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Abstract—Approximate multipliers are ubiquitously used in
diverse applications by exploiting circuit simplification, mainly
specialized for Application-Specific Integrated Circuit (ASIC)
platforms. However, the intrinsic architectural specifications of
Field-Programmable Gate Arrays (FPGAs) prohibited comparable
resource gains when directly applying these techniques. LeAp is
an area-, throughput-, and energy-efficient approximate multi-
plier for FPGAs which efficiently utilizes 6-input Look-up Tables
(6-LUTs) and fast carry chains in its novel approximate log
calculator to implement Mitchell’s algorithm. Moreover, three
novel error-refinement schemes with negligible area overhead and
independent from multiplier-size, have boosted accuracy to>99%.
Experimental results obtained from Vivado, Artificial Neural
Network (ANN) and image processing applications indicate supe-
riority of proposed multiplier over accurate and state-of-the-art
approximate counterparts. In particular, LeAp outperforms the
32x32 accurate multiplier by achieving 69.7%, 14.7%, 42.1%,
and 37.1% improvement in area, throughput, power, and energy,
respectively. The library of RTL and behavioral implementations
will be open-sourced at https://cfaed.tu-dresden.de/pd-downloads.

Index Terms—Field-Programmable Gate Arrays, Approxi-
mate Multiplier, Mitchell’s Multiplication Algorithm, Energy-
Efficiency, Area-Optimization.

I. INTRODUCTION

With the cease of Dennard scaling era, the strive to prevent
breakdown of Moore’s law has led to re-emergence of approx-
imate computing which trades accuracy to meet the available
budget. This technique has become pronounced considering
the ever-increasing cognitive applications in computer vision,
big data, and probabilistic-machine learning. The paramount
design constraints in these applications are energy dissipa-
tion and latency as they are constantly fed with bulk of
data entailing fast outcome computation in a limited energy
budget. Multipliers are one of the most energy-hungry units
extensively employed in the main kernels of aforementioned
programs which carves out a prominent niche for their approx-
imation. Of particular instances are, Deep Neural Networks
which enjoy a renaissance in today’s computational world
(11×109 Multiply-Accumulate operation/image in Resnet-152
dominates 99% of computational energy [1]). Hence, reducing
the area and energy of computational units while increasing
throughput (which is of the same importance as memory opti-
mization [2]) enables supporting of larger networks, especially
in fixed-budget IoT/wearable gadgets.

Field-Programmable Gate Arrays (FPGAs), rewarded by
high degree of parallelism to accelerate these applications,
have been augmented with hard-wired DSP blocks to excel
fixed- and floating-point multiplication. Nevertheless, hosting
off-the-shelf DSP blocks cannot always guarantee to fulfill
design requirements in a variety of application domains. As
shown in [3], the fixed locations of DSP blocks within FPGAs
increase routing complexity and result in increasing the critical
path delays of some circuits. Furthermore, in concurrently
executing programs’ environments or multiplication-intensive

applications, the limited ratio of DSP blocks versus LUTs
(<0.001) forces designers to utilize LUT-based softcore multi-
pliers. Finally, the degraded performance and heavy utilization
of DSP blocks by a single application (Viterbi decoder, Reed-
Solomon and JPEG encoders) discussed in [4] are from
motivational examples that testify on this inefficiency of hard
multipliers in many applications. Therefore, in spite of avail-
ability of DSP blocks-based hard multipliers, soft- Intellectual

Property (IP) versions are provided by major FPGA vendors
such as Xilinx and Intel [5].

Most of the works on approximate multiplier have fo-
cused on either simplifying Partial Product (PP) genera-
tion/accumulation/summation or using smaller multipliers by
LSB truncation which are mainly deployed in Application

Specific Integrated Circuit (ASIC) fabrics. However, two main
challenges still exist: a) These techniques are not generic
since approximation principles as defined for ASIC neglect
the differences in underlying reconfigurable infrastructure and
yield insignificant improvements when directly synthesized
and ported to FPGAs [7]. b) In contrast to ASIC, limited
studies have evaluated these techniques on FPGAs [4], [9],
[19]–[21]. Two drawbacks are linked to these works: designs
with hierarchical implementation approach are not efficiently
scalable, as integrating smaller imprecise instances may lead
to further deterioration of the output due to more and bigger
errors being generated by cascading. This obstructs their usage
in majority of applications that utilize wide-input multipliers.
Second, these multipliers have mainly considered PP-based
designs and not considered other options that can profit under-
lying architectural characteristics of FPGAs and render higher
savings. Another point should be noted is that modern error-
resilient systems accept different accuracy bounds. Hence,
it is highly desirable to enable adjustable precision for the
same circuit with minimal overhead that do not violate user
constraints while still producing viable results. This highlights
the need for exploring novel avenues to provide a roadmap
enabling multipliers with tunable accuracy-resource trade-offs
specifically in FPGAs.

