
Timing Resilience for Efficient and Secure Circuits

Grace Li Zhang1, Michaela Brunner2, Bing Li1, Georg Sigl2, Ulf Schlichtmann1

1Chair of Electronic Design Automation, Technical University of Munich (TUM), Germany
2Chair of Security in Information Technology, Technical University of Munich (TUM), Germany

Email: {grace-li.zhang, michaela.brunner, b.li, sigl, ulf.schlichtmann}@tum.de

Abstract— In this paper, we will cover several techniques that
can enhance the resilience of timing of digital circuits. Using
post-silicon tuning components, the clock arrival times at flip-
flops can be modified after manufacturing to balance delays
between flip-flops. The actual delay properties of flip-flops will be
examined to exploit the natural flexibility of such components.
Wave-pipelining paths spanning several flip-flop stages can be
integrated into a synchronous design to improve the circuit
performance and to reduce area. In addition, with this technique,
it cannot be taken for granted anymore that all the combinational
paths in a circuit work with respect to one clock period. There-
fore, a netlist alone does not represent all the design information.
This feature enables the potential to embed wave-pipelining paths
into a circuit to increase the complexity of reverse engineering. In
order to replicate a design, attackers therefore have to identify the
locations of the wave-pipelining paths, in addition to the netlist
extracted from reverse engineering. Therefore, the security of the
circuit against counterfeiting can be improved.

I. INTRODUCTION

Timing, one of the core performance metrics in digital

circuits, indicates how fast a circuit can process data. Timing

performance is evaluated by the maximum clock frequency

which a circuit can operate with. This performance was im-

proved significantly owing to the advancement of manufactur-

ing technology and design methodology. But this improvement

cannot be maintained any more and the timing performance

has stagnated in recent years.

With manufacturing technology reaching a nanoscale level,

the size of transistors becomes smaller and smaller. On the one

hand, this shrinking size brings smaller propagation delays for

combinational gates, and thus smaller clock periods for digital

circuits. On the other hand, it results in undesirable side-

effects. For example, the increasing manufacturing variations

cause variations of physical parameters, e.g., gate length.

Such variations in turn cause electrical parameters, e.g., Vth,

to differ from their nominal specifications. Consequently,

combinational gates exhibit different delays in different chips

after manufacturing. Recent work shows that even FinFETs

exhibit large process variations [1], [2].

To take the impact of process variations into account, worst-

case timing analysis has been deployed in the IC (integrated

circuit) industry in the past several decades. In this method,

each process parameter is set to the value in the worst

condition independently without considering their correlations.

With this setting, the worst-case timing performance can be

evaluated. However, the timing performance evaluated with

this method is extremely pessimistic, leading to an overdesign

that wastes design effort. In recent years, various methods have

been explored to deal with process variations, e.g., analyzing

timing under process variations [3]–[16].

Another challenge, circuit aging, degrades device charac-

teristics under stress over time [17]–[19], and thus timing

performance of circuits is lowered correspondingly. To analyze

aging effects, timing model and algorithms on gate level [20]–

[23] have been introduced in recent years.

To overcome the challenges described above, we have to

reexamine the concepts in the traditional timing paradigm.

For example, signals propagating inside a combinational block

terminate at the flip-flops and do not propagate further until

the next clock edge arrives. Consequently, timing of a digital

circuit can be defined with respect to one clock period and

isolated within individual flip-flop stages. Such a strict timing

definition reduces the design effort significantly. However, it

affects timing performance negatively due to the barriers of

flip-flops. It is desirable to develop a new timing concept to

improve the timing performance of circuits.

In this paper, several techniques that can enhance the

resilience of timing of digital circuits are summarized. A

clock tuning technique with tunable buffers to balance delays

between flip-flop stages by adjusting the clock arrival times

at flip-flops after manufacturing is investigated in Section II.

The timing characteristics of flip-flops can also be exploited

to alleviate the impact of process variations, as described

in Section III. Thereafter, wave-pipelining is integrated into

circuits to improve the timing performance beyond the limit

in the traditional timing paradigm in Section IV. This concept

can also be used to enhance the security of digital circuits, as

described in Section V.

