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Abstract—Approximate integer dividers suffer from unrea-
sonably high worst-case relative errors (such as 50% or 100%),
which can adversely affect the application-level output. In this
paper, we propose WEID, which is a novel lightweight method
to improve the worst-case relative errors in approximate integer
dividers. We first present an in-depth analysis to gain insights
into the cause of the high worst-case relative error. Based on our
insights, we propose a novel method to detect when an error
occurs in an approximate divider, and modify the output to
reduce the error. Further, we present the hardware realization
of WEID method and demonstrate that it can be generically
coupled with several state-of-the-art approximate dividers. Our
results show that for 32-by-16 dividers, WEID reduces worst-
case relative errors from 100% to ∼20%, while still achieving
∼80% and ∼70% reduction in delay and energy compared to
an accurate array divider.

I. INTRODUCTION

Approximate arithmetic units are designed by modifying
their hardware logic, so that they become simple and efficient
while producing possibly erroneous outputs [1]. The goal is
to achieve as much efficiency as possible with the least error.
Research has shown that several modern compute-intensive
applications from the domain of machine learning, deep learn-
ing, and multimedia processing are resilient to computational
errors [2]. Thus, approximate arithmetic units can be used to
achieve significant improvements in performance and energy-
efficiency. Among the four basic arithmetic units, the dividers
are notorious for having long critical path delays and high
energy-consumption [3]. They are often the implementation
bottleneck when their use is inevitable [4]. Therefore, design-
ing fast and energy-efficient approximate dividers has been an
active research area in the past five years [4], [5], [6].

When designing an approximate divider (or any other
arithmetic unit), error behavior is regarded as one of the most
important design considerations. Various error metrics can be
used to quantify and capture the error behavior. In Fig. 1, we
present three error metrics for several state-of-the-art 16-by-8
approximate integer dividers. We can observe that, although
the mean error and error bias are reasonable (∼6% or less),
the worst-case relative error is unreasonably high for all the
dividers (≥ 50%). Worst-case error1 is an important error
metric as it defines the upper bound of the error induced by
an approximate arithmetic unit. A high worst-case error can,
therefore, adversely affect the application-level output.

Motivational Example: To demonstrate the adverse effects
of a high worst-case error, we use the Contrast Stretching
(Histogram Stretching) application, which is a common pre-

1We use worst-case relative error and worst-case error interchangeably.
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Fig. 1. Error metrics of state-of-the-art approximate dividers. The mean error
and error bias are reasonable (∼ 6%) but the worst-case error is very high.

processing step in image processing applications, such as x-
ray imaging [7]. It is used to increase the dynamic range, i.e.,
improve contrast of an image (see Section IV-D for details).

For our experiment, a low-contrast image is shown in
Fig. 2 (a), while its contrast-stretched images using an accurate
integer divider and an approx. integer divider INZeD-0 [4]
(mean error = 2.8%) are illustrated in Fig. 2 (b) and (c),
respectively. We observe that, when using an accurate divider,
the output is a visually pleasant image, and its histogram
(Fig. 2 (e)) is spread over the full dynamic range of 8-bit
numbers. Whereas, when using the approximate divider (even
with a small mean error) the output image is too dark, has poor
contrast, and looks worse than the input image (Fig. 2 (f)).

The above motivational example demonstrates that a high
worst-case error can have adverse effects in an application,
and thus there is a need to improve the worst-case errors in
state-of-the-art approximate dividers. In this paper, we aim to
address this problem. Our novel contributions are as follows.
• We present an in-depth analysis to gain insights into the

worst-case error behavior of approximate dividers.
• Using the mathematical properties of integer division, we

derive mathematical conditions to detect incorrect quotients.
• Based on the insights from our analysis and the derived

mathematical conditions, we propose WEID, which is a
lightweight method to improve the worst-case errors in
approximate integer dividers.

