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Abstract—It has long been acknowledged that some appli-
cations feature inherent resilience against soft errors, e.g., the
impact of soft errors on multimedia applications is often non-
visible to humans. In this paper we investigate the inherent
resilience of two typical embedded applications using a case study
of a control system and a robot arm. Both studies were enabled
by our mixed-mode fault injection simulator ETISS-ML, which
allows RTL-accurate fault injection while being able to simulate
very long scenarios, e.g. robot movements of several seconds. Our
results indicate that full simulation of the embedded system and
its environment are required to classify whether the system can
tolerate the impact of a soft error. This is due to the fact that
it is hard to predict the impact of a certain output deviation
without investigating the change in the system behavior taking
into account the control loop. Based on this classification method
we hope to be able to exploit this resilience for lowering the cost
of error detection mechanisms in future research.

Index Terms—Soft error resilience, silent data corruption,
application resilience, safety critical embedded systems

I. INTRODUCTION

Embedded systems are increasingly being deployed in

safety-critical domains. Safety-critical systems are character-

ized as systems whose failure could cause catastrophic damage

to the surrounding environment [1]. Hence, designing them

for failure-free operation is a top priority. This entails design-

ing dedicated safety mechanisms, in addition to functional

components, which inadvertently leads to higher overhead

costs. Tailoring embedded-system design for safety-critical

domains, hence, poses a major technical challenge: to provide

adequate operational safety while still ensuring power and

cost efficiency. To achieve this, products in industries as

diverse as automotive, transportation, medical etc. are opting

for simpler commercial-off-the-shelf (COTS) platforms over

custom hardened ones for meeting their computing demands.

This is mainly attributed to embedded systems’ ever increasing

computational capabilities while still retaining their character-

istic benefits in terms of cost efficiency.

Radiation-induced soft errors [2] are considered to be a

major source of run time errors that could cause a safety-
critical embedded system (SCES) to fail. Furthermore, the soft

error rate is expected to rise with emerging HW architectures.

This is due to advanced technology scaling (in terms of device

geometries, operating voltages etc.) being employed to realize

faster power-efficient implementations. Soft errors manifest

themselves at system level as either detected, but unrecov-
erable errors (DUEs) or silent data corruptions (SDCs) [3].

Most COTS processors are equipped to handle DUEs. For

example, a watchdog timer (WDT), a commonplace safety

mechanism in these processors, can detect error scenarios
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Fig. 1. SDC-coverage map for different safety mechanisms

that lead to SW being inactive for extended periods of

time. Similarly, a memory protection unit can detect illegal

memory accesses at run-time, thereby alerting the CPU via

an exception. Numerous studies have already been conducted

to investigate the impact of SDCs (e.g. [4], [5]). This has

helped to devise various solutions to tackle SDCs. Among

these, software implemented HW fault tolerance [6] (SIHFT) is

highly attractive for SCES, due to minimal HW requirements

[7]. The key design philosophy behind SIHFT has, until now,

been to yield maximum, if not perfect, coverage of SDCs

with only a secondary focus on incurred overheads. While

selective SIHFT variants have been suggested to trade-off

SDC coverage with run-time overheads [8], [9], the SDC

protection offered by them is deemed insufficient for safety-

critical operation.

Many embedded applications are designed under soft-
computing [10] semantics, in order to robustly handle unex-

pected conditions or noise when operating in harsh environ-

ments. They don’t require numerically perfect computations

for carrying out their functionality, but instead are able to

tolerate a certain amount of corruption in their data. Expressed

another way, these applications offer a certain amount of

inherent resilience. Our core insight is that by leveraging

such application-level resilience, more optimal design points

can be generated than those possible by relying solely on

state of the art SIHFT solutions. To further motivate this,

we present a soft error resilience comparison (in terms of

SDC coverage) between safety mechanisms A and B for a

hypothetical SCES scenario. Here, the shaded (gray) region

represents the potentially dangerous (failure-causing) SDCs,

while the unshaded (white) region reflects SDCs that are

considered safe as, due to application-level resilience, they

do not cause failures. Remaining SDCs are depicted as being

covered via employed safety mechanisms (like WDT, SIHFTs

etc.). As can be seen, even though A scores higher in terms of

overall SDC coverage, B is better in leveraging the inherent

resilience of the application because B covers more of the

potentially dangerous SDCs while A instead covers mostly

safe SDCs.
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The concept of exploiting application resilience to improve

the design space exploration process for a specific domain

has been considered in the literature. For example, it has

been exploited in devising energy-efficient HW accelerators

specifically for machine-learning workloads [11], in devel-

oping optimized GPU-compute kernels for image-processing

applications [12], in improving yield of complex VLSI chips

for multimedia processing [13] etc. From a fault-tolerance

perspective, Thomas et al. [14] were among the first to

formally express application resilience by introducing the

notion of egregious data corruptions. Essentially, egregious

here refers to severe forms of SDCs to distinguish them from

the rest of the SDCs. Instead of conventional focus on SDC-

coverage, authors in [14] proposed to focus exclusively on

such potentially dangerous SDCs to generate more optimal

design points. However, they only demonstrated their method

by analyzing benchmark programs, which are not of interest

in the context of SCES operation.