II. CLOCK TUNING AFTER MANUFACTURING

To counter process variations, clock tuning with tunable

buffers can be used to modify the timing properties of flip-

flops for each manufactured chip individually [8], [10]. We use

Fig. 1 to explain the concept of this method. In this figure,

combinational paths, represented by inverters, connect flip-

flops. The delays of the corresponding combinational paths

are shown next to the inverters. Because of process variations,

path delays are uncertain during the design phase and can be

treated as statistical variables. After manufacturing, they are

fixed in each chip, so that clock skew tuning can be applied

to counter process variations.

If all tunable buffers in Fig. 1 would have zero delays, the

minimum clock period the circuit can achieve is 8 units. It can

be reduced from 8 to 5.5 units if the tunable buffers are used

to adjust the clock arrival times at flip-flops. For instance, the

buffer inserted at F2 is configured with a negative delay of -

2.5 units, which shifts the clock edge to arrive 2.5 units earlier

978-1-7281-4123-7/20/$31.00 c© 2020 IEEE
623

9A-2

3

6

F1 F2

F4 F3

85
x3x4

x1 clk x20

00.5

-2.5

Figure 1: Reduction of the minimum clock period with clock tuning
buffers.

at F2. This shift ensures that the path between F2 and F3 still

has 8 time units to finish logic computations with a clock

period of 5.5 units. Although this shift reduces the time for

signal propagation along the path between F1 and F2, there

are still no timing violations at F2. Since a reference clock

signal is used to define buffer delays, negative delays can be

achieved by reducing the length from the original clock path

to flip-flops.

Timing constraints for a circuit with tunable buffers are

illustrated in Fig. 2, where tunable buffers are attached to flip-

flops i and j. The active clock edge is assumed to appear at

reference time 0. Because of the tunable buffers, the arrival

times of the active clock edges at the two flip-flops become xi

and xj , respectively. To avoid timing violations, the following

constraints must be satisfied

xi + dij ≤ xj + T − sj (1)

xi + dij ≥ xj + hj (2)

where xi and xj are the delays of the tunable buffers, dij and

dij are the largest and the smallest delays of the paths between

the flip-flops, T is the specified clock period with which the

circuit operates, and sj and hj are the setup and hold times

of the flip-flop j.

Since tunable buffers incur area overhead, tunable buffers

can only be configured to a limited delay range. For a buffer

i, the delay range is written as follows

ri ≤ xi ≤ ri + τi (3)

where ri and τi are constants. They can be determined with

methods such as [24]. Due to the implementation of buffers,

xi may only take discrete values.

To apply post-silicon clock tuning, two challenges have to

be overcome. First, during the design phase, those locations

of tunable buffers that can improve yield as much as possible

should be determined. Second, after manufacturing, delay test

is required to identify combinational paths which do not meet

timing. The cost of this delay test should be minimized.

The goal of buffer insertion during the design phase is to

find the locations of buffers that are effective in improving

yield. However, the relation between the yield and the buffer

locations can not be established directly, since the path delays

in (1)–(2) are statistical during the design phase. In this

scenario, the insertion problem becomes a statistical optimiza-

tion problem. To reduce the complexity, a certain number

of representative samples are used to emulate manufactured

chips, for which statistical delays become fixed. Consequently,

the statistical optimization problem is transformed into a

xjxi

clki

clk

clkj

comb. circuitFF FF

clkj

clk

clki

reference time 0

xj

hj
sj

xi

T

i j

Figure 2: Timing with tunable buffers.

Figure 3: Results of yield improvement.

deterministic optimization problem. With sufficient samples,

the yield of the circuits can be defined with respect to the

buffer locations. With this relation, the locations of buffers

that are important to yield improvement can be determined by

maximizing yield. Details can be found in [25].

After manufacturing, the delays of combinational paths are

fixed. If a chip has timing failures, tunable buffers can be

adjusted to rescue this chip. The configuration values of such

buffers in failed chips are determined by solving a problem

formulation with the constraints (1)–(3). To find a viable

solution, the path delays in the manufactured chips have to be

evaluated. However, this task is very challenging. On the one

hand, relatively accurate delays are desirable, so that buffers

can be configured properly to improve yield. On the other

hand, the cost incurred by this delay test must remain low

to avoid that the yield improvement with post-silicon tuning

becomes meaningless because of the high test cost.

To reduce the test costs, two techniques are applied. First,

the correlation of path delays can be used to reduce the

number of tested paths. Only the delays of a certain number

of representative paths need to be tested. These results can

be used together with the path correlations to estimate the

remaining path delays. Second, existing tunable buffers can

be used to align path delays, so that the delay information

of multiple paths can be obtained simultaneously in one test

iteration. Details can found in [26].

