
978-1-7281-4123-7/20/$31.00 ©2020 IEEE

Small-Area and Low-Power FPGA-Based Multipliers using

Approximate Elementary Modules

Yi Guo1, Heming Sun2, Shinji Kimura1

1 Graduate School of Information, Production and Systems, Waseda University, Kitakyushu, Japan
2 Waseda Research Institute for Science and Engineering, Tokyo, Japan

Email: guoyi@fuji.waseda.jp

Abstract-Approximate multiplier design is an effective technique
to improve hardware performance at the cost of accuracy loss. The
current approximate multipliers are mostly ASIC-based and are
dedicated for one particular application. In contrast, FPGA has
been an attractive choice for many applications, because of its high
performance, reconfigurability, and fast development. This paper
presents a novel methodology for designing approximate multipli-
ers by employing the FPGA-based fabrics. The area and latency
are significantly reduced by cutting the carry propagation path in
the multiplier. Moreover, we explore higher-order multipliers on
architectural space by using our proposed small-size approximate
multipliers as elementary modules. For different accuracy re-
quirements, eight configurations for approximate 8×8 multiplier
are discussed. In terms of mean relative error distance (MRED),
the accuracy loss of the proposed 8×8 multiplier is low as 0.17%.
Compared with the exact multiplier, our proposed design can re-
duce area by 43.66% and power by 20.36%. The critical path la-
tency reduction is up to 27.66%. The proposed multiplier design
has a better accuracy-hardware tradeoff than other designs with
com-parable accuracy.

I. INTRODUCTION

Energy efficiency is a persistent challenge for emerging ap-

plications such as multimedia processing, data mining and ma-

chine learning. For most of these applications, a huge number

of computations lead to large power consumptions. There are

increasing demands of power- and area-efficient designs. On

the other hand, many applications have inherently error-tolerant

feature, where strictly exact outputs are not necessary. There-

fore, approximate computing has been considered as a potential

approach to achieve significant power reduction by exploiting

the exactness relaxation in error-tolerant applications [1]. A lot

of multiplications are included in applications from image pro-

cessing to filtering with convolution neural networks. There-

fore, approximate multiplier design has attracted more and

more attentions.

 FPGA has been a promising platform for lots of applica-

tions because of its high energy efficiency, capability of recon-

figuration and fast development round. DSP blocks on modern

FPGAs can provide high performance for many arithmetic op-

erations, such as multiplication and division. However, the us-

age of DSP blocks might cause performance degradation on ap-

plications [2]. Some applications could exhaust the available

DSP blocks for critical operations, while other applications ex-

ecuting concurrently on the same FPGA will use the LUT-based

operations. Therefore, despite the availability of DSP blocks,

Xilinx and Intel also provide logic-based soft multipliers [3][4].

It is always inevitable to have logic-based soft multipliers along

with DSP blocks.

 In the multiplier, adder and compressor are the basic units

to accumulate the partial products, hence many works focus on

the approximation of adder and compressor. In [5], a tree com-

pressor is introduced to reduce partial products and a carry-

maskable adder is explored to dynamically configurate on the

final addition. Two approximate multipliers are discussed using

inexact half-adder, full-adder and 4:2 compressors with less

XOR gates in [6]. In [7], a bit significance-driven logic com-

pression with OR gates is implemented, then it is used in ap-

proximate multipliers. In [8], two approximate 4:2 compressors

are proposed and utilized in a Dadda tree multiplier. A recursive

construction is another approach for the approximate multiplier

built from small-size multipliers. In [9], an underdesigned mul-

tiplier (UDM) is constructed from inexact 2 × 2 multipliers,

which is proposed by simplifying its Karnaugh-Map expression.

Based on [9], several variants of approximate addition and mul-

tiplication units have been discussed in [10].