To tackle above-mentioned challenges, we present Leading-

one detection-based area- and energy-efficient Approximate

multiplier (LeAp) with tunable accuracy, specifically tailored
for FPGAs. The motivation behind elaborating LeAp upon
Mitchell’s algorithm is the facilitated implementation of mul-
tiplication translated to addition in his algorithm which is
the simplest linearly-approximated logarithmic multiplier. This
translation enables savings of area, power, delay, and perfectly
fits FPGAs, as they are already equipped with fast carry chains
hardened to accelerate addition. Occupying less resource will
provide the opportunity for reconfigurable accelerators to
further execute multiplication-intensive workloads. The novel
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TABLE I: Summary of Approximate Multiplier in the Literature

Approach Work Description Platform Improvement Accuracy up to

Partial product
generation/
addition/

accumulation

[4] 4-, 8-, and 16-bit multipliers with approximate PPs using 4x2 instances
FPGA

{Area, energy, and latency} + 99.7%
[6] Up to 16-bit adders using approximate half and full adder {Area, energy} ++, Latency + 92%

[7] 4x4 and 8x8 multiplier with approximate partial products {Area, power, and latency} + Configurable
[8], [9] 2x2 multiplier based on simplifying Karnaugh Map and fast adders

ASIC

Power ++, Latency + 96.6%
[10], [11] Library of larger multiplier and adders using 2x2 instances {Area, power} + Configurable

[12] MxM multiplier using M

2
xM

2
with carry-prediction and truncation of PPs {Area, power} ++, Latency + 98.5%

Resize MxM
to NxN

multiplier

[13] Select the N bit starting from leading one
ASIC

{Area, power} +++ Configurable
[14] Pass MSB bits to multiplier if it consists of leading one, else LSBs {Power, latency} + 99%
[15] Select M bit from one of 2 fixed position (including the leading one) Energy ++ 99%

Using
Mitchell’s

algorithm [16]

[16] Translate multiplication to addition
ASIC

{Area, power} +++ 96.2%
[17] Error reduction through piece-wise approximation of inputs Area-delay product ++ 99.9%
[18] Adding one error-reduction term to [16] {Area, power} ++ 97.2%

LeAp Efficient approximate log calculator and error-reduction schemes FPGA {Area, power & energy}++, Throughput + 99.2%

contributions of this paper are outlined as follows:

• Novel architecture of approximate log calculator and

Mitchell’s algorithm customized for FPGAs. Leading-
one detection and fractional part alignment (log calculation)
are two inherent steps in Mitchell’s algorithm. Prior works
used large priority encoders and barrel shifters while LeAp
implements both steps concurrently with the same, small
number of FPGA primitives [6]. This saves ~70% area
compared to accurate multiplier, plus smaller delay and
energy compared to both accurate and Mitchell’s multiplier.

• Achieving precision variability by three novel error-

reduction schemes with minimal overhead. Our mecha-
nisms that can tune error to a desirable bound (average rela-
tive error<1%), are easily scalable and can be coupled with
multiplier of any size. It is noteworthy, unlike existing state-
of-the-art error-refinement approaches [17], [18] that a non-
trivial circuitry is needed for error-refinement step, LeAp
neither incurs additional adder to the original design, nor
depends on the intermediate outcome during the Mitchell’s
algorithm. In contrast, the addition of error-coefficients
in LeAp is devised based on directly configuring same
LUTs and their associated fast carry chains for addition of
fractional part (provided in Xilinx UNISIM library [22])
and omitting usage of predefined IPs. This enables Vivado
to perform synthesis optimizations leading to diminished
area and latency of final design [23].

