
Run-Time Enforcement of Non-Functional Application Requirements in
Heterogeneous Many-Core Systems

Jürgen Teich Behnaz Pourmohseni Oliver Keszocze Jan Spieck Stefan Wildermann

Hardware-Software-Co-Design, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU)

juergen.teich@fau.de behnaz.pourmohseni@fau.de oliver.keszoecze@fau.de jan.spieck stefan.wildermann@fau.de

Abstract—For many embedded applications, non-functional
requirements such as safety, reliability, and execution time must
be guaranteed in tight bounds on a given multi-core platform.
Here, jitter in non-functional program execution qualities is
caused either by outer influences such as faults injected by
the environment, but can be induced also from the system
management software itself, including thread-to-core mapping,
scheduling and power management. A second huge source of
variability typically stems from data-dependent workloads. In
this paper, we classify and present techniques to enforce non-
functional execution properties on multi-core platforms. Based
on a static design space exploration and analysis of influences of
variability of non-functional properties, enforcement strategies
are generated to guide the execution of periodically executed
applications in given requirement corridors. Using the case study
of a complex image streaming application, we show that by
controlling DVFS settings of cores proactively, not only tight
execution times, but also reliability requirements may be enforced
dynamically while trying to minimize energy consumption.

I. INTRODUCTION

In a broad range of embedded systems, e.g., in real-time and

safety-critical domains, applications require guarantees (rather

than a best-effort behavior) w.r.t. non-functional properties of

their execution such as timing and reliability. Delivering the

required guarantees is, therefore, of utmost importance for

the successful introduction of multi-/many-core architectures

in the embedded domains of computing. In a many-core

context, existing analysis tools either impose an immense

computational complexity or deliver worst-case guarantees

that suffer from a massive over-/under-approximation for the

vast majority of execution scenarios (due to the inherent

uncertainty of these scenarios) and, hence, are of no practical

interest. Noteworthy, a major source of this uncertainty orig-

inates from the interferences among concurrent applications.

In view of abundant computational and storage resources

becoming available, new programming paradigms such as

invasive computing [1] have proven to be effective in allevi-

ating these interferences by means of spatial isolation among

applications. Here, hybrid (static analysis/dynamic mapping)

approaches, e.g., [2]–[5], enable a static generation of different

mappings for each application on system resources in form

of mapping classes rather than individual mappings. For each

concrete mapping within such a class, safe bounds on the non-

functional execution properties, e.g., latency, may be asserted,

see, e.g., [6]. The statically generated and analyzed sets of

optimal mapping classes are then provided to the run-time

system which checks the availability of such constellations of

resources under the current system workload, and, if enough

resources are available, finally launches the application [6].

Although spatial isolation among applications significantly

reduces the aforementioned uncertainties, a considerable de-

gree of them remain unaffected. This might be unacceptable,

e.g., for safety-critical applications. But also, real-world ap-

plications from the domain of streaming often exhibit a large

jitter in the latency and throughput (in spite of inter-application

resource isolation) which is not tolerable, e.g., in case of

camera-based medical surgery. This variation mainly stems

from two sources of uncertainty that cannot be eliminated

or restricted through resource isolation. The execution state
uncertainty is a result of a combination of environmental

(e.g., temperature) and internal (e.g., cache status) influences

while the input uncertainty results from the application’s input

as, e.g., in image processing the scene may greatly influence

the workload per image.

In the presence of execution state and input uncertainties,

application-specific run-time techniques can offer a practical

approach to confine the non-functional properties of execu-

tion to acceptable bounds and to prevent the violation of

requirements. Such techniques dynamically adjust a given set

of control knobs, e.g., voltage/frequency settings, in reac-

tion to observed (or predicted) changes in the input and/or

environment states to steer the non-functional properties of

execution within the desired range. For instance, in the context

of reactive systems, [7] presents the concept of enforcement

of safety properties using automata. For the enforcement of

non-functional properties such as latency or power, techniques

based on run-time monitoring and control theory have been

investigated to minimize energy under timing constraints [8].

While control-oriented approaches often cannot avoid tempo-

ral violations, [9] proposes an approach to minimize energy

consumption under hard timing constraints by selecting a

suitable multiprocessor voltage/frequency setting. We refer to

this emerging class of application-specific run-time techniques

as Run-Time Requirement Enforcement (RRE).

This paper presents the fundamentals, definitions, and tax-

onomy of RRE in the context of many-core systems. We

exemplify the practice of RRE techniques and present a

discussion on their advantages, drawbacks, and challenges in

a case study on the enforcement of timing and at the same

time reliability requirements for a distributed real-time image

processing application.

978-1-7281-4123-7/20$31.00 c© 2020 IEEE
629

9A-3

NA Memory

BIG

BIG

BIG

BIG

NA Memory

LITTLE

LITTLE

LITTLE

LITTLE

LITTLE

LITTLE

NA Memory

BIG

BIG

BIG

BIG

NA Memory

LITTLE

LITTLE

LITTLE

LITTLE

LITTLE

LITTLE

NA Memory

BIG

BIG

BIG

BIG

NA Memory

LITTLE

LITTLE

LITTLE

LITTLE

LITTLE

LITTLE

NA Memory

LITTLE

LITTLE

LITTLE

LITTLE

LITTLE

LITTLE

NA Memory

BIG

BIG

BIG

BIG

NA Memory

LITTLE

LITTLE

LITTLE

LITTLE

LITTLE

LITTLE

NA Memory

BIG

BIG

BIG

BIG

NA Memory

LITTLE

LITTLE

LITTLE

LITTLE

LITTLE

LITTLE

NA Memory

BIG

BIG

BIG

BIG

Fig. 1: Example heterogeneous 3×4 NoC-based many-core

architecture.