However, there is little study on FPGA-based approximate

multiplier design. In [11], three approximate multipliers are in-

troduced, where n rows of partial products are accumulated in

the form of two layers in parallel. In [12], an inexact 4×2 mul-

tiplier is proposed by using four LUTs. Then, approximate 4×4

multiplier and 8× 8 multiplier (Cc, Ca) are constructed from

4×2 multipliers.

 Because the architectural differences between ASICs and

FPGAs, the savings achieved by ASIC-based defined designs

might not comparably translate to FPGA-based implementation.

Moreover, it is common to employ FPGA as accelerator for

many applications involving a huge number of multiplications.

Therefore, it is expected to design low-cost FPGA-specific ap-

proximate multipliers.

 In this paper, we focus on a low-cost FPGA-based approx-

imate multiplier design, whereas most of previous works focus

on ASIC-based approximate multipliers [5]-[10]. In general,

there is always a tradeoff between accuracy loss and hardware

savings in approximate computing. In order to achieve a good

accuracy-hardware tradeoff, we discuss the 8×8 multiplier de-

sign on architectural space using a recursive construction. Our

primary contributions are as follows:

1) We propose three types of approximate 4× 4 multipliers

implemented with LUTs and associated carry chain. The critical

path is shortened by cutting the carry propagation in the multi-

plier.

599

8D-2

2) We provide a wide-range of approximate 8×8 multipliers

by using our proposed approximate 4×4 multipliers as elemen-

tary modules. Eight configurations for approximate 8×8 multi-

pliers are presented for different performance requirements.

This paper is organized as follows. Section II presents the

preliminaries required to understand the proposed approach.

Three types of approximate 4× 4 multipliers are proposed in

Section III. Section IV introduces the approximate 8×8 multi-

plier design built from proposed 4×4 multipliers. The evalua-

tions of 4×4 multipliers and 8×8 multipliers are discussed in

Section V, and Section VI concludes the paper.

II. PRELIMINARIES

In this paper, we target the devices of Xilinx 7-series FPGA

family. The proposed design can also be implemented on

FPGAs from other vendors, which provide 6-input LUTs and

carry chains.

The configurable logic blocks (CLBs) are the main logic re-

sources for implementations of sequential as well as combina-

tional circuits, where a CLB consists of two slices. Each slice

has four 6-input look-up tables (LUTs), eight storage elements

to register the outputs of LUTs, wide-function multiplexers, and

a fast 4-bit carry chain [13]. A 6-input LUT can be configurated

as one of the following two implementations. One implementa-

tion is a single 6-input combinational function with a single out-

put � as shown in Fig. 1 (a), commonly referred as LUT6. An-

other implementation is named as LUT6_2, which has two 5-

input combinational functions with �5 and �6 outputs as

shown in Fig.1 (b).

A LUT is instantiated with an INIT attribute, which describes

the required truth table based on the input logic. An INIT attrib-

ute consists of 16 hexadecimal values (i.e. 64 binary values for

64 input combinations). The INIT value usually can be deter-

mined by creating a binary logic table of all input combinations

and specifying the desired logic value of the output. It indicates

that the logic value ‘1’ occurs on the outputs for all 64 input

combinations. For example, an INIT value of

‘0000000000000004’ (hex) for LUT6 means that the output �

is ‘1’ for the input combination ‘000010’.

For combinational circuit design, the LUTs part and an asso-

ciated 4-bit carry chain are generally used as shown in Fig. 2.

The outputs of LUT drive the inputs of the carry chain which

comprises multiplexers with bypass signals (AX/BX/CX/DX)

and XOR gates. The carry chain usually implements a 4-bit

carry-look ahead adder, where �5 is as carry-generate signal

and �6 is as carry-propagate signal.

III. PROPOSED APPROXIMATE 4×4 MULTIPLIERS

To reduce the hardware consumptions of the 4×4 multiplier,

we propose three novel approximate multipliers. Three designs

provide different accuracy-hardware tradeoffs. The first multi-

plier with low-error feature is introduced in Section III-A. The

second multiplier has an optimized structure on the first multi-

plier as introduced in Section III-B. The third multiplier aims to

use only LUTs as discussed in Section III-C.