In the experiments, the number of buffers is bounded to be

smaller than 1% of the number of flip-flops. The reference

yield is 84.13% when the specified clock period is the sum

of the mean value and the standard deviation of the statistical

clock period. Fig. 3 demonstrates the yield improvement with

respect to the reference yield [25], [26]. The green bars show

624

9A-2

setup slack hold slack

clock-to-q delay

Figure 4: The relation between the flip-flop delay, setup and hold
slacks.

that the yield is improved with post-silicon tuning when delays

are assumed to be tested accurately. The blue bars show that

the yield improvement is slightly degraded after delay test

with the proposed method.

III. SETUP/HOLD TIME INTERDEPENDENCY

Facing challenges from process variations, we have to

reexamine the traditional definitions of timing concepts. For

example, the clock-to-q delay of a flip-flop, abbreviated as the

flip-flop delay as follows, and both setup time and hold time

are assumed to be constant values in static timing analysis

(STA). In addition, if the setup and hold time constraints

are satisfied, flip-flops are considered to function correctly.

In reality, flip-flops may still latch data correctly when the

setup and hold constraints are violated in some degree, though

the delays of flip-flops may increase [27]. Consequently,

setup and hold time violations do not necessarily lead to the

malfunction of the flip-flop. If these flexible characteristics

can be used, delay differences between flip-flop stages can be

reduced. Consequently, the effects of process variations can

be mitigated without incurring area overhead.

To exploit the flexibility of flip-flops, we define setup slack
to be the time gap between the change of a signal arriving at

a flip-flop and the active clock edge. Similarly, we define hold
slack to be the time gap between the active clock edge and the

change of a signal. The interdependency of the flip-flop delay

and the two slacks is illustrated in Fig. 4. In this figure, it

is clear that for large setup and hold slacks the delay surface

is flat. When these slacks become small, the flip-flop delay

increases, and eventually reaches points where the flip-flop

becomes metastable and might not latch data correctly. The

simplification in STA does not exploit the region where setup

and hold slacks are smaller than the values defined in the cell

library, leading to an underestimation of timing performance

potentially.

To exploit the flexible timing characteristics of a flip-

flop, we have to overcome two challenges. First, a relatively

accurate model of the three-dimensional delay surface in

Fig. 4 should be determined. Second, a timing optimization

algorithm is required to evaluate the real maximum clock

frequency of a circuit with the accurate delay model. Previous

studies [27]–[30] either did not solve the problem considering

the three-dimensional delay surface, or cannot provide a high-

quality solution.

Figure 5: Clock period reduction of the piecewise model compared
with STA.

To model the three-dimensional surface, we partition it

into small polygons, e.g., triangles and rectangles. After the

delay surface is approximated with these polygons, the real

maximum clock frequency of a circuit is calculated with a

piecewise ILP model. Details can be found in [31].

To demonstrate the resulting timing performance improve-

ments, the clock periods which are calculated with the piece-

wise model were compared with the results from traditional

STA. The comparisons are shown in Fig. 5 [31]. The reduced

clock periods only result from the accurate consideration of

the timing parameter relation in the piecewise linear model.

IV. VIRTUAL SYNCHRONIZATION WITH DELAY ELEMENTS

In the traditional timing paradigm, signal propagations

are synchronized with flip-flops and cannot travel through

them except at an active clock edge. However, flip-flops

have inherent delays and require setup times, so that they

can only slow down signal propagations, but never speed

them up. Consequently, if flip-flops along critical paths are

removed, signal propagations along such paths are accelerated.

In addition, delay imbalances between flip-flop stages are

exploited automatically.

Fig. 6 illustrates a scenario where a flip-flop is removed

to improve timing performance. The smallest possible clock

period of a circuit is defined by the largest delay between

two flip-flops. In Fig. 6(a), the largest delay is equal to 21

units, considering a flip-flop delay of 3 units and a setup and

hold time of both 1 unit. To reduce the smallest clock period,

combinational gates with smaller delays can be chosen from

the library. The cost of such gate sizing is an increase in

area. The resulting circuit is illustrated in Fig. 6(b), where the

largest delay is now equal to 16 units. In addition, the flip-flop

F3 can be moved leftwards to improve timing performance

further, as shown in Fig. 6(c). The largest delay after retiming

is now equal to 11 units, which cannot be reduced anymore

in the traditional timing paradigm.