We evaluate LeAp against established approximate mul-
tipliers in the literature with respect to accuracy and per-
formance metrics. Experimental measurements indicate that
LeAp surpasses cutting-edge approximate multipliers in terms
of area, throughput, and energy while improving accuracy of
Mitchell’s method. The RTL and behavioral models of the
proposed LeAp will be open-sourced and available online at
https://cfaed.tu-dresden.de/pd-downloads to allow accelerate
research on approximate multipliers.

II. RELATED WORK

A. Partial product approximation

In [4], [6]–[9] inexact simplified 2x2, 4x4, 8x8 multipli-
ers/adders are designed, while [10], [11] has provided libraries
of approximate adders and multipliers with various resource-
accuracy trade-off. The main shortcoming attributed to these
works is weak-scalability when transported to larger input-
width, i.e., simplification of karnaugh map or PP tree should
start from scratch, otherwise error drastically increases as it
becomes accumulated in a recursive design approach [8].

B. Resize multiplication by Leading-one detection/truncation

Studies in this category use two approaches: 1) MSBs of the
inputs are forwarded to smaller accurate multiplier and then

shifted to the output appropriately which impose error cases

equal to 100%. 2) large priority encoders and barrel-shifters
are used for combinational implementation of Leading One

Detector (LOD) and extracting fractional-parts [24]. However,
these ASIC-based approaches weakly fit FPGAs due to using

layers of multiplexers (poorly map on LUTs [25]). Targeting
FPGAs, authors in [26] proposed a 8-bit LOD which uses
consecutive levels of LUTs to implement each bit of LOD-
output since each bit is a function of all bits in the input. The
negative resultant of this cascading is exacerbation of circuit
latency. Moreover, using large barrel-shifters for re-aligning
fractional part is inevitable which further increases overhead.

C. Approximate Multiplication Algorithm

Designs in this branch exploit conversion of multiplication
to addition in logarithmic-based representation, which consid-
erably simplifies the circuit. Among the existing techniques,
Mitchell’s method has the best resource-efficiency in unsigned
multipliers [17], albeit having a high error (11.11% peak
and 3.85% mean relative error). It consists of four steps:
finding the leading one as integer part, re-aligning rest of
the bits as fractional part, addition of both parts, and finally
shifting fractional part w.r.t integer part. In [27], large mul-
tipliers are recursively build upon proposed error-free of 2x2
Mitchell’s multiplier. However, having high area and latency
overheads (~67%) filters the proposed design out from pareto-
optimal curves. Other works like [17] investigated piece-wise
linear error-reduction schemes to calculate log and anti-log
individually for each segment within power-of-two-interval.
These methods are applied to each multiplier input separately,
neglecting magnitude of error after multiplication. Tackling
piece-wise approximation overhead, a newly proposed work
(MBM) [18] has proposed a single error-correction term (for
all input combinations) which is added once after computing
summation of fractional part. Through showing this single

error-reduction term weakly fits all input combinations (output
overflow after adding error-reduction term), we propose three
approaches that enable tunable/higher accuracy.

III. PROPOSED APPROXIMATE MULTIPLIER

A. Mitchell’s Multiplication thm

Consider the binary representation for N -bit unsigned input
A which can be written as Eq. 1, where k reveals the position
of the leading one. The rest of the bits (starting from position
k − 1 to 0) are considered as the fractional part which fall in
the range 0 ≤ x < 1. In linear mathematics, log2(1 + x) is
approximated to x for this range, therefore the approximate
log value of input A is shown in Eq. 2.

A=2k
k−1∑

i=0

2ibi=2k(1+x)⇒51=25(1+0.10011), 11=23(1+0.011) (1)
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TABLE II: Summary of design metrics in 16x16 multipliers

Approach
Area

(6-LUT)

Throughput

(/μS)

Power

(mW)

Energy

(μJ)

Avg Relative

Error (%)

Peak

Error (%)

Accurate [5] 280 203 31.5 328 - -
CA [4] 245 201 30.4 341 0.3 19.04
CC [4] 240 416 32.7 306 14.88 96.7

Trunc12x12 139 221 24.1 242 0.2 100
MA [16] comb. 249 212 27.1 276 3.85 11.11
MA [16] seq. 121 138 15.4 264 3.85 11.11