We extend their concept of egregious SDCs to cover

complex, realistic embedded scenarios as well. For this we

consider current safety standards such as ISO26262. In these

standards error impact is categorized as either potentially

dangerous or safe. A potentially dangerous error may violate

a so-called safety goal. When the application running on a

COTS platform is unknown, any SDC needs to be categorized

as potentially dangerous. In contrast, when the application

is known, then the error impact can be simulated and its

effect can be categorized based on its impact on the system

behavior. Our future goal is to demonstrate that distinguishing

between safe and dangerous SDCs will allow to reduce the

cost of protecting SCESs against failures by considering that

no protection against safe SDCs is required. The key point is

that one needs to simulate the system behavior to investigate

the application’s resilience. Just looking at the output deviation

is insufficient. This is demonstrated by two case studies.

II. SOURCES OF APPLICATION’S INHERENT RESILIENCE

Almost any embedded system can be modeled as a func-

tional entity that continuously senses the information from its

surrounding environment (inputs), processes it and afterwards

actuates to control some aspects of the environment (outputs).

Thus, any such system can entirely be (informally) described

by a sense-compute-actuate relationship forming a closed loop

with the physics of its environment (plant), herein referred

to as system-level behavior. An SCES specifies additional

safety goals (as part of the safety specification) that are

expressed in terms of this system behavior. We formulate

the application’s inherent resilience of a given SCES as: the
amount of deviation in its system-level behavior that it can
tolerate without violating any of its safety goals.

Soft-error-induced SDCs are at first glance all potentially

dangerous as they may corrupt system inputs, outputs or

system states. Based on this corruption, the system may violate

a safety goal due to unpredictable actuation. However, taking

application-resilience into consideration, some SDCs could be

deemed safe. This is motivated by the fact that there exist

also other sources of uncertainties in these systems e.g., noise

on the sensors may lead to different input-output behaviors.

Hence, these systems must be designed to not being reliant
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Fig. 2. Application resilience as system-level masking

on numerically perfect computations in carrying out their

functionality, but instead they must be able to tolerate a certain

amount of noise. As long as the corruption of an SDC is

similar to such noise effects, the noise tolerance of the system

will assure it is safe.

Another major source of embedded applications is the

periodic execution of sense-compute-actuate tasks. When an

SDC leads to a corrupt output in the actuation, the system

behavior may deviate from the error-free behavior. Yet, in

the next sense step, this deviation is detected and the system

corrects for it. Sometimes the software just overwrites the

faulty command with a correct new one in the next step. For

example, when an SDC leads to a robot joint rotating in the

wrong direction, the sensors in the step motors would report

that the step counts are done in the incorrect direction. In

the next control step, the direction would be adapted, if the

software is designed accordingly. This may lead to small, yet

insignificant deviations from the error-free behavior.

We further illustrate this idea in Fig. 2 which shows an

abstract system representation of an SCES working within its

environment. Not all faults propagate to the outputs due to

a variety of masking effects at different layers. Additionally,

common safety mechanisms such as watchdogs or memory

detection would detect and handle DUEs. The errors that

propagate to the system outputs without being detected are

classified as SDCs. As highlighted, we can conceptualize

application resilience at the highest abstraction layer, as an

effect that has to take the sense-compute-actuate loop of

the embedded system as well as the physical behavior of

its environment into account. Based on the safety goals, the

SDC can be potentially dangerous or safe (tolerated due to

inherent resilience). Any design hardening mechanism (e.g.

SIHFTs) should target the potentially dangerous SDCs rather

than the entire SDC set to minimize the cost of providing fault

protection.
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III. INVESTIGATING AN APPLICATION’S INHERENT

RESILIENCE

To investigate a given SCES’s inherent resilience in a

generic and systematic way, we propose to carry out fault

injection experiments combined with full-system simulation.