To further improve timing performance, flip-flops can be

removed from the circuits. Fig. 6(d) illustrates an example

to explain this concept. In this figure, the flip-flop F6 is

removed from the circuit in Fig. 6(c). As a result, two data

waves propagate along the path between F2 and F4 and the

path between F2 and F3 simultaneously. To guarantee that

the functionality does not change, the arrival time of signals

from F2 at F3 and F4 should be greater than one clock period

625

9A-2

(c)

3

F1

F2

F3 F4

(a)

(b)

F1

F3 F4

F2

F1

F6

F4

F2

F5

F3

5

6

4

4

4

3

4

4

(d)

F1

F4

F2

F3

4
3

4

2

F5

2

2

2

1

1

1

1

Figure 6: The concept of virtual synchronization. The gate delays are
indicated on the gates. (a) The original circuit. (b) The circuit with
gate sizing. (c) The circuit with retiming and gate sizing. (d) The
circuit with removing F6 and gate sizing.

and less than two clock periods. The largest path delay of

the circuit in Fig. 6(d) can be reduced to 8.5 units, half of the

largest delay between F2 and F4. This resulting, smallest clock

period is significantly lower than the limit in the traditional

timing paradigm.

To apply such wave-pipelining to reduce the clock period,

we first remove all sequential components such as flip-flops

from the circuit. As a result, signals along critical paths will

be accelerated. However, this can lead to incorrect arrival

times of signals along fast paths, for example an earlier

arrival compared with the one in the original circuit. In

addition, there is a loss of synchronization for signals along

combinational loops due to iterative travels within the loops.

Therefore, if wave-pipelining is applied, the challenge is to

slow down signals propagating along fast paths and loops. For

this purpose, different circuit components are used as delay

elements [32]. They are combinational delay elements (e.g.

buffers or a chain of inverters), and sequential delay elements:

latches and flip-flops. Each of them has its individual delay

characteristic.

To improve timing performance with virtual synchroniza-

tion, the number of delay elements inserted into a circuit

to slow down fast signals and loops should be as small

as possible. The insertion of delay elements first finds the

locations where sequential delay elements are necessary by

emulating their delaying effects. Afterwards, these locations

are refined by incorporating the inherent delays of these

Figure 7: Speed increase and area results of VirtualSync compared
to ideally balanced design.

sequential delay elements. Details of this approach, called

VirtualSync, can be found in [32].

The comparisons of speed increase and area change with

ideally balanced design combining gate sizing and retiming

are shown in Fig. 7 [32]. As this figure shows, the timing

performance in most circuits exceeds the limit achievable in

the traditional timing paradigm. In addition, the area can be

reduced because of the removal of flip-flops in most cases.

V. TIMING CAMOUFLAGE FOR NETLIST SECURITY

Due to globalization, the supply chain of ICs becomes

distributed, making them vulnerable to counterfeiting, product

piracy and various attacks, like for example the insertion of

hardware Trojans. One serious counterfeiting threat is the

chip-level reverse engineering of gate-level netlists by attack-

ers which can then for example be used to produce illegal

chips. The chip-level reverse engineering of an authentic chip

includes among other steps the depackaging, the extraction of

the different layers and their images, as well as the recognition

of combinational and sequential gates and their connections

[33]. With EDA toolchains, attackers can process recognized

netlists to replicate chips illegally. To enhance netlist secu-

rity, different mechanisms were introduced to prevent reverse

engineering or the usage of the extracted netlists. Those coun-

termeasures include for example locking methods, e.g., [34],

[35], camouflaging, e.g., [36], [37] or split manufacturing,

e.g., [38]. Locking methods provide a corrupted output or

functionality if a wrong secret key is applied. Camouflaging

hides the actual functionality of the extracted gates and split

manufacturing separates the front-end-of-line and back-end-

of-line manufacturing processes. More recent countermeasure

techniques also incorporate timing information. This is either

done as corruption outcome, like a decreased circuit perfor-

mance for a wrong applied key [39], or as locking strategy

aid or replacement [37], [40], [41]. For example in [40],

tunable delay buffers are added and controlled by secret key

bits, in [41], finite state machine transitions are based on

applied circuit frequencies, or in [37], cells with basically

the same layout geometry but different delays hide the actual

circuit function. Next to reverse engineering based attacks,

also side-channel, fault and probing attacks [42] can reveal

circuit specific information. Possible countermeasures are for

example introduced in [13], [43].