(a) Low-contrast input image (b) Using accurate divider (c) Using approx. divider

(d) Histogram of (a) (e) Histogram of (b) (f) Histogram of (c)
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Fig. 2. Contrast Stretching (CS) example: (a) Input image; (b) CS using
accurate divider; (c) CS using approx. divider; (d,e,f) Histograms of (a)–(c).
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• We present a hardware design of the proposed WEID
method, which is configurable for trade-offs between im-
provement in worst-case error and resource-overhead. We
show that WEID can be generically coupled with several
state-of-the-art approximate dividers; that is, it is indepen-
dent of the internal architecture of the dividers.
Our experimental evaluation shows that WEID significantly

improves the worst-case errors with acceptable overheads in
latency (delay) and energy. Moreover, it also improves other
error metrics such as mean error and error bias.

Paper Organization: Section II summarizes the recent
approximate dividers. In Section III, we present an analysis
for insights into the worst-case error behavior and derive the
error detection conditions. Then, the proposed WEID method
and its hardware design are elaborated. The experiments and
results to evaluate WEID and its overheads are presented in
Section IV. The paper is concluded in Section V.

II. RELATED WORK

In recent years, approximation of integer dividers has
become an active research topic. A class of approximate
integer dividers use approximate adder or subtractor cells in
combinational 2N -by-N array dividers [8], [9] or higher radix
dividers [10], [11]. It is reported in [5] that the resource
improvements offered by this approach are insignificant.

Another class of approximate dividers perform algorith-
mic/architectural approximations in the divider designs. A
few approximate dividers [12], [13] are look-up table based,
however, the power-consumption of such dividers is high [5].
In TruncApp [6] (TrA), approximate inverse of the divisor
is determined and multiplied with the truncated dividend.
The TruncApp-AM [6] (TAM) is an improved version of the
TrA design, in which the multiplication is also approximated.
SAADI [14] computes approximate inverse of the divisor
iteratively and multiplies it with the dividend.

The DAXD design [15] involves dynamically selecting bits
from input operands, and uses a smaller accurate sub-divider.
However, DAXD generates large errors due to overflow prob-
lem, as identified by [5]. The overflow problem is solved in
the AAXD design [5], by using a larger sub-divider.

The classical approximate log based divider (ALD) [16]
computes approximate log of inputs, and then performs divi-
sion using log-division property. A hybrid design AXHD [17]
combines an array divider and the ALD divider. The INZeD
divider [4] is designed by coupling an error-correction mech-
anism with ALD to achieve near-zero error bias.

As we shall see in Section IV, the state-of-the-art approx.
dividers suffer from very high worst-case errors when imple-
mented in hardware. In this work, for the first time, we propose
a method to improve the worst-case errors in these dividers.

III. THE PROPOSED WEID METHODOLOGY

A. Worst-Case Error Analysis
We implemented 16-by-8 versions of several state-of-the-

art approximate integer dividers: AAXD [5], AXHD [17],
ALD [16], INZeD [4], TrA [6], and TAM [6]. We then
performed exhaustive simulations of these 16-by-8 dividers

to record accurate quotient Q, approximate quotient ˜Q, actual
error Ea, relative error Er, and positive, negative and absolute
worst-case errors Ewc as follows.

Ea = ˜Q−Q (1)

Fig. 3. Relative Error Magnitude vs Approximate Quotient. The relative error

is high only when approximate quotient ˜Q is small.

Er(%) = Ea/Q× 100 (2)

Eneg
wc = min(Er), Epos

wc = max(Er) (3)

Ewc = max(|Eneg
wc |,|Epos

wc |) (4)

Insight-1: Fig. 3 plots the magnitude of relative error |Er|
against the approx. quotient ( ˜Q) for all the dividers mentioned
above. Note that the purpose of the figure is to depict the
overall trend of relative error rather than showing results for
the individual input combinations. From the figure, we make
a key observation: The relative error has a high magnitude
only when the approximate quotient ( ˜Q) is small.

