent batch of packets to deliver according to the

acknowledgment number received. The receiver verifies the integrity

of the packet by the checksum, and corrupted packets are discarded.

We consider bothleakage channels, namely the GRF and the SLM.

To transmit data via GRFs, we implement an iGPU program using

assembly programming according to the procedure described in

Section III-A. Each iGPU thread is designed to hold one packet of

3 KB, and the remaining 1 KB registers are reserved for program

execution. On the other hand, we use OpenCL to program the SLM

transmitter following the code in Table II. In both transmission

programs, the checksum calculation and verification is accomplished

on the iGPU for better throughput.

To validate our implementation, we realize a simple application

layer protocol for file transfers on top of our iGPU packet protocol.

We first transmit a 2 MB image, a small file of 128 B, and a 5 GB

large file. Besides visual confirmation on the image, we verify that

no bit error has occurred during the transmission because the sizes

and hash values of the received files match those of the original files.

Next, we quantify the bandwidths of the two channels by dumping

the received data to the sink file /dev/null. We further consider two

modes in the experiments: the simplex mode, in which only one

end sends data while the other only receives; and the duplex mode,

60

1D-2

TABLE IV
COVERT CHANNEL COMPARISON

Device Mechanism Speed

This work iGPU

Register (duplex) 8 Gbps
Register (simplex) 4 Gbps

SLM (duplex) 2.5 Gbps
SLM (simplex) 1.3 Gbps

[19] dGPU Cache side-channel 4.3 Mbps
[20] x86 Cache side-channel 4.0 Mbps
[21] ARM Cache side-channel 1.1 Mbps

in which both sides send and receive simultaneously. The measured

bandwidths are presented in Table IV. In fact, the transmission rates

are so high that if we do not write data to /dev/null, the bottleneck

lies in the hard disk, which only has a continuous write capability

of 1.8 Gbps. Comparing with other covert channels based on miro-

architectures, our attack is faster by orders of magnitude.

V. COUNTERMEASURES

The vulnerability discovered in this paper reflects the concerning

reality that security is often underestimated when new technology

is introduced in the computer system. Memory isolation is a funda-

mental security principle in a multi-user setting; however, it is not

properly enforced in iGPUs. We discuss the possible countermeasures

to address the leakage issue, as below.

Kernel Patch By patching the graphics driver in the kernel, we

can implement a clearance operation to wipe the traces of iGPU jobs.

This eliminates the root cause of the leakage. However, according to

our preliminary tests from user space, a GRF clearance costs around

9 μs, while an SLM clearance takes 15 μs. In view of the nontrivial

overheads, we should not issue reset operations for every iGPU job.

When the driver receives an iGPU job request, it could check whether

the most recently queued job originates from the same context. Only

when they differ should the driver emit a clearance command to the

iGPU queue prior to the request.

Code Hardening Alternatively, the security fix can be imple-

mented in the user space. For instance, the compiler of a userland

driver can add cleaning instructions at the exit of a GPU program.

Because the compiler possesses complete knowledge of the GRF and

SLM allocation of a particular program, the cleaning code can safely

bypass the unused registers and SLM space. However, we do not

recommend this approach because the root cause still inhabits the

system. Consequently, legacy programs with a customized userland

driver remain vulnerable to attacks.

VI. RELATED WORKS

In the past several years, researchers have reported some studies

about the security of dGPUs. Firstly, a memory leakage flaw was

identified in [2] and [4]. Based on this vulnerability, an approach

proposed by [22] could recover images displayed on the user’s screen.

Then, side-channel attacks were developed on dGPUs. For instance,

the secret key of AES could be leaked from a cache-based timing

side-channel [23]. In addition, the performance counter interface

provided by the dGPU was demonstrated to be dangerous because

it could be exploited as a side channel to track user activities [5].

The work [19] investigated the covert channels between concurrent

dGPU kernels in depth. Lastly, the security threats of dGPUs were

thoroughly discussed in [24].

The security implications of the iGPU have not attracted much

scrutiny. In [25], the authors demonstrated that malicious iGPU

software could accelerate the Rowhammer attack that inflicts bit

errors on the DRAM. However, it is different from our work because

their vulnerability roots in the DRAM rather than in the iGPU. Other

research on iGPUs mostly focuses on functionality and performance.

For example, an accurate simulator for the CPU-iGPU architecture

was developed in [26]. DymGPU [27] optimized the performance of

iGPU virtualization. Besides these, the internals of the iGPU compiler

were introduced in [12] and [28].

VII. ACKNOWLEDGEMENTS

Intel confirmed the vulnerability and assigned CVE-2019-14615

as the public identifier. At the time of writing, Intel informs us

that they are ready to release their mitigation. We appreciate Intel’s

professional handling of our report. We would also like to thank Intel

for the feedback on our draft.