The reverse engineering flow described above to duplicate

chips with the aid of state of the art EDA toolchains is only

626

9A-2

F1
F2

F3

F1
F3

(a)

(b)

wave 2

wave 1

Figure 8: Concept of Timing Camouflage. (a) Single-period clocking;
(b) Wave-pipelining between F1 and F3.

false path after wave-pipelining

controlling signal

removed flip-flop

v1

v2

Figure 9: The false path with wave-pipelining is formed with two
true single-period paths.

effective when all combinational paths work with respect to

one clock period. Fig. 8(a) illustrates an example of such a

single-period clocked circuit. In this figure, a partial sequential

circuit is shown which consists of three flip-flops and four

combinational gates. In the traditional digital paradigm, timing

is only verified between pairs of flip-flops. Consequently, the

unsecured netlist in Fig. 8(a) is sufficient for attackers to

reproduce the original design, since they only have to identify

the combinational gates, sequential components and how they

connect with each other to recover the original netlist.

To enhance netlist security, we invalidate the assumption

that a netlist is sufficient to reproduce the original design

by incorporating wave-pipelining paths into the circuit. For

instance, the circuit in Fig. 8(b) [44] can be constructed by

removing F2 in Fig. 8(a). After the removal of the flip-flop,

the combinational path between F1 and F3 has 2 data waves

propagating along it simultaneously. If the first data wave is

not flushed away by the second data wave before it is latched

by F3, the functionality of the circuit is still guaranteed.

When attackers face the circuit incorporated with wave-

pipelining in Fig. 8(b), they have to recognize the number

of data waves along combinational paths in addition to gate

types and connections. If they wrongly assume the existence

of only one data wave and therefore handle the netlist with the

standard EDA flow, F3 latches data one clock period earlier

than the original circuit. Consequently, the recovered circuit

will not work correctly due to the loss of synchronization.

In order to detect the existence of wave-pipelining paths,

attackers have to invest additional effort to obtain timing

information of combinational paths. One possibility would

be to deploy testing technique to determine path delays of

authentic chips bought from the market [45]–[47]. To prevent

attackers from successfully applying such testing technique,

wave-pipelining false paths are introduced, because they are

unsensitizable by testing under the single-period clocking.

Fig. 9 illustrates an example of a false path with wave-

pipelining. After the flip-flop in the middle is removed, a path

with wave-pipelining is formed. When this path is considered

to work with single-period clocking, a signal change at the

ffi
F

T

T WP

ffi

fanin(ffi) fanout(ffi)

F
T

F
TT

F
T

T

500 path limit 500 path limit

(a)

(b)duplicated duplicated

non-WP

sized

maximum delay
of WP paths

WP deleted

Figure 10: Wave-pipelining for netlist security. (a) Removal of the
flip-flop ffi . ”T” and ”F” represent true and false paths. (b) Replicated
logic block and gate sizing.

start of this wave-pipelining path is blocked before it arrives

a flip-flop. If the value of signal v2 is ‘0’, signal propagations

are blocked at the first AND gate. If the value is ‘1’, signal

propagations are blocked at the last OR gate. Consequently,

the delay of this wave-pipelining path cannot be tested with

one clock period, making it a false path, and therefore robust

against traditional testing. In addition, the number of real false

paths in digital circuits is very large, about 75% of the number

of combinational paths [48]. Consequently, it is very difficult

for attackers to distinguish false paths with wave-pipelining

from real false paths working within one clock period.

When applying the wave-pipelining technique to secure a

circuit, the original functionality of a circuit should be main-

tained. To achieve this goal, the following timing constraints

for the wave-pipelining paths should be satisfied:

1) Their delays have to be greater than one clock period

to avoid the early latching of signals.

2) Their delays have to be less than two clock periods.

To achieve the construction of wave-pipelining paths in a

circuit shown in Fig. 10(a), the flip-flop in the middle can

be removed. Unfortunately, the removal of the flip-flop turns

all paths connected with it into wave-pipelining paths. Since

there are a lot of short paths leftwards and rightwards, if they

are connected directly, a lot of short paths with small delays

are generated. The small delays of these paths might violate

the wave-pipelining constraints. To overcome the challenges

described above, we replicate the combinational logic gates as

well as the flip-flop at the end of the wave-pipelining paths in

the original circuit, as illustrated in Fig. 10(b). To reduce the

resource usage incurred by the replication, we only replicate

the combinational logic along the wave-pipelining paths on

the right side of ffi . Afterwards, the flip-flop at the end of

the wave-pipelining paths in the original circuit is deleted

and the combinational gates that have no connection with

any flip-flops are removed in the original circuit, as shown in

Fig. 10(b). To guarantee the correct functionality, on the left

side of ffi , the whole combinational logic is replicated first.