Insight-2: Fig. 4 illustrates the actual error Ea against

the approximate quotient ( ˜Q) zoomed in for ˜Q≤15 (when
the relative error is high). We make another key observation
here: the magnitude of the actual error is small when the
relative error is high. For example, |Ea| ≤1 when ˜Q≤3, and

|Ea| ≤3 when ˜Q≤15. The reason for high relative error when

actual error is low is that small values of ˜Q and Ea imply
that Q is also small. Consequently, the small denominator in
Equation (2) may lead to high relative error.

From the two insights above, we make the following state-

ments. If we can perform error-reduction when ˜Q is small,
then we can reduce the overall worst-case error (Insight-1).
Furthermore, the amount of error-reduction needed for the
approximate quotient in such cases will be small (Insight-2).

Note that, from Fig. 4, the actual error can be positive, neg-
ative (which means that the approximate quotient is incorrect),
or zero (which means that the approximate quotient is correct).
The above idea can be practically applied only if we know

when the approximate quotient ˜Q from a divider is incorrect;
however, the correctness of an approximate quotient is not
readily available since the accurate quotient Q is unknown in
approximate division. In the next subsection, we derive math-
ematical conditions to detect when the approximate quotient
is incorrect.

0 5 10 15
-5

0

5

Fig. 4. Actual Error vs Approximate Quotient (same legend as Fig. 3).
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B. Deriving Error Detection Conditions
Let us represent the actual quotient by Q and approximate

quotient by ˜Q, while A denotes the dividend (numerator), B
denotes the divisor (denominator), and R is the remainder.
From the accurate unsigned integer division property [3],

A = QB +R where 0 ≤ R < B (5)

From this, we can deduce the following two inequalities,

A ≥ QB (6)

A−B < QB (7)

The inequality (6) is deduced by substituting R=0 in
Equation (5), while the inequality (7) is obtained by replacing
R with B in Equation (5). These inequalities hold true when
˜Q is correct (i.e., hold true for the accurate quotient). We will

show that, when ˜Q is incorrect (greater or smaller than Q even
by a value of 1), one of the above two inequalities will not
hold true.

Proposition-1: The inequality (6) will not hold true when the
approx. quotient is greater than the actual quotient ( ˜Q>Q).
Proof: When ˜Q>Q, it can be represented as ˜Q=Q+k where
k is an integer such that k≥1. The minimum possible error
occurs when k = 1, so substituting this in inequality (6) yields

A ≥ ˜QB =⇒ A ≥ (Q+1)B =⇒ (A−B) ≥ QB

which contradicts the inequality (7).

Proposition-2: The inequality (7) will not hold true when the
approx. quotient is less than the actual quotient ( ˜Q<Q).
Proof: When ˜Q<Q, it can be represented as ˜Q=Q−k where
k is an integer such that k≥1. The minimum possible error
occurs when k = 1, so substituting this in inequality (7) yields

A−B < ˜QB =⇒ A−B < (Q−1)B =⇒ A < QB

which contradicts the inequality (6).
We use these conditions in our proposed WEID method to

detect when the approximate quotient is incorrect, and needs
correction/improvement.

C. The Proposed WEID Algorithm
The error improvement algorithm used in the proposed

WEID method is illustrated in Algorithm 1. Recall that the

relative error is high only when ˜Q is small, so we introduce
a parameter S, and apply the error improvement only when
˜Q ≤ S. Varying this parameter allows for making trade-offs
between error improvement and resource-overhead in WEID.

The algorithm first checks if the approximate quotient ˜Q is less

than or equal to S. If so, then the product ˜QB is computed
and the two conditions (inequalities 6 and 7) are checked. If

either of the conditions is false, then ˜Q is incorrect, and is
modified by adding or subtracting 1 from it.

Note that the goal of the proposed WEID algorithm is not
to fully fix the error (because it is an approximate divider),
but to improve the worst-case relative error. Even though the
actual error could be more than ±1 (Section III-A), the WEID
algorithm adds only ±1. As we shall see from the results, this
is enough to improve the worst-case relative error significantly.
To fix the error completely, one needs to repeatedly check the
error-detection conditions and keep modifying the quotient un-
til both conditions are met. However, this could be extremely
expensive and not suitable for approximate dividers.