II. PRELIMINARIES AND DEFINITIONS

A. System Model

A many-core architecture is typically organized as a set of

so-called compute tiles which are often interconnected by a

Network-on-Chip (NoC) for scalability, see, e.g., Fig. 1. Each

compute tile itself is typically organized as a multi-core or

a processor array and comprises a set of processing cores,

peripherals such as memories, and a network adapter which

are interconnected via one or more buses. An application to

be executed on the architecture is typically composed of a set

of processing tasks with known data dependencies, provided

as a task graph. In case of periodic applications, actor-based

models of computation and languages such as ActorX10 [10]

may be used for parallel programming of MPSoCs. On top

of a program specification, each application or just individual

actors may be assigned one or a set of requirements on specific

non-functional properties of its execution, e.g., execution

time, throughput, or power consumption. In the following, a

mapping of an application on a given architecture corresponds

to a binding of its tasks to platform cores, a routing of the data

exchanged between communicating tasks, an allocation of the

required processing, communication, and storage resources,

and a scheduling of tasks and communications on the allo-

cated resources. Alternatively to concrete mappings, a set of

constraints that reflect a constellation of required resources

and, hence, correspond to several concrete deployments of the

application on the architecture may be characterized at design

time through techniques of design space exploration [2], [4],

[6].

B. *-Predictability

Non-functional requirements of applications, e.g., real-time

constraints, can often be expressed in form of intervals accord-

ing to the definition for the predictability of a non-functional

property from [11]:

Definition 1 (*-predictability): Let o denote a non-

functional property of a program (implementation) p and the

uncertainty of its input (space) given by I and environment

by Q. The predictability (marker) of objective o for program

p is defined by the interval

o(p,Q, I) = [inf o(p,Q, I), . . . , supo(p,Q, I)] (1)

p1

p2

p3la
te

n
cy

[μ
s]

power consumption [W]

25

75

1 2

2× BIG tile
1× LITTLE tile

3× BIG tile
2× LITTLE tile

Fig. 2: Example of an application program p with a latency re-

quirement [25μs, 75μs] and a power requirement [1W, 2W].
Shown are three program implementations. p1 does not satisfy

the latency requirement for any possible execution. p2 satisfies

the two requirements for any possible variation in input i ∈ I
and state q ∈ Q. Finally, p3 satisfies the requirements for some

executions. Here, RRE techniques might be used to keep p3
within the acceptable region.

where inf o and supo denote the infimum and supremum of

property o, respectively, under variation of state q ∈ Q and

input i ∈ I .

Figure 2 exemplifies Definition 1 for three implementations

p1, p2, and p3 of an application with two requirements in

terms of latency and power consumption1. The rectangle as-

sociated with each implementation pi confines the observable

latency and power range for pi under the variation of input

i ∈ I and state q ∈ Q. As illustrated, p1 never satisfies

the latency requirement under any input/state and, thus, is

of no interest. Contrarily, p2 satisfies both requirements in

all input/state scenarios which—although offering desirable

qualities—is achieved through, e.g., an over-reservation of

resources or a persistently maximized core voltage/frequency

which is often not affordable and/or practical. Contrarily to p1
and p2, p3 exhibits an attractive case: Under certain input/state

scenarios it satisfies latency and power requirements while

under others, the acceptable region is left.

In real-life use cases, the observable predictability intervals

are often too coarse, so that a large share of viable imple-

mentations (like p3) do not satisfy the given requirements

under all input/state scenarios. For such partially satisfactory

implementations, run-time techniques can be employed to

render them consistently satisfactory by regularly monitoring

(or predicting) the on-line input/state scenario and either

acting pro-actively to avoid any violation of a set of given

requirements, e.g., by adjusting the voltage/frequency settings

of cores prior to program execution, or in reaction to any

observed violation. The purpose of such Run-Time Require-

ment Enforcement (RRE) techniques is, therefore, to enforce

that the desired latency and power corridor is never (or only

occasionally) violated.

1Note that a lower bound on latency makes sense in many applications that
communicate result data to other applications or systems. Here, either buffer
limitations would cause overflows in case the producer would be faster than
the consumer. Alternatively, data might get lost if the producer overwrites not
yet consumed data. Similarly, a minimal lower bound is the default in the case
of reliability requirements. There, the lower bound could indicate a minimal
expected lifetime. Finally, even lower power bounds can be found in the area
of high-performance computing. In fact, the energy bill of a supercomputer
increases by the amount of not consumed power but reserved by the provider.

630

9A-3

la
te

n
cy

[μ
s]

power consumption [W]

p

25

75

1 2

requirement

corridor

trajectory of
program execution

satisfactory run violating run estimated run observed run

Fig. 3: Example of Run-Time Requirement Enforcement

(RRE).