MBM [18] 128 94 17.5 331 2.63 8.81
LeAp-2 132 238 21.6 224 1.56 6.67
LeAp-3 135 224 23 232 1.23 5.72
LeAp-5 139 217 24.7 246 0.98 4.76

TABLE III: Summary of design metrics in 32x32 multipliers

Approach
Area

(LUT)

Throughput

(/μS)

Power

(mW)

Energy

(/μJ)

Accurate [5] 1103 163 65.8 672
MA [16] 246 53 23.5 490

MBM [18] 258 42 28.2 635
LeAp-2 334 187 38.1 423
LeAp-3 337 174 40.8 437
LeAp-5 342 166 43.3 451

we omit comparing them again in this paper. To ensure a fair
design, we implemented all multipliers in HDL, synthesized
and implemented in Vivado 17.4 for Virtex-7 FPGA. Area,
throughput, and power are directly reported from Vivado
Simulations and Power Analyzer for the 100 Million inputs
uniformly distributed in a random order over whole input
interval. In addition, energy dissipation is measured based on
the total execution time and its power consumed for all the
inputs feeded to the multiplier. Note that metrics are reported
separately since weighted product of resource-error is more of
designer’s preference and not by itself an appropriate figure of
merit, i.e., it lacks distinctiveness and results in 0 for accurate
multiplier [10]. In addition, to ensure scalability of LeAp, all
Mitchell’s based designs are implemented in 32-bit as well.
The behavioral structure of multipliers are also developed in
MATLAB, C++, and Python to calculate the error magnitude,
average absolute relative error, and peak absolute relative error
(referred to as relative and peak errors, respectively) for all
possible multiplier inputs. Multipliers are also deployed in
both Artificial Neural Network (ANN) and Gaussian Image
Smoothing and Multiply-based Image Blending applications
to test the effectiveness of LeAp in real world applications.

B. Evaluation and Characterization of Proposed Multipliers

Design metrics and error analysis are summarized in Table
II and III, where x in “LeAp-x”, denotes number of error-
reduction coefficient. The following conclusions are notable:

• LeAp vs. PP-based multiplication: Comparing Mitchell-
based multipliers with truncated and hierarchical-based
counterparts, designed upon incorporating smaller inexact
instances [4] justifies three points: 1) thanks to translation of
multiplication to addition, area of Mitchell-based multipliers
grows by factor of ~2.5 while compared to ~4 for others.
This further highlights efficiency of LeAp in larger-width. 2)
Although average error of Trunc12x12 is better than 16x16
LeAp, referring to previous point, in larger multipliers
more LSBs need to be truncated, i.e., Trunc18x18 have
same area to 32x32 LeAp. This will further deteriorate its
accuracy and increase cases with large error near or equal
to 100% (hundreds of millions), while in LeAp most of
errors are<1%. 3) approximation applied on hierarchical
multipliers is rewarding in accuracy-resource trade-off only
when it is done from scratch for each multiplier size,

otherwise stockpiled error in larger designs significantly
scarifies output accuracy to gain resource efficiency.

• LeAp corroborates its superiority by improving resource

consumption: Augmenting Mitchell’s algorithm with our
proposed log calculator architecture, efficiently customized
for FPGAs with novel error-reduction schemes, delivers
improvement in all design metrics compared to the accurate
multiplier while tolerating less than 1.6% average relative
error (especially LeAp-2 saves area and energy by 52.8%
and 28.7% in 16x16 design). This is while both CA [4]
and MBM [18] dissipate even more energy (with lower
throughput) than accurate multiplier. LeAp resource gains
become even more pronounced in 32x32 multiplier (up to
69.7%, 14.7%, 42.1%, and 37.1% improvement in area,
throughput, power, and energy, respectively). In addition,
as it can be observed, increasing the number of coefficients
can boost precision with a negligible cost, benefiting from
the fact that coefficient selection only depends on few
MSBs of fractional parts and one more error-coefficient
would only increase the conditional statements by one. We
capitalized most of extra LUTs in our design to implement
the proposed fast log calculator which improves total ex-
ecution time and also contribute to reduction of energy
dissipation. As a result, LeAp has improved energy over all
multipliers, including original Mitchell. Note that although
error-reduction scheme proposed in MBM has small area
and power compared to LeAp, its prolonged critical path and
lack of fast approximate log calculator resulted in execution
time and energy overhead.