Full system simulation here means that we do not only simu-

late the embedded system and its software but also the physical

behavior of the system. This is essential as SDC impact cannot

always be classified from just the embedded software outputs.

For example, an SDC could be considered safe when the

corrupted value written by the software to an actuation output

differs less than 10% from the correct value. Yet, if such

a deviation occurs continuously for several actuation steps,

even such a ”small” disturbance could become potentially

dangerous. Hence, our approach is to inject the fault and

trace the system’s physical behavior, e.g., the trajectory of the

movement of a robot in space. Based on the definition of the

inherent resilience, we compare the error-free trajectory with

the trajectory generated by the software under the influence of

the SDC. The deviation is classified based on the pre-defined

safety goals. As long as the trajectory is deemed safe in terms

of the safety goals, the SDC is classified as safe. This of course

can also depend on the mission profiles. Hence, in order to

result in meaningful statistics, the simulated scenarios should

represent the real use cases later executed by the embedded

system. This approach enables accurate investigation of the

impact of each of observed SDC on the system-level behavior

with respect to the pre-defined safety goals.

To illustrate this setup, we introduce two separate case-

studies from the embedded domain and show their inherent

resilience potential by applying our method.

IV. CASE STUDIES

We use SystemC / TLM modeling to implement virtual

prototypes (VPs) of the embedded systems in order to simulate

them in a full-system manner. The VPs are centered around

our ETISS-ML simulator [15] that provides the capability

to perform RTL-accurate fault injection experiments within

reasonable time. In this paper, we mainly focus on system-

level aspects of these VPs. Interested readers are referred to

prior works [15], [16] for further details regarding the VP

setup.

A. Adaptive Cruise Control (ACC) System

System Description. We simulate a road scene involving

two cars. In the chosen mission profile, both cars are set

Fig. 3. ACC: Output and system response (Fault free reference)

up to be moving at 20m/s in a particular direction with an

initial distance of 50m between them. The ACC is configured

to drive its subject car at uniform speed while keeping a

safe distance of 40m from the preceding car. It comprises

an engine control unit (ECU), a throttle-actuator, and radar

and speed sensors as key components. The radar provides

updates on relative distance from the preceding car, while

the speed-sensor is used to measure the subject car’s speed

at a given point in time. The sensors are configured in the

ECU’s firmware to provide updated samples periodically in

time via interrupts. This sensory information is then used

as input by a fault-tolerant PI controller [17] task to send

appropriate control commands to the throttle (via the actuator),

in order to accelerate or decelerate the car as needed. The

control is updated every 10ms. This is a motivational and very

simplified setup, in which the ACC system relies on a simple

PI control law and the physics of the two cars are simulated

with a linear plant model. The real system behavior would

differ significantly due to the complex physics of the cars.

Additionally, the following car could use also the brakes to

control the distance, especially in emergency situations. Yet,

overall this setup gives an idea of the inherent resilience of

linear control tasks, which are still used commonplace in many

embedded systems.

We study soft error resilience of the ACC system that

is deployed inside the following car. The entire scene is

simulated for 15 s.

System-level Behavior. Fig. 3 plots the throttle commands

(system outputs) along with the distance between the two cars

(system behavior) observed over time. As can be seen, the

spacing (right plot) varies from 50m to 30m in the ACC’s

transient phase, with the typical transient behavior of a linear

PI control. Afterwards, it quickly converges to the desired

spacing of 40m. Likewise, the throttle plot (on the left) depicts

the controller being highly aggressive at the start with its

actuation. Over time the controller’s actuation saturates.

We define the system’s safety goal in terms of the physical

behavior. As long as the two cars either get too close or drift

too far away from each other, the system is deemed to have

compromised safety.

Impact of SDCs. We carry out an ETISS-ML fault-injection

campaign by injecting random RTL bitflips within the CPU

pipeline of the ECU. Bitflips can result not only from radi-

ation, but also from other fault sources such as crosstalk or

noise [18]. The FI targets the initial phase (0− 3s) of the

scenario. Here, an SDC is reported if at any control-step, the

throttle command (i.e. system output) is found to be different

from expected (fault-free) scenario.