Algorithm 1 : WEID Algorithm

Input : Approx. Quotient ( ˜Q), Dividend (A), Divisor (B), and
Parameter S.
Output : Approx. Quotient ˜Q (updated).

1: ˜Q := approx divider(A,B)
2: if ( ˜Q ≤ S) then
3: prod := ˜QB
4: if prod > A then
5: ˜Q := ˜Q− 1
6: end if
7: if prod ≤ (A−B) then
8: ˜Q := ˜Q+ 1
9: end if

10: end if

D. Hardware Design of WEID Algorithm

The hardware design of WEID algorithm is shown in
Fig. 5. Three comparators are used to implement the if-

conditions in the algorithm. The product of ˜QB is computed
using an N -by-log2(S+1)-bit multiplier, where N is the
size of the divisor. A subtractor computes A−B, and a
log2(S+1)-bit adder/subtractor pair computes Q+1 and Q−1.
The output of comparators are used as the single-bit inputs

of the adder/subtractor, so that ˜Q is unaffected when both the
comparator-outputs are false. At the end, two (log2(S+1)+1)-
bit 2×1 multiplexers are used to select the appropriate output.
Considering the above description of each component for a
given value of S (which will be constant), we can deduce that
the overall design complexity is O(N). All these components
can be described at the behavioral level in an HDL, which
can then be synthesized to the most optimal implementation
depending upon the implementation platform.

The WEID hardware can be coupled to an approximate
divider as shown in Fig. 6. Most importantly, it is independent
of the internal working of the divider. Furthermore, when a
high worst-case error is not a concern for the given application,
it can be power-gated at run-time to avoid its overhead.
Nonetheless, the experimental evaluation of such application-
level power-gating is beyond the scope of this paper.

E. Handling Special Cases

Accurate quotient is zero: Some approximate dividers (such
as AAXD, TrA and TAM) may produce a non-zero output
(+1) when the accurate quotient Q is zero. As an example,
consider integer division using a 16-by-8 AAXD-6 (k=3)
divider [5] when A=254 and B=255. The binary representa-
tions of these integers as 16-bit dividend and 8-bit divisor are

0

1

Q�  

B

A

Q�B 

log2(S+1) bits

A − B 

× ≤ +

−>

Q�  ≤ S

1

0

Q�
(updated) 

N-bit

N-bit

2N-bit

N-bit

Fig. 5. The proposed WEID hardware design. Implementation of Algorithm 1.
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Fig. 6. Coupling WEID hardware with an approximate divider.

A=(0000 0000 1111 1110)2 and B=(1111 1111)2, respec-
tively. The positions of leading-ones are lA=7, lB=7. After
input pruning, the truncated integers will be Ap=(111111)2
and Bp=(111)2, which implies Ap/Bp=(1001)2. Using the
formula given in [5], the approximate integer quotient is
˜Q=(1001)2×2lA−lB−k = (1001)2×27−7−3 = 1. Note that
the accurate integer quotient is 0 in this case.

Such cases result in an infinite relative error according
to Equation (2). The proposed WEID algorithm is able to
automatically detect and resolve such cases by subtracting 1
from the approximate quotient.

Overflow issue: For a 2N -by-N divider, the quotient is
an N -bit integer [3]. Overflow occurs when a computed
approximate quotient is higher than the maximum possible
value, i.e., 2N−1. Consequently, overflow is one of the reasons
for high relative errors in some approximate dividers, e.g.
DAXD divider [5], [15]. The AAXD divider [5] includes an
overflow check, and saturates the output (i.e., sets it to 2N−1)
when an overflow occurs.

We observed that the TrA [6] and TAM [6] dividers also suf-
fer from the overflow problem when implemented in hardware.
Hence, we modified these dividers by adopting the overflow
solution (saturation) proposed in [5]. In the previous analysis
(Section III-A) and the rest of the paper, we have used the
updated designs of TrA and TAM unless stated otherwise.