A. Approximate 4×4 multiplier 1 (AFM1)

The high complexity of the multiplier is usually caused by

the carry propagation path. To reduce the complexity of the

multiplier, we approximate the carry signal in 4×4 multiplier.

Figure 3 shows the structure and expression of approximate

4×4 multiplier 1 (AFM1), where three layers of LUTs are used

to accumulate partial products and the carry chain is used to

produce the final multiplication result. Layer 1 computes the

carry result from the preceding column. For example, column 4

consists of six elements ��, ��, ��, ��, �� and ��. LUT9

is fully used to compute the carry result from column 4, that is,

six inputs of one LUT are completely employed for six ele-

ments. However, there are eight elements on column 3, which

exceeds the input number of one 6-input LUT. Therefore, LUT6

inexactly computes the carry result from column 3 by ignoring

one partial product of ����. In addition, LUT3 is used to com-

pute the carry from column 0~2. When ��, ��, ��, ��, ��

and �� on columns 1 and 2 all are ‘1’, the exact carry result is

2-bit ‘10’ (bin). In AFM1, LUT3 computes inexactly this carry

result as 1-bit ‘1’ (bin). Layer 2 generates the sum result for the

current column, while Layer 3 produces the carry-propagate

and carry-generate signals for the associated carry chain. Par-

ticularly, to fully utilize the LUT resource, a LUT6_2 with two

outputs (i.e. LUT10) is employed in Layer 2 to generate both

the carry result and the sum result from column 5. The total

number of LUTs is 12, and the critical path is occupied by 2

LUTs and a 4-bit carry chain.

In AFM1, Layer 1 is approximate and other two layers are

accurate. Table I illustrates the error occurrences for AFM1.

The maximum error magnitude is ‘8’ for all input combinations

and the error probability is 0.0156 (= 4/256) for a uniform and

independent distribution.

B. Approximate 4×4 multiplier 2 (AFM2)

(a) LUT6 (b) LUT6_2

Fig. 1. The structure of 6-input LUT [13].

LUT5

LUT5

LUT6I5
I4
I3

I2
I1
I0

O

LUT5

LUT5

LUT6_2I5
I4
I3

I2
I1
I0

O6

O5

Fig. 2. The structure of carry chain [13].

LUT6_2

DX

CX

BX

AX

S3

S2

S1

S0

carry chain

Cout

Cin

O6

O5

O6

O5

O6

O5

O6

O5

LUT6_2

LUT6_2

LUT6_2

600

8D-2

To further reduce the area, the second design is proposed

based on AFM1.

Figure 4 shows approximate 4×4 multiplier 2 (AFM2) which

is optimized on AFM1. AFM2 has the similar structure with

AFM1, where the carry result from preceding column and the

sum result for the current column is computed by Layer 1 and

Layer 2, respectively. Because the probability is low that the

carry signal is generated from columns 1 and 2, the carry from

columns 1 and 2 is omitted by eliminating LUT3 in AFM1. In

addition, in AFM2, the carry result from column 3 is computed

inexactly as 	� by LUT3, hence LUT6 is AFM1 is omitted. Ta-

ble II shows the input and output configurations for each LUT

in AFM2. The total area is 10 LUTs, and the critical path in-

volves 2 LUTs and a carry chain.

C. Approximate 4×4 multiplier 3 (AFM3)

To further improve the latency saving in approximate multi-

plier, approximate 4×4 multiplier 3 (AFM3) is proposed by re-

moving the associated carry chain. The result of 4×4 multiplier

is computed by eight LUTs.

Figure 5 shows the structure of AFM3, which only consists

of eight LUTs. In each LUT, the carry result from preceding

column is computed inexactly by AND gates as shown as the

shadow part in Fig. 5. The results of
�,
�,...,
� are com-

puted in parallel and the critical path is shortened to 2 LUTs.