Afterwards, we investigate the reported SDC scenarios to

study their impact on the system-level behavior. The results are

plotted in Fig. 4 and Fig. 5. Here again we plot the system’s

output response on the left and its behavior response on the

right. As can be seen, the distance perturbations in Fig. 4 are

much smaller than in Fig. 5 and in spite of deviation from

the fault-free behavior, the system is still able to ensure safe

distance between the cars. This is possible due to inherent

resilience in the control algorithm to tackle noise. Fig. 5,
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Fig. 4. ACC: Output and system response over time (Safe SDC)

Fig. 5. ACC: Output and system response over time (Dangerous SDC)

however, depicts more severe forms of SDCs that lead to

unstable control responses, resulting in a violation of the

specified safety goals. For example, scenarios in which the

relative spacing goes below 0m represent a crash leading

to injuries or even fatalities in the worst case. Naturally,

these scenarios show very high acceleration due to the linear

plant model, which would not be possible considering real

physics. Yet, clearly the control is de-stabilized leading to an

uncontrolled situation. We find roughly half of the observed

SDCs to be tolerated by the application, thus demonstrating

sufficient amount of inherent resilience. We expect a wide

variety of embedded linear control applications to show similar

resilience characteristics.

Revisiting Fig. 4, we see large deviations in throttle re-

sponse even when SDCs are found to be safe. In other words,

classifying SDCs into safe and dangerous classes based on the

throttle response, as per related work, would have resulted in a

much more conservative estimate of the application resilience.

Thus, our strategy for quantifying a given system’s inherent

resilience based on its physical behavior rather than its output

response, is further motivated.

B. Robot Arm System

System Description. We simulate a second case study of an

embedded industrial system, which controls a robot arm as

depicted in Fig. 6. The robot arm is further equipped with

motion sensors and drive motors at each of its four joints.

The controller (implemented as firmware) on an industrial

micro-controller estimates the robot arm’s current orientation

via sensory information at periodic steps. It executes a simple

motor control at each such step. The overall goal is to reach

a sequence of given positions in 3D space starting from an

Fig. 6. A (virtual) robot arm

Fig. 7. Robot arm: Trajectory in 3D Space (Error free reference run)

arbitrary initial location. For this, the robot control task has

two phases. First it computes the inverse kinematics of the

robot arm to derive the joint positions from the 3D position.

In the move phase it moves to the computed joint position by

controlling the motors. We simulate the movement scenario

for 20 s.

System-level Behavior. Fig. 7 plots the 3D trajectory of the

robot arm in space for the fault-free scenario. As shown,

the robot arm first calibrates itself (goes to origin of its

frame-of-reference). Afterwards, it computes its final (desired)

orientation in order to reach the given 3D position solving the

inverse kinematic equations. Finally, it executes a move phase

(D curve in plot) to attain the target orientation by driving

the joint motors accordingly. Here, we define the safety of the

system to be compromised, if there is a significant deviation

from the trajectory as this could lead to (a) possible collisions

with objects in close proximity and / or (b) abrupt jerky

motions of the robot arm causing self-damage.

Impact of SDCs. We study the soft error susceptibility of the

robot arm controller using ETISS-ML. Here, we inject random

RTL bitflips inside the CPU pipeline during the move phase of

the simulated scenario. An SDC is reported for FI experiments

in which the sequence of motor actuation commands differs

from the one in the fault-free case.

Similar to the ACC study earlier, we also observe that not all

SDCs have dangerous effects on the robot arm’s system-level

behavior. However, the fraction of dangerous SDCs is found

to be significantly less (roughly by 10x). The corresponding
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Fig. 8. Robot arm: Trajectory in 3D Space (For Safe SDC scenarios)

Fig. 9. Robot arm: Trajectory in 3D Space (For Dangerous SDC scenarios)

trajectory plots for safe and dangerous SDCs are shown in

Fig. 8 and Fig. 9 respectively. Notice however that as opposed

to the ACC case-study (Fig. 4), we see almost negligible

deviations for safe SDC scenarios here.

The robot arm’s better inherent resilience could well be

explained by its firmware having no explicit state during the

move phase except the final position computed in the previous

inverse kinematics phase. Due to this, a soft error’s corruption

often affects at most one iteration of the motor control, with

future motor control commands free from its effects. If the

movement changes within one iteration, it is corrected in

the next step as it is overwritten by a correct motor control

setting. In contrast, the ACC firmware possesses certain state

for the integral part of the PI control algorithm. A soft error

corrupting this state can potentially impact several control

steps. We believe this causes the higher soft error vulnerability.

V. CONCLUSION

In this paper, we investigated the inherent resilience po-

tential offered by realistic embedded applications in order to

reduce the fault tolerance overhead costs when deploying them

in a safety critical setting. We presented an improved method

for quantifying the application resilience based on analyzing

the impact of SDCs on the overall system behavior, thereby

motivating the need to combine fault injection simulation

frameworks with full-system simulation. We demonstrated the

benefits of our approach by applying them on two separate

representative case studies from the safety-critical embedded

domain.
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