Afterwards, we try to reduce the resource usage by using the

original logic gates. For instance, the inverter in the replicated

circuit can be removed by connecting one of the input pins of

627

9A-2

Figure 11: Results of constructing wave-pipelining paths.

the AND gate in the replicated circuit with the corresponding

pin in the original circuit. In addition, we also size gates and

insert buffers to extend the delays of wave-pipelining paths

to ensure that wave-pipelining constraints can be satisfied.

Details can be found in [44].

Fig. 11 demonstrates the results of wave-pipelining con-

struction [44]. The left figure demonstrates the total number

of suspicious single-period true paths that force attackers

to perform testing. The right figure shows the total number

of false paths with wave-pipelining that are untestable. To

replicate chips, attackers need to recognize the constructed

false paths with wave-pipelining from the original false paths

working within one clock period, whose number is about 75%

of the number of combinational paths in the original circuit

[48]. Therefore, an attack on this camouflage technique is still

challenging.

VI. CONCLUSION

In this paper, we present several methods to enhance the

resilience of timing of digital circuits. Post-silicon clock

tuning deploys tunable buffers to adjust the clock skews to

flip-flops individually for each chip after manufacturing. The

natural timing flexibility of flip-flops is exploited to mitigate

the effects of process variations. Since flip-flops are barriers

of timing performance, they are removed to incorporate wave-

pipelining into circuits. The timing performance of the result-

ing circuit can break through the limit of the traditional timing

paradigm. In addition, this concept can also be used to enhance

the security of digital circuits. This technique, called timing

camouflage, significantly improves the resilience of circuits

against counterfeiting.

REFERENCES

[1] V. B. Kleeberger, H. Graeb, and U. Schlichtmann, “Predicting future product perfor-
mance: modeling and evaluation of standard cells in FinFET technologies,” in Proc.
Design Autom. Conf., 2013, pp. 33:1–33:6.

[2] S. Karapetyan, V. B. Kleeberger, and U. Schlichtmann, “FinFET-based product
performance: Modeling and evaluation of standard cells in FinFET technologies,”
Microelectronics Reliability, vol. 61, pp. 30–34, 2016.

[3] D. Blaauw, K. Chopra, A. Srivastava, and L. Scheffer, “Statistical timing analysis:
From basic principles to state of the art,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 27, no. 4, pp. 589–607, 2008.

[4] C. Visweswariah, K. Ravindran, K. Kalafala, S. Walker, and S. Narayan, “First-order
incremental block-based statistical timing analysis,” in Proc. Design Autom. Conf.,
2004, pp. 331–336.

[5] B. Li, N. Chen, M. Schmidt, W. Schneider, and U. Schlichtmann, “On hierarchical
statistical static timing analysis,” in Proc. Design, Autom., and Test Europe Conf.,
2009, pp. 1320–1325.

[6] B. Li, N. Chen, Y. Xu, and U. Schlichtmann, “On timing model extraction and
hierarchical statistical timing analysis,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 32, no. 3, pp. 367–380, 2013.

[7] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin,
K. Flautner, and T. Mudge, “Razor: A low-power pipeline based on circuit-level timing
speculation,” in Proc. Int. Symp. Microarch., 2003, pp. 7–18.

[8] D. Tadesse, J. Grodstein, and R. I. Bahar, “AutoRex: An automated post-silicon clock
tuning tool,” in Proc. Int. Test Conf., 2009, pp. 1–10.

[9] B. Li, N. Chen, and U. Schlichtmann, “Fast statistical timing analysis of latch-
controlled circuits for arbitrary clock periods.” in Proc. Int. Conf. Comput.-Aided Des.,
2010, pp. 524–531.

[10] B. Li and U. Schlichtmann, “Statistical timing analysis and criticality computation for
circuits with post-silicon clock tuning elements,” IEEE Trans. Comput.-Aided Design
Integr. Circuits Syst., vol. 34, no. 11, pp. 1784–1797, 2015.

[11] R. Kumar, B. Li, Y. Shen, U. Schlichtmann, and J. Hu, “Timing verification for
adaptive integrated circuits,” in Proc. Design, Autom., and Test Europe Conf., 2015,
pp. 1587–1590.