IV. PROPOSED APPROXIMATE 8×8 MULTIPLIERS BY USING 4×4

MULTIPLIERS AS ELEMENTARY MODULES

In general, a 2n×2n multiplier (denoted as � × �) can be

built from four n×n multipliers as described by

� × � = (�� × 2
 + ��) × (�� × 2
 + ��)
 = �� × �� × 2�
 + (�� × �� + �� × ��) × 2
 + �� × ��. (1)

Fig. 3. The structure and expression of AFM1. Layer 1 computes the carry result from the preceding column while Layer 2 generates the sum result for

current column. Layer 3 produces the carry-propagate and carry-generate signals for carry chain.

LUT6_2
12

A3B3c3c41 s3

gen3

LUT6_2

c2c3s21 s31

gen2
11

A3B0 A2B0 A1B0 A0B0

A3B1 A2B1 A1B1 A0B1

A3B2 A2B2 A1B2 A0B2

A3B0 A2B3 A1B3 A0B3

7 6 5 4 3 2 1 0

gen1

A0A111

LUT6_2

P1 P0

1

B1B0

LUT6

P2

2

A0A1B0A2B1B2

c1

LUT6
3

A0A1B0A2B1B2

6

A1A2A3

c2

LUT6

B1B2 B0

LUT6

c3

9

A1A2A3B2B3 B1

LUT6

s1

4

A1A2A3B1B2 B0

LUT6

s2

7

A1A2A3B2B3 B1

LUT6_2

c4 s3

10

A2A3B211 B3

c1

LUT6_2
8

s1c21 s21

prop1prop2

LUT6_2
5

A0B3c11 s11

prop0 gen0

4-bit carry chain

P3P4P5P6P7

prop3

6
Layer 1

Layer 2

Layer 3

column number

TABLE I. ERROR OCCURRENCES FOR AFM1

Input combination Exact result Approximate result Difference

7×7 49 41 8

7×15 105 97 8

15×7 105 97 8

15×15 225 217 8

Fig. 4. The structure of AFM2.

A0A111

LUT6_2

P1 P0

1

B1B0

LUT6

P2

2

A0A1B0A2B1B2

LUT6

c3

7

A1A2A3B2B3 B1

LUT6

s2

5

A1A2A3B2B3 B1

LUT6_2

c4 s3

8

A2A3B211 B3

LUT6_2
4

A0A1B21 B3s1A1

LUT6_2
6

B2s11 c2s2

LUT6_2
9

c2c3s21 s31

LUT6_2
10

A3B3c3c41 s3

LUT6_2

s1 c2

3

A2A3B011 B1

gen1prop1prop2

4-bit carry chain

P3P4P5P6P7

prop3 prop0 gen0gen2gen3

A3B0 A2B0 A1B0 A0B0

A3B1 A2B1 A1B1 A0B1

A3B2 A2B2 A1B2 A0B2

A3B0 A2B3 A1B3 A0B3

7 6 5 4 3 2 1 0

Layer 1

Layer 2

Layer 3

column number

TABLE II. INPUT AND OUTPUT CONFIGURATIONS FOR LUTS IN AFM2

LUT
Input configuration

Output con-

figuration INIT value (Hex)

I5 I4 I3 I2 I1 I0 O6 O5

LUT1 1 1 �� �� �� ��
�
� 6AC06AC0A0A0A0A0

LUT2 �� �� �� �� �� ��
� 1E665AAAB4CCF000

LUT3 1 1 �� �� �� �� �� 	� 6AC06AC080008000

LUT4 1 �� �� �� �� �� ����� ���� 953F6AC02A008000

LUT5 �� �� �� �� �� �� �� 96665AAA3CCCF000

LUT6 1 �� 	� �� �� �� ����� ���� 807F7F8000808000

LUT7 �� �� �� �� �� �� 	� E888A000C0000000

LUT8 1 1 �� �� �� �� 	� �� 800080006AC06AC0

LUT9 1 1 �� �� 	� 	� ����� ���� 936c936c20802080

LUT10 1 	� �� 	� �� �� ����� ���� 87777888F8888000

601

8D-2

Figure 6 shows the construction for a higher-order multiplier

from four small-size multipliers. We utilize this recursive ap-

proach to explore 8×8 multiplier design from 4×4 multipliers.