C. Run-Time Requirement Enforcement

To satisfy a set of given requirements, the observable

predictability intervals of the partially satisfactory implemen-

tations must be obviously tuned to stay within a requirement

corridor spanned by a lower bound LBo and an upper bound

UBo of an objective o. In general, this can be achieved by

techniques such as restricting the input space I or using ap-
proximate computing [11]. Alternatively, isolation techniques

that reduce the state space Q may be applied such as the use of

simpler cores, resource reservation protocols, or using invasive

computing [1]. In the latter approach, an application program

invades a set of processing and communication resources prior

to execution. Through inter-application isolation, composabil-

ity is established which is essential for an independent analysis

of individual applications [12]–[14]. In the context of this

paper, we define RRE as follows.

Definition 2 (Run-Time Requirement Enforcer): A Run-

Time Requirement Enforcer (RRE) of a requirement ro(p) =
[LBo, UBo] of a program p is a control technique to steer o
within the corridor spanned by a lower bound LBo and an

upper bound UBo for each execution of p.

Figure 3 exemplifies Definition 2 for a latency and a power

requirement of a program p implementing an application.

Here, the task of an RRE is to confine the observable

predictability interval of p within the corridor as specified

by the latency and power requirements. For a given input

and environmental state, the RRE in this case pro-actively

estimates the expected latency Lest and power consumption

Pest. Based on these estimates, it takes actions with the goal

to avoid any violation of the requirements. Examples of RRE

actions include adjusting the voltage/frequency of the cores or

awaking reserved cores that are currently in a sleep state for

power reduction, or even changing the mapping of some tasks

to other cores [15].

D. Taxonomy of Run-Time Requirement Enforcers

According to [11], each requirement of an application can

be either soft or hard. In case of a soft requirement, occasional

violations are still considered acceptable. In this context, an

RRE of program p can be classified as strict if it can be

formally proven that no concrete execution of p will leave

the given corridor at run time. It is called loose, if one or

multiple consecutive violations of o are tolerable.

Furthermore, an RRE can be classified as a centralized
enforcement technique if a single enforcer instance is used

to enforce the requirement. It is called distributed in case

multiple enforcers jointly enforce the requirement.

ISo1

image
source

GS1

grayscale
conversion

ED1

Sobel edge
detection

HC1

Harris corner
detection

SO1

SIFT
orientation

SD1

SIFT
description

ISo0 GS0 ED0 HC0 SO0 SD0

SM

SIFT
matching

RS

RAN-
SAC

ISi

image
sink

Fig. 4: Stitching streaming application for two input images.

Each invaded tile is equipped with a Run-Time Requirement
Monitor (RRM) that provides the RRE with the necessary run-

time information to enforce a set of given requirements. The

run-time information is kept locally on the tile in case of

distributed RRE or sent to a single RRE instance in case of

the centralized RRE technique.

III. CASE STUDY

In this section, we present a case study to explain the

concepts of RRE for a simultaneous enforcement of timing and

reliability requirements for a stitching streaming application

as depicted in Fig. 4. The application consists of two 6-

actor chains, each processing one input image in succession

through an image source (ISoi) actor to read in input images

periodically at a constant rate, a gray-scale conversion (GSi)

actor, Sobel edge detection (EDi) and Harris corner detection

(HCi) actors to determine respectively edges and corners in an

image, a SIFT orientation (SOi) actor to achieve invariance to

image rotation, and a SIFT description (SDi) actor to extract

the features in an image. The output of the SD actors form the

two chains is then provided to a SIFT matching (SM) actor

to detect common features of both images, and a RANSAC

(RS) actor to calculate the transformation between both images

based on the matched features. The image is finally sent

out by an image sink (ISi) actor. As platform, we consider

a heterogeneous NoC-based 3 × 4 many-core architecture

composed of two types of compute tiles as depicted in Fig. 1.

Here, each compute tile of type LITTLE comprises 6 low-

power cores while tiles of type BIG are composed of 4 high-

performance cores.

A. Invasive Programming

Invasive computing [1] has been shown to enable resource-

awareness for parallel programs on multi-core targets. Here, an

initial claim is requested from the operating system, containing

a set of processing resources, memory and communication

resources that the application can exclusively use for its

parallel execution. Claim construction is done by issuing a call

to invade with a set of constraints that describe the required

claim. After that, infect is used to start the actual application

code on the allocated claim. Once the execution on all cores

finishes, the claim constraints can be altered by calling invade
or retreat to, e.g., expand or shrink the application’s claim.

Programming support for these has been developed in the

form of InvadeX10, a library-based extension of X10, a

modern parallel programming language to program scalable

multi-core systems. An invasive program written in InvadeX10

basically looks like this:

v a l c l a i m = Claim . i n v a d e (c o n s t r a i n t s) ;

c l a i m . i n f e c t (code) ;

c l a i m . r e t r e a t () ;

631

9A-3

public static def main(args : Rail [String]) {
// Declare global requirement on reliability
@REQUIRE("ag", new PFH(0.001, 0.0000001))
val ag = new ActorGraph("ag");

// Declare actors
ag.addActor(new SourceActor("ISo_0"));
ag.addActor(new GrayScaleConvActor("GS_0"));
...

// Declare requirements on latency and power
// for SD actor
@REQUIRE("SD_0", new Latency(0, 100, "ms", "hard"))
@REQUIRE("SD_0", new Power(0, 1, "W", "soft"))
ag.addActor(new SIFTDescriptionActor("SD_0"));
...