This work was supported by the Hong Kong University of Science

and Technology Start-up Grant R9336.

VIII. CONCLUSION

In this paper, we disclose a crucial information leakage vulnerabil-

ity on Intel integrated GPUs. We demonstrate that it can be exploited

by adversaries to infringe the security and privacy of benign GPU

users. A series of end-to-end attacks are developed to highlight the

threat. The attack vector results from the flawed context management

of GPU workloads.

REFERENCES

[1] V. Eduardo et al., “Speculative Encryption on GPU Applied to Crypto-
graphic File Systems,” in Proc. of USENIX FAST, 2019.

[2] S. Lee, Y. Kim, J. Kim, and J. Kim, “Stealing Webpages Rendered on
Your Browser by Exploiting GPU Vulnerabilities,” in IEEE S&P, 2014.

[3] M. Abadi et al., “TensorFlow: A System for Large-Scale Machine
Learning,” in Proc. of USENIX OSDI, 2016.

[4] R. D. Pietro et al., “CUDA Leaks: A Detailed Hack for CUDA and a
(Partial) Fix,” ACM TECS, vol. 15, no. 1, pp. 15:1–15:25, 2016.

[5] H. Naghibijouybari, A. Neupane, Z. Qian et al., “Rendered Insecure:
GPU Side Channel Attacks are Practical,” in Proc. of ACM CCS, 2018.

[6] J. Peddie and R. Dow, “Global GPU shipments mixed in Q1’19 reports,”
Jun 2019, https://www.jonpeddie.com/store/market-watch-quarterly.

[7] Intel, “Intel R© Open Source HD Graphics, Intel IrisTM Graphics, and
Intel IrisTMPro Graphics Programmer’s Reference Manual,” May 2016.

[8] “The Compute Architecture of Intel R© Processor Graphics Gen9,” 2015.
[9] “Intel(R) Graphics Compute Runtime for OpenCL(TM),”

https://github.com/intel/compute-runtime.
[10] “OpenGL Overview,” https://www.khronos.org/opengl/.
[11] “CUDA Toolkit,” https://developer.nvidia.com/cuda-toolkit.
[12] A. Chandrasekhar, G. Chen, P. Chen, W. Chen, J. Gu et al., “IGC: The

Open Source Intel Graphics Compiler,” in Proc. of CGO, 2019.
[13] Intel, “Intel R© OpenSource HD Graphics Programmer’s Reference Man-

ual - Execution Unit ISA (Ivy Bridge),” May 2012.
[14] G. Johannes and P. Margara, “engine-cuda / engine-opencl,”

https://github.com/heipei/engine-cuda, 2012.
[15] “OpenSSL,” https://www.openssl.org/.
[16] “Top Sites - Alexa,” May 22th 2019, https://www.alexa.com/topsites.
[17] F. Pedregosa et al., “Scikit-learn: Machine learning in Python,” Journal

of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.
[18] F. Chollet et al., “Keras,” https://keras.io.
[19] H. Naghibijouybari, K. N. Khasawneh et al., “Constructing and Char-

acterizing Covert Channels on GPGPUs,” in Proc. of MICRO, 2017.
[20] D. Gruss, C. Maurice, K. Wagner, and S. Mangard, “Flush+Flush: A

Fast and Stealthy Cache Attack,” in Proc. of DIMVA, 2016.
[21] M. Lipp, D. Gruss, R. Spreitzer, C. Maurice et al., “ARMageddon:

Cache Attacks on Mobile Devices,” in Proc. of USENIX Security, 2016.
[22] Z. Zhou, W. Diao, X. Liu et al., “Vulnerable GPU Memory Management:

Towards Recovering Raw Data from GPU,” Proc. of PETS, 2017.
[23] Z. H. Jiang, Y. Fei, and D. Kaeli, “A Complete Key Recovery Timing

Attack on a GPU,” in Proc. of HPCA, 2016.
[24] Z. Zhu, S. Kim, Y. Rozhanski, Y. Hu, E. Witchel et al., “Understanding

The Security of Discrete GPUs,” in Proc. of GPGPU, 2017.
[25] P. Frigo, C. Giuffrida, H. Bos et al., “Grand Pwning Unit: Accelerating

Microarchitectural Attacks with the GPU,” in Proc. of IEEE S&P, 2018.
[26] P. Gera, H. Kim et al., “Performance Characterisation and Simulation

of Intel’s Integrated GPU Architecture,” in Proc. of ISPASS, 2018.
[27] Y. Park, M. Gu et al., “DymGPU: Dynamic Memory Management for

Sharing GPUs in Virtualized Clouds,” in Proc. of FAS*W, 2018.
[28] W.-Y. Chen, G.-Y. Lueh, P. Ashar, K. Chen, and B. Cheng, “Register

Allocation for Intel Processor Graphics,” in Proc. of CGO, 2018.

61

1D-2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