Firstly, four 8-bit products are generated from four 4×4 multi-

pliers. Then, additions are used to sum four 8-bit products. The

exact addition for summing four 8-bit products consists of nine

LUTs and three associated carry chains [12]. The latency of ex-

act addition is large because of the serial carry propagation path.

To lower the hardware consumptions of the addition, especially

latency, we propose an inexact addition to compute the results

of each column in parallel as shown in Fig. 7. Approximation

in the proposed inexact addition is cutting the carry propagation

between two adjacent columns. OR operation is used to com-

pute the inexact sum result. The results of columns 4 to 11 are

computed by eight LUTs, where each LUT is configurated as

OR operation. The INIT value for each LUT is

‘FEFEFEFEFEFEFEFE’ (hex). The latency is efficiently re-

duced by cutting the carry propagation.

V. EXPERIMENT RESULTS AND DISCUSSION

A. Experiment setup

To clarify the contributions of the proposed multipliers, the

proposed design was compared with the Vivado default exact

multiplier, Xilinx multiplier IP (exact) [4], and approximate

multipliers in [9] (UDM), [10] (C3), [11] (SMA3), [12] (Cc,

Ca).

For accuracy analysis, approximate multipliers were evalu-

ated in terms of mean error distance (MED), mean relative error

distance (MRED) and error rate (ER). The error distance (ED)

is the arithmetic difference between the exact result (Y) and the

inexact result (Y�). MED is the average value of EDs for all input

combinations. The relative error distance (RED) is defined as

RED = ED/Y and the average value of REDs is MRED. ER is

the percentage of the erroneous result produced by inexact mul-

tipliers among all results. The functional models of propsed

multipliers were implemented using Matlab and an exhaustive

simulation was performed.

For evaluation of area, latency and power, the proposed de-

sign was implemented in Verilog and synthesized using Xilinx

Vivado 18.3 for XC7VX485T device of Virtex-7 family. We

synthesized approximate multipliers UDM, C3, SMA3, Cc and

Ca using the open-source codes provided by [10]-[12], respec-

tively. All multipliers were synthesized and optimized in the

same environment with default options. To precisely evaluate

power, we reported power results with switching activity inter-

change format file (.saif) from post-implementation functional

simulation.

B. Evaluation of 4×4 multipliers

Table III shows the accuracy comparison of approximate

4×4 multipliers. The proposed multiplier AFM1 achieves the

lowest accuracy loss in terms of MED, MRED and ER. The

hardware performance is shown in Table IV. The proposed

AFM3 has the smallest area and the shortest latency. Combin-

ing with the results in Table III and IV, it is can be observed that

Fig. 5. The structure of AFM3. The result is computed without carry chain.
The shadow part in LUT indicates the carry from preceding column.

A3B0 A2B0 A1B0 A0B0

A3B1 A2B1 A1B1 A0B1

A3B2 A2B2 A1B2 A0B2

A3B0 A2B3 A1B3 A0B3

B3

P4

A2B0A1B1A0B2

P2

2
B3

P3

B1A1B2B0 A0

A3B0A0

A2

3

4

A1

P5

A3B2A2B3B1

7
P7 P6

A2 B2 A3B3

8

B2A3B0A2B1A1

A3B1A1

6

5

A1B0A0B1

P0P1

1

Fig. 6. Building higher-order multiplier from four small-size multipliers.

�� × ��

�� × ��

�� × ��

�� × ��

�

�

Fig. 7. Inexact addition implemented by eight LUTs generates the results of

columns 4 to 11. The dots of ■, ●, ▲ and indicates the result from

�� × ��, �� × ��, �� × ��, and �� × ��, respectively.