}

Fig. 5: Example of actor graph generation and execution in

ActorX10 as well as annotations regarding requirements on

objectives.

An example of a portion of an invasive program written in

ActorX10 [10] for the case study is provided in Fig. 5. Besides

generation of the actors and the actor graph, requirements on

objectives can be specified as annotations. In the example,

requirements on probability of failures per hour (PFH) and

power consumption are specified. Moreover, an upper latency

bound of 100ms is specified for the SD actor. Ideally, an RRE

would automatically be generated to ensure the satisfaction of

the requirements.

B. Enforcement Problem Description

In our case study, we consider the distributed and simultane-

ous enforcement of timing and reliability requirements for the

SIFT description (SD) actors, namely, SD0 and SD1, as these

have been pre-characterized to provide the highest contribution

to the overall processing latency per frame but also having a

high degree of input-dependent execution time variation. Here,

each periodic execution of each SD actor (corresponding to

processing one input image) shall be completed within a strict

latency upper bound of UBL = 100ms. Moreover, subject to

an observed Soft Error Rate (SER), each iteration of each SD

actor can be performed either non-redundantly or in a Triple

Modular Redundant (TMR) fashion to enhance reliability. For

the enforcement of the given requirements, the RRE respon-

sible for each actor is privileged to adjust two control knobs

of the respective tile prior to the enforced actor processing an

input image: a) the degree of execution parallelism adjusted

by setting the number n of active cores used for processing the

input image and b) the power (voltage/frequency) mode m of

the cores adjusted through Dynamic Voltage and Frequency

Scaling (DVFS) (for active cores) and power gating (for

inactive cores) [16]–[19]. To this end, each RRE decides on a

per-image basis how the workload of its enforced actor must

be distributed on 1–6 cores in case of execution on a LITTLE

tile or 1–4 cores in case of a BIG tile. At the same time, it

sets the power mode of the cores to either a power-gated mode

(VDD=0) for inactive cores or one of the DVFS configurations

given in Fig. 6 (left) for the two core types.

For the SD actors under enforcement, we analyzed the

major source of latency variation to lie in the variability

0 1 2 3 4
0

0.9

1.8

frequency [GHz]

su
p
p
ly

v
o
lt

ag
e

[V
]

LITTLE

BIG

0 1 2 3 4
0

0.5

1

frequency [GHz]

p
o
w

er

co
n
su

m
p
ti

o
n

[W
]

LITTLE

BIG

Fig. 6: Supply voltage (left) and power consumption (right)

for the BIG and the LITTLE core types versus their operating

frequency.

of the number i of features to be processed for each input

image. Thus, in our case study, we use this number as an

indicator of the actor’s workload. As a merit of profit, we

investigate the energy savings achievable through an enforced

execution of the actors in addition to the satisfaction of

their timing and reliability requirements. Moreover, besides

enforcement schemes invading just a single tile of type LITTLE

or BIG per actor, we also investigate an enforcement scheme

called COMBINED where each enforced actor is decided to

be executed on either an invaded LITTLE or an invaded BIG

tile. For the latter scheme, each input of an enforced actor is

sent to two invaded tiles2. The RRE on an invaded tile then

also decides on which tile type the current instance of the

enforced actor is executed, subject to the current workload

and the demanded redundancy scheme while the other tile is

power-gated. After processing the input image, the activated

actor instance sends the output image to the subsequent SM

actor. In the following, we exploit sampling-based techniques

to determine the relationship between latency, power con-

sumption, and energy demand of actors to be enforced in order

to characterize suitable enforcement decisions.

C. Power, Latency, and Energy Modeling

To evaluate the power consumption P (m) of a core in

power mode m, we use Eq. (2) in which the first summand

represents the dynamic power contribution based on the ef-

fective switching capacitance Ceff, supply voltage VDD(m),
and operating frequency f(m) of the core in power mode m.

The second summand describes the static power consumption

based on leakage current Ileak and supply voltage VDD(m).
The power consumption of each core type is also given

in Fig. 6 (right).

P (m) = Ceff · VDD(m)2 · f(m) + Ileak · VDD(m) (2)

For the construction of proper enforcement strategies for the

SD actors, we need to know the relation between the number i
of input features and the execution latency L in dependence of

the number n of cores and power mode m. Let L(1, 1,mmax)
denote the latency for processing one feature on one core in

power mode mmax (highest voltage and frequency). First, the

execution latency of each actor is determined by simulating

a total of 1 224 input image pairs (to be stitched) as a

representative set of the considered input space. Subsequently,

the latency L(1, 1,mmax) per feature of the SD actor is

2Instead of statically invading one BIG and one LITTLE tile for the SD
actor, also real-time task migration may be applied, see, e.g., [15]. Moreover,
applications with no requirements (best-effort workload) may be executed at
times where the enforced actor does not use one tile.

632

9A-3

0 400 800 1,200 1,600 2,000

0

0.2

0.4

(4, 12)
(3, 7)

(1, 1)

(6, 20)
(1, 1)

1
4
5
2

1
9
1
2

max. enforceable workload (imax) [#]

en
er

g
y

[J
]

COMBINED LITTLE BIG

Fig. 7: Statically characterized Pareto-optimal (n,m) con-

figurations in the space of energy consumption and maxi-

mum enforceable workload imax for an energy-minimizing

enforcement of the SD actors given a latency upper bound of

UBL=100ms. The front is given for three cases of using a) a

BIG tile, b) a LITTLE tile, and c) a COMBINED enforcement

scheme which can switch between both tiles.

determined for each image by dividing its latency by the

number of features i in that image. As we target latency as a

hard requirement, the maximum observed per-feature latency

among all images is used as L(1, 1,mmax) which is equal to

0.21μs on a BIG core and 0.41μs on a LITTLE core for a

clock frequency f(mmax).