[12] G. L. Zhang, B. Li, and U. Schlichtmann, “Sampling-based buffer insertion for post-
silicon yield improvement under process variability,” in Proc. Design, Autom., and Test
Europe Conf., 2016, pp. 1457–1460.

[13] A. Herrmann, M. Weiner, M. Pehl, and H. Gräb, “Bringing analog design tools to
security: Modeling and optimization of a low area probing detector,” in Int. Conf. on
Syn., Mod., Ana. and Simu. Methods and Appl. to Circuit Des., 2018.

[14] G. L. Zhang, B. Li, and U. Schlichtmann, “EffiTest: Efficient delay test and statistical
prediction for configuring post-silicon tunable buffers,” in Proc. Design Autom. Conf.,
2016, pp. 60:1–60:6.

[15] B. Yigit, G. L. Zhang, B. Li, and U. Schlichtmann, “Application of machine learning
methods in post-silicon yield improvement,” in Proc. Int. System-on-Chip Conf.
(SOCC), 2017, pp. 243–248.

[16] R. Kumar, B. Li, Y. Shen, U. Schlichtmann, and J. Hu, “Timing verification for
adaptive integrated circuits,” in Proc. Design, Autom., and Test Europe Conf., 2015,
pp. 1587–1590.

[17] A. H. Baba and S. Mitra, “Testing for transistor aging,” in Proc. VLSI Test Symp., 2009,
pp. 215–220.

[18] V. B. Kleeberger, M. Barke, C. Werner, D. Schmitt-Landsiedel, and U. Schlichtmann,
“A compact model for NBTI degradation and recovery under use-profile variations
and its application to aging analysis of digital integrated circuits,” Microelectronics
Reliability, vol. 54, no. 6–7, pp. 1083–1089, 2014.

[19] H. Amrouch, B. Khaleghi, A. Gerstlauer, and J. Henkel, “Reliability-aware design to
suppress aging,” in Proc. Design Autom. Conf., 2016, pp. 12:1–12:6.

[20] D. Lorenz, G. Georgakos, and U. Schlichtmann, “Aging analysis of circuit timing
considering NBTI and HCI,” in Int. On-Line Testing Symp. (IOLTS), 2009, pp. 3–8.

[21] D. Lorenz, M. Barke, and U. Schlichtmann, “Efficiently analyzing the impact of aging
effects on large integrated circuits,” Microelectronics Reliability, vol. 52, no. 8, pp.
1546–1552, 2012.

[22] D. Lorenz, M. Barke, and Schlichtmann, “Monitoring of aging in integrated circuits
by identifying possible critical paths,” Microelectronics Reliability, vol. 54, no. 6-7,
pp. 1075–1082, 2014.

[23] D. Lorenz, M. Barke, and U. Schlichtmann, “Aging analysis at gate and macro cell
level,” in Proc. Int. Conf. Comput.-Aided Des., 2010, pp. 77–84.

[24] J. Tsai, L. Zhang, and C. C.-P. Chen, “Statistical timing analysis driven post-silicon-
tunable clock-tree synthesis,” in Proc. Int. Conf. Comput.-Aided Des., 2005, pp. 575–
581.

[25] G. L. Zhang, B. Li, J. Liu, Y. Shi, and U. Schlichtmann, “Design-phase buffer
allocation for post-silicon clock binning by iterative learning,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., vol. 37, no. 2, pp. 392–405, 2018.

[26] G. L. Zhang, B. Li, Y. Shi, J. Hu, and U. Schlichtmann, “EffiTest2: Efficient delay
test and prediction for post-silicon clock skew configuration under process varaitions,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 38, no. 4, pp. 705–718,
2019.

[27] Y.-M. Yang, K. H. Tam, and I. H.-R. Jiang, “Criticality-dependency-aware timing
characterization and analysis,” in Proc. Design Autom. Conf., 2015, pp. 167:1–167:6.

[28] A. Jain and D. Blaauw, “Slack borrowing in flip-flop based sequential circuits,” 2005,
pp. 96–101.

[29] N. Chen, B. Li, and U. Schlichtmann, “Iterative timing analysis based on nonlinear
and interdependent flipflop modelling,” IET Circuits, Devices & Systems, vol. 6, no. 5,
pp. 330–337, 2012.