115 14 13 12 11 10 9 8 7 6 5 4 3 2 0

LUT6

TABLE III. ACCURACY COMPARISON OF 4×4 MULTIPLIERS

Designs MED MRED (%) ER (%)

AFM1 0.125 0.14 1.56
AFM2 1.500 2.94 17.19

AFM3 11.250 13.53 32.81

UDM [9] 3.125 2.61 19.14

C3 [10] 4.688 13.97 46.48

SMA3 [11] 10.750 12.34 35.94

Ca [12] 0.188 0.24 2.34

TABLE IV. AREA, LATENCY AND POWER OF 4×4 MULTIPLIERS

Designs Area [LUTs] Latency (ns) Power (W)

Exact 16 6.412 0.311

Xilinx Multiplier IP 15 6.765 0.308

AFM1 12 6.763 0.306

AFM2 10 6.804 0.304

AFM3 8 5.650 0.294

UDM [9] 13 6.451 0.298

C3 [10] 15 7.013 0.290
SMA3 [11] 8 6.214 0.293

Ca [12] 12 7.058 0.307

602

8D-2

the proposed 4×4 design outperforms other approximate mul-

tipliers with comparable accuracy. For example, for AFM1 and

Ca, the number of LUTs are both 12. The latency and power of

AFM1 is smaller than those of Ca. In addition, the accuracy loss

of AFM1 is lower than that of Ca.

C. Evaluation of 8×8 multipliers

 For the design of 8× 8 multipliers, we discuss all possible

configurations building from 4×4 multipliers. Firstly, we eval-

uate the latency and area of exact/inexact addition. Then, the

latency and area of all configurations are estimated. Finally,

eight configurations for 8×8 multiplier are presented.

 The latency and area of exact and proposed inexact additions

are shown in Table V. The latency of inexact addition is smaller

than that of exact one. By using the structure shown in Fig. 6,

the area of the 8×8 multiplier can be calculated as the summa-

tion of total LUTs of four 4×4 multipliers with the area of ad-

dition. The latency of the 8× 8 multiplier is estimated as the

summation of the largest latency among four 4×4 multipliers

with the latency of the addition. Figure 9 shows the estimated

latency and area of all configurations for the 8×8 multipliers.

The operation on �� × �� is most significant, which deter-

mines the dot position of each configuration in Fig. 9. The dif-

ferent accuracy-hardware can be achieved by different config-

urations on 8×8 multiplier. We select eight configurations for

the proposed 8×8 multiplier as illustrated in Table VI.

 Figure 10 shows the accuracy comparison for the

approximate 8 × 8 multipliers. The proposed design has the

wide-range of accuracy, which provides several choices for ap-

plications with different accuracy requirements. The proposed

T1 has the lowest accuracy loss among all approximate designs,

which employs AFM1 as 4 × 4 elementary multiplier. The

MRED of T1 is low as 0.17% and the ER is 5.49%.

 The area, power and latency of the exact multipliers and ap-

proximate multiplier with 8-bit input are shown in Fig. 11. The

proposed multiplier T8 achieves the lowest area, power and la-

tency among all multipliers. Compared with the exact multi-

plier, T8 has the area saving of 43.66%, power saving of

20.36% and latency saving of 27.66%. UDM and C3 both focus

on logic gates, whose area are even larger than the exact multi-

plier on FPGA-based implementation. T1 and Ca have the sim-

ilar accuracy loss, yet the latency of Ca is larger than that of T1.

Overall, the proposed design T3 and T5 are suggested for error-

tolerant applications, where T3 has advantage for applications

with high-accuracy requirements and T5 is better for area- and

power-efficient designs.