The following Eq. (3) is then used to determine an upper

bound on the actor latency L(i, n,m) based on the number

of features i to be processed within an image, the number

of cores n employed, and the power mode m selected by an

RRE scheme. In Eq. (3), e(n) denotes the parallel efficiency

in dependence of the number of cores n employed. In our

experiments, we consider the best case of e(n) = 1.

L(i, n,m) = L(1, 1,mmax) ·
⌈

i

n · e(n)
⌉
· f(mmax)

f(m)
(3)

Note that Eq. (3) is a latency model specific to the SD

actors of our running application where L(1, 1,mmax) must

be determined individually for each actor to be enforced.

Moreover, Eq. (3) could be alternatively replaced with an

elaborate many-core timing analysis, e.g., those from [6],

[20]–[24], to derive tight worst-case latencies that support a

variety of different resource arbitration policies and resource

sharing schemes.

The energy E(i, n,m) required by the actor for processing

an image with i features using n cores running in power mode

m is then derived using Eq. (4).

E(i, n,m) = L(i, n,m) · P (m) · n (4)

Finally, the maximum number of features that can be pro-

cessed within a given latency bound UBL using n active cores

running in power mode m can be determined using Eq. (5)

which is derived from Eq. (3), considering L(i, n,m) ≤ UBL.

imax(UBL, n,m) =
⌊
n · e(n) ·

⌊
UBL

L(1,1,mmax)
· f(m)
f(mmax)

⌋⌋
(5)

For example, imax(100, 4, 20) denotes the highest number i of

features for which a latency upper bound of UBL=100ms for

the SD actor can be enforced using n = 4 cores and power

mode m = 20. Note that Eq. (5) must be developed separately

for each core type, e.g., BIG and LITTLE in our example.

D. Energy-Minimized Timing Enforcement

In general, requirement enforcement may involve to set,

modify, or impose restrictions on typically OS-related tech-

niques such as thread scheduling, or memory management.

In our case study, the enforcement is realized by varying

the number n of active cores (parallelism) and their power

mode m for each execution iteration of each enforced SD

actor. Since in general, multiple settings for n and m might

enforce the given requirements, the question becomes which

requirement-adhering (n,m) configuration to select at run

time. Often, this freedom of choice may be exploited by

optimizing one or more (secondary) objectives in addition

to satisfying the given requirements. In the following, we

consider energy consumption as a secondary objective to be

minimized.

Given the latency upper bound of UBL = 100ms and the

RRE decision space of n∈ [1, 4] and m∈ [1, 16] in case of a

BIG tile or n∈ [1, 6] and m∈ [1, 20] in case of a LITTLE tile

according to Fig. 6, design space exploration can be conducted

per enforced actor to derive, e.g., in our running example for

the SD actors, the maximum number imax of features that can

be processed under each choice of (n,m) while respecting the

given latency bound. Form the 64 (or 120) possible (n,m)
configurations for a BIG (or LITTLE) tile, the Pareto-optimal

configurations in the space of maximum enforceable workload

imax (to be maximized) and the respective energy demand

(to be minimized) can then be identified and retained to

construct the RREs. Figure 7 illustrates the distribution of the

Pareto-optimal (n,m) configurations in the space of maximum

enforceable workload imax and energy, derived using Eq. (5)

and Eq. (4), respectively, for the two tile types LITTLE and

BIG. Accordingly, the Pareto-optimal configurations for a

COMBINED enforcement scheme using both tile types (one

tile of each type) are outlined with a green circle in Fig. 7.

Based on such a design space exploration and the Pareto

front of (n,m) configurations derived thereby, an energy-

minimizing enforcement scheme may be systematically con-

structed in which prior to each execution of the SD actor,

the RRE selects the energy-minimal (n,m) configuration that

satisfies the latency requirement if it is enforceable for the

current input workload i. According to Fig. 7, on a BIG tile,

the latency bound of UBL = 100ms is enforceable for input

images with up to i=1, 912 features. In case of a LITTLE tile,

the maximum enforceable workload is restricted to i=1, 452
features. Finally, in case of a COMBINED enforcement scheme,

the LITTLE tile can be used for input images with i≤ 1, 452
features while the BIG tile is used for images with i>1, 452
features. In all three schemes, the RRE selects the energy-

minimal (n,m) configuration solely based on the number i of

features in the image to be processed by the SD actor. Note

that for non-enforceable sizes of input, the enforcer needs to

either throw an exception, drop the image, or process only as

much as the latency bound allows to be processed.

E. Reliability Enforcement

In our case study, also a reliability requirement needs to

be enforced according to Fig. 5. Depending of the observed

SER, this soft requirement can be respected by switching from

a non-redundant execution of the enforced SD actors to a

633

9A-3

. . .

HC0

SD0

. . .

HC1

SD1

SM

. . .

introducing
enforcement

. . .

HC1

RRM

RRE

SD1

. . .