IV. EXPERIMENTS AND RESULTS:

A. Experimental Setup
We evaluated our proposed WEID method using 32-by-16

and 16-by-8 versions of several recent approximate dividers

from the literature: AAXD [5], AXHD [17], ALD [16],
INZeD [4], TrA [6], and TAM [6]. These are listed in the
first column of Table I.

We developed exact simulation models of the dividers and
the WEID module in MATLAB. We performed the error
analysis of (i) the original dividers (without WEID); and,
(ii) the approximate dividers coupled with WEID for S=3,
7, and 15. The mean error (defined as the mean of absolute
relative errors [4]), error bias (defined as the mean of relative
errors [4]), negative worst-case error (Neg-WCE) and positive
worst-case error (Pos-WCE) are presented in Table I. For the
16-by-8 dividers, we performed exhaustive simulations. Only
those input combinations are valid (and thus chosen) for which
no overflow occurs in the accurate 2N -by-N integer divider,
i.e., A<2NB [3], [4], [5]. For the 32-by-16 dividers, we per-
formed Monte-Carlo simulations of ∼250 million uniformly
distributed, valid random inputs, since exhaustive simulations
are computationally infeasible for 32-by-16 dividers. Our
results show that this is enough to stimulate the worst-case
error in dividers (columns 4 and 5 in Table I). For fairness,
we evaluated the original and WEID-coupled versions of an
approximate divider using the same set of random inputs.

In the special case of ˜Q>0 and Q=0 (see Section III-E),
we set relative error to zero for the original dividers when
calculating the error metrics in columns 2–5 of Table I. This
special case is solved by the proposed WEID in the WEID-
coupled dividers. We do not include the overflow fix in the
original versions of TrA and TAM, whereas saturation is
applied in the WEID-coupled versions of TrA and TAM (2nd
special case, see Section III-E).

For the overhead evaluation, we implemented the above-
discussed dividers in Verilog HDL. All designs are imple-
mented as single-cycle combinational designs. The logic for
overflow fix (saturation) is added in the WEID-coupled ver-
sions of TrA and TAM. For timing analysis, we placed reg-
isters at the inputs and outputs, however only combinational-
logic energy and area numbers are reported. We synthesized
the designs using Synopsys Design Compiler for TSMC 45nm

TABLE I
ERROR RESULTS OF APPROX. DIVIDERS: FOR ORIGINAL AND WITH THE PROPOSED WEID FOR VARIOUS S . ALL ERRORS ARE IN PERCENTAGES (%)

Original Dividers with WEID: S=3 with WEID: S=7 with WEID: S=15
Approx.

Dividers
Error

Bias

Mean

Error

Neg.
WCE

Pos.
WCE

Error

Bias

Mean

Error

Neg.
WCE

Pos.
WCE

Error

Bias

Mean

Error

Neg.
WCE

Pos.
WCE

Error

Bias

Mean

Error

Neg.
WCE

Pos.
WCE

32-by-16 Dividers

AAXD-8 0.9 3.0 -11.1 100.0 0.9 3.0 -11.1 33.3 0.9 3.0 -11.1 25.0 0.9 3.0 -11.1 18.8
AAXD-10 0.4 1.5 -5.9 100.0 0.4 1.5 -5.9 33.3 0.4 1.5 -5.9 14.3 0.4 1.5 -5.9 11.8
AXHD-14 1.6 1.6 0.0 50.0 1.6 1.6 0.0 25.0 1.6 1.6 0.0 22.2 1.6 1.6 0.0 16.7
ALD 3.9 3.9 0.0 50.0 3.9 3.9 0.0 25.0 3.9 3.9 0.0 22.2 3.9 3.9 0.0 16.7
INZeD-0 0.0 2.7 -100.0 50.0 0.0 2.7 -20.0 25.0 0.0 2.7 -12.5 20.0 0.0 2.7 -11.1 15.0
INZeD-8 0.1 2.8 -100.0 50.0 0.1 2.8 -20.0 25.0 0.1 2.8 -11.8 20.0 0.1 2.8 -11.1 15.0
TAM-4 -5.6 7.0 -100.0 100.0 -3.5 5.0 -20.8 33.3 -3.5 5.0 -20.8 22.2 -3.5 5.0 -20.8 16.7
TAM-5 -1.6 6.5 -100.0 100.0 1.5 3.5 -20.0 33.3 1.5 3.5 -12.5 22.2 1.5 3.5 -12.5 16.7
TA-4 -3.1 6.2 -100.0 100.0 -1.0 4.2 -20.0 33.3 -1.0 4.2 -16.7 22.2 -1.0 4.2 -16.7 16.7