D. Image processing application

 The image sharpening algorithm [14] is widely utilized to

evaluate approximate multipliers. The peak signal-to-noise ra-

tio (PSNR) is a metric to measure the quality of processed im-

ages as defined in [8]. In addition, a well-established metric

structural similarity index (SSIM) is another metric and we

used the Matlab function ���� to calculate it. Figure 12 shows

the processed images from the exact multiplier and proposed

approximate multipliers. The difference is imperceptible

among the images processed by exact multiplier and the pro-

posed multiplier. The PSNR and SSIM results are also

Fig. 10. Accuracy comparison of approximate 8×8 multipliers

0
10
20
30
40
50
60
70
80
90
100

0
5

10
15
20
25
30
35
40 MRED MED ER

M
RE

D(
%

)
M

ED
(

)

ER
(%

)

0

20

0

0.5

Ca[12] T1 T2

TABLE V. AREA AND LATENCY OF EXACT AND INEXACT ADDITONS

Designs Area [LUTs] Latency (ns)

Exact addition 9 7.892

Inexact addition 8 6.020

(a) (b)

Fig. 9. The estimated latency and area of all configurations for the 8×8 mul-

tiplier. (a) Estimated latency vs. MRED. (b) Area vs. MRED.

11.5

12

12.5

13

13.5

14

14.5

15

0 0.05 0.1 0.15 0.2 0.25

Es
tim

at
ed

 la
te

nc
y

(n
s)

MRED

40
42
44
46
48
50
52
54
56
58

0 0.05 0.1 0.15 0.2 0.25

Ar
ea

[L
U

Ts
]

MRED

TABLE VI. EIGHT CONFIGURATIONS FOR PROPOSED 8×8 MULTIPLIER

Designs
Configuration

�� × �� �� × �� �� × �� �� × �� addition

T1 AFM1 AFM1 AFM1 AFM1 exact

T2 AFM1 AFM1 AFM1 AFM2 exact

T3 AFM2 AFM2 AFM3 AFM3 exact

T4 AFM2 AFM3 AFM3 AFM3 exact

T5 AFM2 AFM1 AFM3 AFM1 inexact

T6 AFM2 AFM3 AFM3 AFM3 inexact

T7 AFM3 AFM1 AFM3 AFM3 inexact

T8 AFM3 AFM3 AFM3 AFM3 inexact

603

8D-2

presented in Fig. 12. The SSIM results of T1, T2, T3, and T4

are higher than 99.0%, because the exact addition is used to sum

the results from four small-size multipliers. In general, a PSNR

of 20dB can be regarded as acceptable [15], the images pro-

cessed by the proposed multipliers all are sufficiently exact for

error-tolerant application.

VI. CONCLUSION

In this paper, we propose a FPGA-based approximate 8×8

multiplier design to achieve lower hardware consumptions than

exact multiplier. We firstly propose approximate 4×4 multipli-

ers with a shorter critical path and small number of LUTs. Then,

the design of 8× 8 multipliers is explored by using proposed

4×4 multipliers as elementary modules. A wide-range of ap-

proximate 8×8 multipliers is provided for different accuracy-

hardware requirements. The experimental results demonstrate

that the proposed multiplier design delivers more hardware re-

duction than previous designs with comparable accuracy.

ACKNOWLEDGMENTS

This work was partly executed under the cooperation of

organization between Waseda University and KIOXIA Corpo-

ration (former Toshiba Memory Corporation). The work was

supported in part by Grants-Aid for Scientific Research from

JSPS and a research fund from NEC. The work of Y. Guo was

supported by the China Scholarship Council scholarship. The

authors convey their sincere gratitude.

REFERENCES

[1] J. Han and M. Orshansky, “Approximate computing: An emerging
paradigm for energy-efficient design,” in Proceedings of the IEEE
European Test Symposium (ETS), pp. 1-6, 2013.

[2] I. Kuon, and J. Rose, “Measuring the gap between FPGAs and
ASICs,” IEEE Transactions on computer-aided design of integrated
circuits and systems, vol. 26, no. 2, pp. 203-215, 2007.

[3] Intel, Integer Arithmetic IP Cores User Guide, https://www.altera.com

/en_US/pdfs/literature/ug/ug_lpm_alt_mfug.pdf, 2017.