HC0

RRM

RRE

SD0

SM

. . .

i1i0

power
manager

(n
1
,m

1
)

power
manager

(n
0
,m

0
)

i [0, 12] . . . [1381, 1452] [1453, 1528] . . . [1817, 1912]

n 1 . . . 6 4 . . . 4

m 1 . . . 20 12 . . . 16

RRE lookup table

a) non-replicated variant

. . .

HC1

RRM

RRE

SD′
1SD1 SD′′

1

Voter

. . .

HC0

RRM

RRE

SD′
0SD0 SD′′

0

Voter SM

. . .

i1i0

power
manager

(n
1
,m

1
)

power
manager

(n
0
,m

0
)

i [0, 12] . . . [1381, 1452] [1453, 1528] . . . [1817, 1912]

n 1 . . . 6 4 . . . 4

m 1 . . . 20 12 . . . 16

RRE lookup table

b) TMR variant

non-enforced actor

enforced actor

mappable on BIG and LITTLE tile

Fig. 8: Implementation of distributed RRE: Depending on the input i, the pre-explored energy-optimal parallelism degree and

the DVFS settings (n,m) are determined for each of the two SD actors as well as whether the actor instance is executed on

a BIG or a LITTLE tile. Moreover, depending on the observed SER, it is processed in either a non-replicated (a)) or a TMR

fashion (b)).

TMR execution scheme (see a pseudo-code of the enforcer

in Fig. 9). In view of an RRE constructed as detailed before,

a TMR execution of an SD requires to compute each of the i
feature threads three times and perform majority voting on the

results. This is considered by replicating the workload from i
to i′=3×i features to be processed within the given latency

upper bound. Thus, it suffices for the RRE to select the energy-

minimal (n,m) configuration corresponding to a maximum

workload of i′=3×i if a TMR execution scheme is needed

to enforce the reliability requirement. Evidently, under a TMR

scheme, the latency upper bound UBL=100ms is enforceable

for input images with up to i=484 features for an execution

on a LITTLE tile while it can be enforced for images with up

to i=637 features using a BIG tile.

F. Implementation

To enable such an enforced execution of the SD actors,

we adapt the application by inserting an RRE actor before

each instance of each SD actor, thus, conducting a model

transformation at the level of actor graphs.

For the exemplary COMBINED enforcement scheme, Fig. 8

shows the resulting deployment of the two enforced SD actors,

namely, SD0 and SD1, of the stitching application. Each

enforced actor SDx (instantiated on a BIG and/or a LITTLE

tile) is preceded by a RRM to extract the number ix of

features in the current input image and a RRE actor which

activates the optimal (n,m) configuration based on ix before

the processing of the SDx actor begins. To that end, the

statically computed Pareto-optimal (n,m) configurations to be

used by each RRE are stored in a lightweight lookup table on

the respective tile. Moreover, the RRE decides between a non-

redundant execution of the enforced actor (see, Fig. 8a) or a

TMR execution scheme (see, Fig. 8b), subject to the observed

SER at run time. The pseudo-code of this combined timing

and reliability enforcer is shown in Fig. 9.

Note that, in case two tiles (one of type BIG and one of type

LITTLE) are invaded to host an SD actor, each input image of

that actor is processed on only one of the two tiles: At run

time, the output of each HC actor is sent to both tiles that host

the instances of the subsequent SD actor. Then, the local RRE

// Code of RRE for the SD Actor
static class SD_RRE_Actor extends Actor {

...
protected def task () {

// Features are available at the input port
// of the actor
val inToken = inPort . read ();
var i = inToken. features . size ();

// If SER is bigger than serThreshold , TMR is used,
// which increases workload by factor 3
useTMR = false;
if (SER > serThreshold) {
useTMR = true;
i ∗= 3;

}

// Look up results from DSE
val targetTileType = getBigOrLittle (i);
val numCores = getCores(i);
val powerMode = getPowerMode(i);

// Set power mode via OS interface if the RRE is
// on the correct tile (big or little)
if (getMyTile() == targetTileType) {

osPowerManager.setMode(numCores, powerMode);
...

}
}

}

Fig. 9: RRE code of SD actor.

on each tile determines based on the number of features i to

be processed a) whether the image is to be processed on its tile

and, if so, b) sets the optimal (n,m) configuration to be used,

see Fig. 9. After the settings have been adapted by the power

manager, the processing of the SD actor is initiated (method

infect in invasive computing [1]). The cores on the tile that

is not used for processing the current image are power-gated.

Once the processing of the active actor instance is complete,

the output is sent to the SM actor.

In the RRE tables shown in Fig. 8, the columns displayed

in blue denote the range of workload i and the corresponding

optimal (n,m) configurations for which the LITTLE tile will

be active. The entries given in green denote the range of

workload and the corresponding optimal (n,m) configuration

for which the BIG tile is active. For instance, for input images

634

9A-3

0 50 100 150 200
0

0.2

0.4

0.6

en
er

g
y

[J
]

BIG

0 200 400 600
0

0.5

1

1.5

2

latency [ms]

en
er

g
y

[J
]

0 50 100 150 200
0

0.2

0.4

0.6

LITTLE

0 200 400 600
0

0.5

1

1.5

2

latency [ms]