• The error-refinement approach outperforms the existing

ones: Compared to Mitchell’s multiplier, both error metrics
are enhanced by 74.5% for relative error and 57.1% in peak
error for 16x16 multiplier. Note that exhaustive 32x32 test
is massively time-consuming, however, unlike hierarchical-
designs, Mitchell’s avg-error does not significantly changes
in larger multipliers. In particular, the proposed error-
reduction scheme is independent from input size and outper-
forms MBM design in accuracy with respect to both error
metrics (reduced to less than its half for relative error).

C. High-Level ANN & Image Processing Applications

To further evaluate the efficacy of LeAp in state-of-the-
art multiplier-exhaustive applications, LeAp-5 and MBM [18]
are deployed in the behavioral implementations of Image
Blending application with ‘Miscellaneous’ test images in
USC-SIPI Database [28]. The average Peak signal-to-noise

ratio (PSNR) value produced by LeAp-5 (32.19dB) is better
than MBM (31.23dB). In another application (Gaussian Image
Smoothing) LeAp also has surpassed MBM in PSNR (27.4dB
over 24.9dB). Examples of visual quality for both applications
are illustrated in Fig. 4 and Fig. 5.

We have also utilized approximate multipliers during the
inference phase of an ANN [29] for classification of MNIST
Handwritten Digits [30] and Fashion [31] datasets. Two differ-
ent network configurations, i.e., two and three hidden layers
have been tested. The total number of input nodes, hidden
layers, and output layers are 28x28, 100, and 10 respectively.
For both datasets, networks are trained with 50,000 images
using double-precision floating point numbers with a batch
size of 10. Subsequently, during the inference phase, the
networks are evaluated using double-precision floating point
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(a) Original image (b) Accurate (c) LeAp-5 (d) MBM [18]

Fig. 4: PSNR of Image blending application computed with respect to the
accurate multiplier-based filter: LeAp-5 PSNR=33.5, MBM [18] PSNR=32.6

(a) Noise-induced (b) Accurate (c) LeAp-5 (d) MBM [18]

Fig. 5: PSNR of Gaussian noise removal filter computed to the original noise-
free image: (a) 20.5 (b) Accurate=28.7 (c) LeAp-5=28.4 (d) MBM [18]=27.9

and 8-bit fixed-point numbers. Table IV shows the classifi-
cation accuracy, area and energy gain by using approximate
multipliers in 10,000 test images. As shown by the results, the
error-resilience of ANN makes the requirement for an accurate
multiplier trivial for classification accuracy. In fact, for the
MNIST fashion dataset, many of the quantization errors have
been masked by approximate multipliers. For MNIST hand-

written digits dataset, accurate and approximate multipliers-
based networks produce almost similar classification accuracy.
Interestingly, LeAp achieves precision of accurate multiplier
while outperforming in terms of area and energy by 22% and
16% (also surpasses MBM in terms of energy). Note that,
referring to result in Table II, MBM will even have worse
energy than accurate counterpart, provided that user exploits
16-bit multipliers in ANN.

V. FUTURE WORKS AND CONCLUSION

We proposed an approximate multiplier aimed at area,
throughput, and energy-efficiency of soft multipliers in FPGAs
while maintaining higher accuracy compared to the cutting-
edge counterparts. As future tracks, we intend to assess the
applicability of proposed multiplier in other domains, e.g.
being utilized as mantissa multiplier for floating point num-
bers. Moreover, we target to enable online error-configurability
using LSB truncation which can be supported in partial
reconfiguration. The provision of altering accuracy in a higher
level of abstraction allows the application developer to adjust
the arbitrary output accuracy specifically for incoming inputs
and meet the user budget. This is especially desirable for
high-input applications such as neural networks since, first,
it enables accuracy configurability of multipliers at the gran-
ularity of intra- or inter-layer. Second, energy of memory-
level operations also will be improved as the size of data
is reduced. Last but not least, we only considered accurate
addition, nevertheless, approximate adders in the literature are
orthogonal to the contributions of our proposed architecture
and can be employed to add LSBs of fractional parts in
Mitchell’s algorithm in tandem with accurate ones for MSBs
without imposing high level of inaccuracy.
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