[4] Xilinx, LogiCORE IP Multiplier v11.2., https://www.xilinx.com/

support/documentation/ip_documentation/mult_gen_ds255.pdf, 2017.

[5] T. Yang, T. Ukezono, and T. Sato, “A low-power high-speed accuracy-
controllable approximate multiplier design,” in Asia and South Pacific
Design Automation Conference (ASP-DAC), pp. 605-610, 2018.

[6] S. Venkatachalam and S. B. Ko, “Design of power and area efficient
approximate multipliers,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 25, no. 5, pp. 1782-1786, 2017.

[7] I. Qiqieh, R. Shafik, G. Tarawneh, D. Sokolov, and A. Yakovlev,
“Energy-efficient approximate multiplier design using bit significance-
driven logic compression,” in Proceedings of the Conference on Design,
Automation & Test in Europe (DATE), pp. 7-12, 2017.

[8] A. Momeni, J. Han, and F. Lombardi, “Design and analysis of
approximate compressors for multiplication,” IEEE Transactions on
Computers, vol. 64, no. 4, pp. 984-994, 2015.

[9] P. Kulkarni, P. Gupta, and M. Ercegovac, “Trading accuracy for power
with an underdesigned multiplier architecture,” in International
Conference on VLSI Design , pp. 346-351, 2011.

[10] S. Rehman, W. El-Harouni, M. Shafique, A. Kumar, and J. Henkel,
“Architectural-space exploration of approximate multipliers,” in
Proceedings of the IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), pp.1-8, 2016.

[11] S. Ullah, S. S. Murthy, and A. Kumar, “SMApproxlib: library of FPGA-
based approximate multipliers,” in ACM/ESDA/IEEE Design utomation
Conference (DAC), pp. 1-6, 2018.

[12] S. Ullah, S. Rehman, B. S. Prabakaran, F. Kriebel, M. A. Hanif, M.
Shafique, and A. Kumar, A, “Area-optimized low-latency approximate
multipliers for FPGA-based hardware accelerators,” in Proceedings of the
55th Annual Design Automation Conference (DAC), Article No.159,
2018.

[13] Xilinx, 7 Series FPGAs Configurable Logic Block User Guide,
https://www.xilinx.com/support/documentation/user_guides/ug474_7Ser
ies_CLB.pdf, 2016.

[14] M. S. K. Lau, K. V. Lin, and Y. C. Chu, “Energy-aware probabilistic
multiplier: design and analysis,” in Proceedings of the international
conference on Compilers, architecture, and synthesis for embedded
systems, pp. 281-209, 2009.

[15] R. Zendegani, M. Kamal, M. Bahadori, A. Afzali-Kusha, and M. Pedram,
“RoBA multiplier: A rounding-based approximate multiplier for high-
speed yet energy-efficient digital signal processing,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 2, pp.393-
401, 2017.

(a) (b) (c)

Fig. 11. Hardware performance for the exact 8×8 multiplier and approximate 8×8 multipliers. (a) Area (b) Power (c) Latency.

30
35
40
45
50
55
60
65
70
75
80

Ar
ea

 [L
U

Ts
]

0.27

0.29

0.31

0.33

0.35

0.37

0.39

0.41

Po
w

er
(W

)

5

6

7

8

9

10

11

12

La
te

nc
y

(n
s)

 (a) exact (b) T1 SSIM = 99.98%

 PSNR = 55.4dB

(c) T2 SSIM = 99.95%

 PSNR = 54.2dB

(d) T3 SSIM = 99.80%

 PSNR = 44.2dB

(e) T4 SSIM = 99.41%

 PSNR = 32.2dB

(f) T5 SSIM = 98.82%

 PSNR = 27.5dB

(g) T6 SSIM = 98.11%

 PSNR = 24.3dB

(h) T7 SSIM = 98.77%

 PSNR = 27.4dB

(i) T8 SSIM = 98.11%

 PSNR = 24.3dB

Fig. 12. Processed imaged by exact and approximate multipliers.

604

8D-2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