0 50 100 150 200
0

0.2

0.4

0.6

COMBINED

0 200 400 600
0

0.5

1

1.5

2

latency [ms]

n
o
n
-e

n
fo

rc
ed

en
fo

rc
ed

N
on

-r
ed

un
da

nt
T

M
R

-r
ed

un
da

nt

Fig. 10: Distribution of the energy consumption and the latency of the SD0 actor for processing the 1 224 input images without

enforcement (red plots) and with enforcement (blue plots) for non-replicated (top row) and TMR-redundant (bottom row)

schemes when executed on a BIG tile (left column), a LITTLE tile (middle column), or under the COMBINED enforcement

scheme (right column).

with i ∈ [1, 381, 1, 452] features, the processing of the SD

actor will be performed on the LITTLE tile using n=6 cores

running on power mode m= 20 while the cores on the BIG

tile are power-gated. For input images with i∈ [1, 453, 1, 528]
features, the processing is performed on the BIG tile using

n=4 cores running on power mode m=12 while the cores

on the LITTLE tile are power-gated. In case a TMR scheme is

required, each RRE first calculates the total number i′=3×i of

features that must be processed for the given input image with

i features. The optimal (n,m) configuration is then selected

based on i′.

G. Results Discussion

Figure 10 illustrates the distribution of energy consumption

and latency for the exemplary SD0 actor when processing

1 224 input images varying in number of features i to be

processed between i = 43 and i = 3022, provided for

two cases of without enforcement (red crosses) and with

enforcement (blue circles). The image test sequence has been

chosen on purpose to include also images with i > 1, 912
which cannot be enforced even on a BIG tile in a non-

redundant mode of processing. The plots in the top row

correspond to a non-redundant execution of SD0 while those

in the bottom row correspond to a TMR execution of SD0. The

results are provided for the three scenarios of executing SD0

on a BIG tile (left column), a LITTLE tile (middle column),

or under the COMBINED enforcement scheme (right column).

Accordingly, Fig. 11 illustrates the histograms of observable

latencies of the SD0 actor without enforcement (red) and

with enforcement (blue) for the redundancy and deployment

schemes stated above. Without enforcement, the SD0 actor is

always executed using all cores available on the tile running on

the maximum frequency. By employing the described enforce-

ment strategy, the run-time manager is no longer compelled

to constantly run the SD0 actor with the maximum number

n of cores using the highest power mode m and in a TMR

scheme to guarantee the satisfaction of the given latency

and reliability requirements in presence of input and SER

variations. Instead, in an enforced execution of the SD0 actor,

the RRE chooses a (n,m) configuration that minimizes energy

consumption while still respecting the given latency upper

bound, UBL=100ms.

Table I provides the average energy consumption of the SD0

actor under different enforcement and redundancy scenarios,

normalized to the maximum energy consumption which hap-

pens in the case of non-enforced TMR-redundant execution on

a BIG tile. For all redundancy and enforcement schemes, the

results verify the energy efficiency of the enforced executions

compared to their non-enforced variants. Finally, Table II

provides the proportion of timely executions of the SD0

actor under different enforcement and redundancy scenarios,

normalized to the ratio of timely executions for the case

of non-enforced TMR-redundant execution on a BIG tile. A

comparison among the three enforcement schemes, namely,

BIG, LITTLE, and COMBINED, in terms of energy consump-

tion (Table I) and proportion of timely executions (Table II)

demonstrates that using a BIG tile offers the highest proportion

of timely executions at the cost of the highest energy consump-

tion. On the other hand, relying on a LITTLE core leads to the

lowest energy consumption at the cost of a reduced proportion

of timely executions. Alternatively, by switching between

the two tile types, the COMBINED scheme offers the same

proportion of timely executions as the BIG scheme, yet with

a reduced energy consumption as given in Table I. Note that

the additional execution time and energy consumption of the

RREs themselves can be neglected as these are implemented

by simple table lookups.

TABLE I: Average normalized energy dissipation.

redundancy
scheme

without enforcement with enforcement

BIG LITTLE BIG LITTLE COMBINED

non-redundant 0.33 0.13 0.28 0.11 0.20

TMR-redundant 1.0 0.38 0.95 0.37 0.88

TABLE II: Normalized ratio of timely executions.

redundancy scheme BIG LITTLE COMBINED

non-redundant 1.5 1.4 1.5

TMR-redundant 1.0 0.7 1.0

635

9A-3

0 100 200 300
0

3

6

9

in
p
u
t

im
ag

es
[%

]

BIG

0 200 400 600
0

1

2

3

latency [ms]

in
p
u
t

im
ag

es
[%

]

0 100 200 300
0

3

6

9
LITTLE

0 200 400 600
0

1

2

3

latency [ms]

0 100 200 300
0

3

6

9
COMBINED

0 200 400 600
0

1

2

3

latency [ms]

n
o
n
-e

n
fo

rc
ed

en
fo

rc
ed

N
on

-r
ed

un
da

nt
T

M
R

-r
ed

un
da

nt

Fig. 11: Latency distribution for the SD0 actor for processing the 1 224 input images without enforcement (red plots) and with

enforcement (blue plots) for non-redundant (top row) and TMR-redundant (bottom row) schemes when executed on a BIG

tile (left column), a LITTLE tile (middle column), or under the COMBINED enforcement scheme (right column).