16-by-8 Dividers

AAXD-6 2.7 6.3 -19.5 100.0 2.6 6.2 -19.5 50.0 2.4 6.1 -19.5 37.5 2.3 5.9 -19.5 33.3
AXHD-6 1.6 1.6 0.0 50.0 1.5 1.5 0.0 25.0 1.5 1.5 0.0 22.2 1.3 1.3 0.0 16.7
ALD 3.9 3.9 0.0 50.0 3.9 3.9 0.0 25.0 3.8 3.8 0.0 22.2 3.7 3.7 0.0 16.7
INZeD-0 0.0 2.8 -100.0 50.0 0.0 2.7 -20.0 25.0 0.0 2.7 -11.8 20.0 0.0 2.6 -11.1 15.0
INZeD-4 1.8 3.5 -33.3 100.0 1.7 3.5 -20.0 33.3 1.6 3.4 -11.1 25.0 1.5 3.3 -8.6 21.1
TAM-4 -5.0 6.7 -100.0 100.0 -3.1 4.8 -20.4 33.3 -3.1 4.7 -20.4 22.2 -3.1 4.6 -20.4 16.7
TAM-5 -1.1 6.4 -100.0 100.0 1.7 3.6 -20.0 33.3 1.7 3.5 -12.0 22.2 1.6 3.4 -12.0 16.7
TrA-4 -2.8 6.0 -100.0 100.0 -0.8 4.1 -20.0 33.3 -0.9 4.0 -16.3 22.2 -0.9 3.9 -16.3 16.7
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standard-cell library at the maximum possible frequency for
each design. All results are reported in the form of percentage
reductions with respect to an accurate array divider (which
has been mostly used as a reference design in previous
works [4], [5], [15]). The percentage reductions are calculated
as (dacc−dappx)/dacc×100, where dacc and dappx denote the
energy/delay/area of the accurate and approximate dividers,
respectively.

B. Error Results

Columns 2–5 in Table I present the error results for the
original dividers, and columns 6–17 present the results for
the WEID-coupled dividers for S=3, 7, and 15. The worst-
case errors (positive and negative) are highlighted in bold. It
can be seen that the magnitude of worst-case error for each
original approximate divider is very high2, i.e., 50% or 100%.

We observe that the WEID method reduces the worst-case
errors significantly for all dividers. Specifically, when S=3,
the magnitudes of WCE become ≤33.3%; when S=7, they
become ≤25%; and when S=15, the magnitudes of WCE are
close to or less than 20% for all the dividers. An exception to
these improvements is the 16-by-8 version of AAXD-6, where
the absolute WCE is slightly higher than the limits mentioned
above. However, we can observe that AAXD-6 has one of
the highest mean errors (∼6%) among all the dividers, so a
higher WCE is expected. Nonetheless, the improvement in the
worst-case error is still evident for AAXD-6 as S increases.

It is noteworthy that the WEID method also improves the
mean error and error bias. However, this is only visible for

16-by-8 dividers. The reason is that the ˜Q≤S condition (when
WEID is applied) occurs more frequently in 16-by-8 dividers
than in their 32-by-16 counterparts, and consequently, the
improvement in the average-based error metrics (mean error
and error bias) is more prominent. For the TAM and TrA
dividers, the improvements in mean error and error bias are
also because of the applied overflow fix in the WEID-coupled
versions.

C. WEID Design Overhead

Delay and Energy: The results for the delay- and energy-
reductions are shown in Fig. 7 for all the implemented 32-
by-16 dividers. The first bar (solid blue) in each bar-group
represents the delay/energy-reduction achieved by the original
divider design with respect to an accurate array divider. The
following (patterned) bars depict the achievable reductions
when WEID module is used with different values of the
parameter S.