[30] A. B. Kahng and H. Lee, “Timing margin recovery with flexible flip-flop timing
model,” in Proc. Int. Symp. Quality Electron. Des., 2014, pp. 496–503.

[31] G. L. Zhang, B. Li, and U. Schlichtmann, “PieceTimer: A holistic timing analysis
framework considering setup/hold time interdependency using a piecewise model,” in
Proc. Int. Conf. Comput.-Aided Des., 2016, pp. 100:1–100:8.

[32] G. L. Zhang, B. Li, M. Hashimoto, and U. Schlichtmann, “VirtualSync: Timing opti-
mization by sychronizing logic waves with sequential and combinational components
as delay units,” in Proc. Design Autom. Conf., 2018.

[33] M. Fyrbiak, S. Strauß, C. Kison, S. Wallat, M. Elson, N. Rummel, and C. Paar,
“Hardware reverse engineering: Overview and open challenges,” in 2017 IEEE 2nd
International Verification and Security Workshop (IVSW), 2017, pp. 88–94.

[34] J. A. Roy, F. Koushanfar, and I. L. Markov, “Epic: Ending piracy of integrated circuits,”
in Proc. Design, Autom., and Test Europe Conf., 2008, pp. 1069–1074.

[35] R. S. Chakraborty and S. Bhunia, “Harpoon: an obfuscation-based soc design method-
ology for hardware protection,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 28, no. 10, pp. 1493–1502, 2009.

[36] B. Shakya, H. Shen, M. Tehranipoor, and D. Forte, “Covert gates: Protecting integrated
circuits with undetectable camouflaging,” IACR Transactions on Cryptographic Hard-
ware and Embedded Systems, pp. 86–118, 2019.

[37] D. Darmon, A. Klein, Y. Salmon, A. Grabovsky, and R. Attia, “Timing based
camouflage circuit,” Apr. 16 2019, US Patent 10,262,956.

[38] R. Jarvis and M. Mcintyre, “Split manufacturing method for advanced semiconductor
circuits,” Mar. 27 2007, US Patent 7,195,931.

[39] L. Li and H. Zhou, “Structural transformation for best-possible obfuscation of sequen-
tial circuits,” in IEEE Proc. Int. Symp. Hardware Ori. Security & Trust, 2013, pp.
55–60.

[40] Y. Xie and A. Srivastava, “Delay locking: Security enhancement of logic locking
against ic counterfeiting and overproduction,” in Proc. Design Autom. Conf., 2017,
p. 9.

[41] K. Juretus and I. Savidis, “Time domain sequential locking for increased security,” in
Proc. Int. Symp. Circuits and Syst., 2018, pp. 1–5.

[42] B. Selmke, K. Zinnecker, P. Koppermann, K. Miller, J. Heyszl, and G. Sigl, “Locked
out by latch-up? An empirical study on laser fault injection into Arm Cortex-M
processors,” in Workshop on Fault Diagno. and Toler. in Cryp., 2018.

[43] M. Weiner, S. Manich, R. Rodrı́guez-Montan̄és, and G. Sigl, “The low area probing
detector as a countermeasure against invasive attacks,” IEEE Trans. VLSI Syst., vol. 26,
no. 2, pp. 392–403, Feb 2018.

[44] G. L. Zhang, B. Li, B. Yu, D. Z. Pan, and U. Schlichtmann, “TimingCamouflage:
Improving circuit security against counterfeiting by unconventional timing,” in Proc.
Design, Autom., and Test Europe Conf., 2018.

[45] A. Chakraborty, Y. Liu, and A. Srivastava, “TimingSAT: Timing profile embedded
SAT attack,” in Proc. Int. Conf. Comput.-Aided Des., 2018, pp. 1–6.

[46] M. Yasin, B. Mazumdar, J. J. V. Rajendran, and O. Sinanoglu, “SARLock: SAT attack
resistant logic locking,” in IEEE International Symposium on Hardware Oriented
Security and Trust (HOST), 2016, pp. 236–241.

[47] M. Li, K. Shamsi, Y. Jin, and D. Z. Pan, “TimingSAT: Decamouflaging timing-based
logic obfuscation,” in Proc. Int. Test Conf., 2018, pp. 1–10.

[48] K. Heragu, J. H. Patel, and V. D. Agrawal, “Fast identification of untestable delay
faults using implications,” in Proc. Int. Conf. Comput.-Aided Des., 1997, pp. 642–647.

628

9A-2

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