IV. CONCLUSIONS

In this paper,we presented a formalization, classification,

and the practice of a class of run-time techniques subsumed

under the term of Run-Time Requirement Enforcement (RRE)

that make the system management software of an MPSoC

platform become the advocate of a parallel application pro-

gram instead of both acting independently with the goal to

provide means for the satisfaction of given non-functional

requirements of parallel program execution such as perfor-

mance (latency, throughput), power or energy consumption,

or reliability. The non-functional requirements can thereby be

expressed by interval ranges and specified over the application

program as a whole, e.g., when specified by an actor graph.

Alternatively, requirements can be specified for individual

actors/tasks or threads, or even segments thereof. The goal

of RRE is to enforce the satisfaction of these requirements

at run time. In this paper, we have shown an example of

enforcers for timing and reliability requirements. For the cases

where input might not be enforceable any more, techniques

such as input omission (dropping), approximate computing to

trade off processing speed with result accuracy (if applicable),

revision of scheduling decisions, over-allocation of resources,

or a dynamic reconfiguration between different mappings at

run time might deliver solutions from case-to-case.

ACKNOWLEDGEMENT

This work is funded by the Deutsche Forschungsgemein-

schaft (DFG, German Research Foundation) – Project Number

146371743 - TRR 89 Invasive Computing.

REFERENCES

[1] J. Teich et al., Invasive Computing: An Overview. Springer, 2011.
[2] T. Schwarzer et al., “Symmetry-eliminating design space exploration for

hybrid application mapping on many-core architectures,” IEEE TCAD,
vol. 37, no. 2, 2018.

[3] A. K. Singh et al., “Accelerating throughput-aware runtime mapping for
heterogeneous MPSoCs,” ACM TODAES, vol. 18, no. 1, pp. 9:1–9:29,
2013.

[4] A. Weichslgartner et al., “DAARM: Design-time application analysis
and run-time mapping for predictable execution in many-core systems,”
in Proc. CODES+ISSS. IEEE/ACM, 2014, pp. 1–10.

[5] P. N. Khanh et al., “Incorporating energy and throughput awareness
in design space exploration and run-time mapping for heterogeneous
MPSoCs,” in Proc. DSD. IEEE, 2013, pp. 513–521.

[6] A. Weichslgartner et al., Invasive Computing for Mapping Parallel
Programs to Many-Core Architectures. Springer, 2018.

[7] S. Pinisetty et al., “Runtime enforcement of reactive systems using
synchronous enforcers,” in Proc. ACM SIGSOFT Int. SPIN Symp. Model
Checking of Software, 2017, pp. 80–89.

[8] C. Imes et al., “POET: a portable approach to minimizing energy under
soft real-time constraints,” in Proc. RTAS, 2015, pp. 75–86.

[9] M. Damavandpeyma et al., “Throughput-constrained DVFS for
scenario-aware dataflow graphs,” in Proc. RTAS, 2013.

[10] S. Roloff et al., “ActorX10: an actor library for X10,” in Proc. ACM
SIGPLAN Workshop on X10. ACM, 2016, pp. 24–29.

[11] J. Teich et al., “Language and compilation of parallel programs for
*-predictable MPSoC execution using invasive computing,” in Proc.
MCSOC. IEEE, 2016.

[12] H. Kopetz, Real-Time Systems: Design Principles for Distributed Em-
bedded Applications, 2nd ed. Springer, 2011.

[13] B. Akesson et al., “Composability and predictability for independent
application development, verification, and execution,” in Multiprocessor
System-on-Chip. Springer, 2011, pp. 25–56.

[14] A. Hansson et al., “CoMPSoC: A template for composable and pre-
dictable multi-processor system on chips,” ACM TODAES, vol. 14, no. 1,
p. 2, 2009.

[15] B. Pourmohseni et al., “Hard real-time application mapping reconfigu-
ration for NoC-based many-core systems,” Real-Time Systems, pp. 1–37,
2019.

[16] A. K. Singh et al., “Energy optimization by exploiting execution slacks
in streaming applications on multiprocessor systems,” in Proc. DAC.
IEEE/ACM, 2013, p. 115.

[17] A. Kanduri et al., “Approximation-aware coordinated power/perfor-
mance management for heterogeneous multi-cores,” in Proc. DAC, 2018,
pp. 1–6.

[18] D. Angioletti et al., “A runtime resource management policy for OpenCL
workloads on heterogeneous multicores,” in Proc. DATE, 2019.

[19] Z. Zhu et al., “Energy minimization for multi-core platforms through
DVFS and VR phase scaling with comprehensive convex model,” IEEE
TCAD, 2019.

[20] B. Pourmohseni et al., “Isolation-aware timing analysis and design
space exploration for predictable and composable many-core systems,”
in Proc. ECRTS, 2019.

[21] S. Altmeyer et al., “A generic and compositional framework for multi-
core response time analysis,” in Proc. RTNS, 2015.

[22] R. I. Davis et al., “An extensible framework for multicore response time
analysis,” Real-Time Systems, pp. 1–55, 2017.

[23] G. Giannopoulou et al., “Timed model checking with abstractions: To-
wards worst-case response time analysis in resource-sharing manycore
systems,” in Proc. EMSOFT. ACM, 2012, pp. 63–72.

[24] ——, “Mixed-criticality scheduling on cluster-based manycores with
shared communication and storage resources,” Real-Time Systems,
vol. 52, no. 4, pp. 399–449, 2016.

636

9A-3

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