In Fig. 7(a), we observe that even after including WEID
module, the resulting delay-reductions for all the approximate
dividers are high. In other words, a substantial reduction in
delay (nearly 85% for ALD, INZeD, TrA, and TAM and nearly
75% for others) is achievable using WEID with S = 15 which
reduces the absolute worst-case errors to less than 20% in most
cases. In Fig. 7(b), we see that the effect of the WEID module
on energy-reductions is slightly more considerable (than on

2The author of ALD in [16] analytically demonstrated that the worst-case
error is 12.5%. However, the analysis neither considers the limitations of
finite precision for the fractional part of the approximate log values, nor
considers the fact that the output of an integer divider must be an integer (also
endorsed by recent works [4], [5]). Therefore, when practically implemented
in hardware, the worst-case error for ALD is 50%. In other words, errors
need to calculated considering integer division with integer quotients.

(a) Delay-Reductions
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Fig. 7. Delay- and Energy-reductions for 32-by-16 dividers compared with
accurate divider (having energy=1736 fJ, delay=6.3ns and area=4580μm2).

delay-reductions). Nonetheless, nearly 70% reduction is still
achievable for most dividers. For AXHD-14, the effect on
energy-reduction is comparatively more noticeable, however,
the original AXHD-14 also has the lowest energy-reduction
among all the original dividers.

The delay and energy results for 16-by-8 dividers are shown
in Fig. 8. The achievable delay-reductions for 16-by-8 dividers
are slightly less than that for 32-by-16 dividers. Nonetheless,
we can still achieve more than 50% delay-reductions for
most of the WEID-coupled dividers (ALD, INZeD, TAM,
TrA). The impact of WIED-overhead on energy-reductions
for 16-by-8 dividers is more considerable, and specifically,
for the AXHD-6 divider, energy-reduction becomes negative
(it consumes more energy than the accurate divider) for S=7
and S=15. However, note that even for the original AXHD-6,
the energy-reduction is the lowest among all original dividers.
Nonetheless, we suggest that S=15 is not suitable for 16-by-8
dividers, as far as overheads are concerned.

The effect of WEID on resource-reductions for 16-by-8
dividers is relatively more than for 32-by-16 dividers because
the design complexity of an accurate divider is O(N2) and
of approx. dividers is O(NlogN) (in the best case). On the
other hand, the design complexity of the WEID hardware for
a given S is O(N). Therefore, the overhead of WEID scales
down slower than the dividers themselves for smaller N .

(a) Delay-Reductions
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(b) Energy-Reductions
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Fig. 8. Delay- and Energy-reductions for 16-by-8 dividers compared with
accurate dividers (having energy=322fJ, delay=1.7ns and area=1243μm2).
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TABLE II
AREA AND AREA-DELAY PRODUCT (ADP) REDUCTIONS WITH RESPECT

TO ACCURATE DIVIDER. ALL RESULTS ARE IN PERCENTAGES (%).

Area-Reductions ADP-ReductionsApproximate

Dividers Orig. S=3 S=7 S=15 Orig. S=3 S=7 S=15

32-by-16 Dividers

AAXD-8 69.9 53.6 51.3 47.6 94.7 89.8 89.3 87.8

AAXD-10 65.7 48.0 44.4 39.6 92.5 86.5 85.0 83.2

AXHD-14 49.8 30.1 27.5 25.3 89.3 81.8 81.0 78.8

ALD 55.6 33.5 36.3 26.8 96.3 91.4 91.1 89.0

INZeD 61.9 38.8 38.3 31.8 96.0 91.0 90.6 89.0

INZeD-8 68.0 49.7 48.1 46.3 97.2 93.0 92.5 91.3

TAM-4 78.2 57.2 50.8 49.3 98.2 94.7 93.5 92.7

TAM-5 73.1 53.3 50.3 43.1 97.6 93.6 92.8 91.7

TrA-4 72.7 54.5 53.7 47.9 97.7 93.9 93.1 91.9

16-by-8 Dividers

AAXD-6 34.7 10.1 3.2 -12.7 71.8 47.8 39.4 24.9

AXHD-6 20.1 -15.5 -23.4 -28.9 60.1 24.3 13.5 4.5

ALD 28.7 -1.0 -8.6 -30.5 83.2 61.7 52.5 43.0

INZeD-0 28.3 2.5 -14.4 -19.4 81.1 56.8 46.7 41.0

INZeD-4 49.1 19.9 13.3 -9.5 88.3 70.1 63.1 52.8

TAM-4 60.0 16.4 10.6 -1.0 90.1 66.8 62.0 53.5

TAM-5 48.2 18.6 -0.3 -15.7 86.3 63.1 52.7 43.5

TrA-4 46.2 14.2 3.1 -12.2 86.4 63.5 55.5 47.1

Area and Area-Delay-Product: The area and area-delay-
product (ADP) results are shown in Table II. We observe
that WEID-coupled dividers can achieve nearly 40% area-
reductions for most 32-by-16 dividers even for S=15. For
16-by-8 dividers, the area-reductions are negative for some
WEID-coupled approximate dividers (area is greater than the
accurate divider). Note that we suggested that S=15 is not
suitable for 16-by-8 dividers. However, we have also presented
the results for percentage reductions in area-delay-product in
the last four columns of the table, and we can observe that even
for the cases when area-reduction is negative, the reduction in
ADP is substantial (other than the 16-by-8 AXHD-6).

As mentioned before, the primary aspect dividers are
notorious for is their long latency (delay); the latency of
dividers (O(N2)) is much higher than that of multipliers
(O(logN)) [3]. Therefore, the primary goal of approximating
dividers is minimizing the delay (and energy consumption).
We believe that the area overhead of WEID is acceptable,
given the reduction in ADP is still significant.

D. Application Example: Contrast Stretching
Suppose we have an image I(x, y) with 8-bits per pixel

per channel, where x and y represent pixel coordinates. The
contrast-stretched image G(x, y) is computed as,

G(x, y) =
255

max(I)−min(I)
(I(x, y)−min(I)) (8)

where max(I) and min(I) represent the highest and lowest
pixel value in the image I(x, y), respectively. Note that we
perform the division 255/(max(I)−min(I)) before mul-
tiplications because it limits the number of required divi-
sions (slower operation) only to one. If the multiplication
255×(I(x, y) − min(I)) is performed first, then we need p
divisions, where p is the number of pixels in the image.

In Section I, we showed that when using INZeD-0 for
contrast stretching, the output image looks worse than the
low-contrast input image due to its high worst-case error. To
evaluate the performance of the WEID-coupled dividers at the
application-level, we performed contrast stretching of the same
input image with several WEID-coupled approximate dividers.

(a) INZeD-0 with WEID:S=7 (b) TAM-4 with WEID:S=7 (c) TrA-4 with WEID:S=7

Fig. 9. Contrast Stretching using WEID-coupled approximate dividers.

The resulting images are shown in Fig. 9. We observe that the
quality of the image is now as good as when using the accurate
divider, described in Section I.

V. CONCLUSIONS

Most state-of-the-art approximate integer dividers exhibit
unreasonably high worst-case errors. In this paper, we propose
WEID: a lightweight method to improve the worst-case errors
in approximate dividers. We first present an analysis to gain
insight into the worst-case error behavior of approximate
dividers. Then, using the insights from the analysis and the
mathematical properties of integer division, we propose the
WEID method to improve the worst-case errors in approximate
dividers. Further, we propose a hardware design of the pro-
posed method, and then demonstrate its efficacy by coupling it
to several state-of-the-art approximate dividers. The proposed
method is configurable, and can achieve different trade-offs
between error improvement and resource-overhead. The re-
sults show that WEID is generically applicable to most state-
of-the-art approximate dividers, and it improves the worst-case
errors significantly with acceptable design overheads.
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