
Thanos: High-Performance CPU-GPU Based Balanced Graph
Partitioning Using Cross-Decomposition

Dae Hee Kim, Rakesh Nagi, Deming Chen
University of Illinois at Urbana-Champaign

kim678, nagi, dchen@illinois.edu

Abstract— As graphs become larger and more com-

plex, it is becoming nearly impossible to process them

without graph partitioning. Graph partitioning cre-

ates many subgraphs which can be processed in par-

allel thus delivering high-speed computation results.

However, graph partitioning is a difficult task. In

this work, we introduce Thanos, a fast graph parti-

tioning tool which uses the cross-decomposition algo-

rithm that iteratively partitions a graph. It also pro-

duces balanced loads of partitions. The algorithm is

well suited for parallel GPU programming which leads

to fast and high-quality graph partitioning solutions.

Experimental results show that we have achieved 30x

speedup and 35% better edge cut reduction compared

to the CPU version of the popular graph partitioner,

METIS, on average.

I. Introduction

As data gathered through Internet-of-Things are be-
coming larger or the number of transistors on a circuit
continues to grow higher, the graphs that represent the
complex data connections for these, namely social net-
work, logic gate netlist, or cell placement graph, are also
increasing in complexity and size. Naively processing such
enormous graphs on a CPU is practically impossible as it
will either take too long to finish or run out of memory due
to the shear size of the data. Oftentimes, it is much better
to process such a graph with multiple or many sub-graphs
[1, 2]. When a graph is partitioned, we want to retain
as many connections as possible inside of each partition
and minimize the connections among partitions, in other
words, minimizing edge cuts. In this paper, we focus on
minimizing edge cuts as well as the partitioning time. We
also maintain nearly perfect load balancing for each parti-
tion. Partitioning a graph into equal sizes while minimiz-
ing the edges among different partitions is an important
task, finding various useful applications including scal-
able logic synthesis and physical design. Meanwhile, par-
titioning also helps graph processing itself through par-
allel computing. Parallelizing many applications involves
the problem of assigning data or processes evenly to pro-
cessors, while minimizing the communication among the
processors [3, 4]. The partitioning problem is known to be

NP-complete [5, 6]. Since graphs are getting complex in
various way, it is difficult to establish a standard approx-
imation algorithm in general [7] and heuristic algorithms
are typically used.
In this work, we introduce Thanos, a fast graph parti-

tioning tool that uses the cross-decomposition algorithm
[8]. The algorithm was not designed for the graph parti-
tioning problem, but for a machine partitioning problem
in the industrial engineering field. However, we realized
that the characteristics of the algorithm can help solve
the graph partitioning problem. The algorithm is also
well suited for parallel GPU programming which leads to
fast and high-quality graph partitioning solutions. Com-
pared to CPU which has only a few cores, GPU generally
has thousands of cores that can execute computations in
parallel. Many well-known libraries such as Tensorflow,
are developed targeting GPUs. The CUDA platform that
runs on any NVIDIA GPU has made GPU programming
easy to use. In our work, using a new heuristic algorithm
together with GPU, we are able to achieve 30x speed up
and 35% better edge cut reduction among partitions com-
pared to the CPU version of the famous graph partitioner
METIS [9]. The main contributions of this work are as
follows.

• Optimized cross-decomposition algorithm to fit into
large-scale graph partitioning problem

• Implemented and optimized the algorithm on GPU

• Provide nearly perfect load balance of vertices with
high quality graph partition

II. Background

A. Cross-Decomposition

In this section, we will cover the algorithm of cross-
decomposition proposed in [8, 10]. The main idea of cross-
decomposition on graph partitioning is to compute each
vertex’s gain for each different partition and assign it to
the partition based on the gain in such a way that [11]:
(1) Partitions contain as many non-zero values (connec-
tions) as possible
(2) One finds as many zero values (no connection) as pos-
sible outside the partitions

978-1-7281-4123-7/20/$31.00 ©2020 IEEE

2B-2

91

Fig. 1.: Row Partition

Given a graph with total number of vertices, N , we first
build an adjacency matrix A whose size is N ∗N and all
the elements belong to [0,1], A = [ai,j] with i = 0, ..., N −
1; j = 0, ..., N − 1 and 0 ≤ ai,j ≤ 1. Next, we need
to build two types of partitions, row partition, P v

X , and
column partition, P v

Y where v denotes the total number of
partitions. Each vertex is assigned to one of the partitions
between 0 to v − 1 for both types of row and column
partition using uniform random distribution. This initial
random assignment is denoted as P v

X(0). Then from the
initial partition, we repeat the following two phases [11]:
(1) Build a new partition on Y : P v

Y (K) using P v
X(K − 1)

(2) Build a new partition on X : P v
X(K) using P v

Y (K)
until there is no change from the previous partition.
Figure 1 visualizes this process. Only the row partition

is shown as the column partition uses exactly the same
process. In figure 1, P 1

X(0) indicates that vertex 0 and 3
are assigned to partition 1.
For phase 1, we are basically implementing the follow-

ing equation. For j = 0, ..., N − 1 and r = 0, ..., v − 1
do

y(j, r) = βj · (h ·
∑

i∈P r
X(K−1)

αi · aλi,j

+ (1− h) ·
∑

i/∈P r
X(K−1)

αi · (1− ai,j)
1/λ) (1)

Then search r∗ such that

y(j, r∗) = max
0≤r≤v−1

(y(j, r))

and assign j to the class P r∗
Y (K). The real values for αi,

βj , h and λ are adjusted by the user. αi and βj assign
weights to connected vertices and not connected vertices
respectively. If h increases, the connected vertices inside
the same partition become more important than those
outside of partition. On the other hand, if λ decreases,
the small values which are outside the partition as well
as the large values inside the partitions make a larger
contribution in the equation. After phase 1, we perform
phase 2. Phase 2 is not shown as it is exactly the same
as phase 1 but with a different partition, P v

Y (K), and αi,
βj switched.
It was proved in [10] that either P v

X(k), P v
Y (k) yields

a better partition than P v
X(k − 1), P v

Y (k − 1), or both re-
main the same. Since it can lead to a local optima, we use

Fig. 2.: Partitioning with COO Format

it with several initial P v
X and we keep the best obtained

solution. This proof verifies that the cross-decomposition
algorithm converges [11]. In our work, we repeat this pro-
cess three times since all the graph data sets we ran em-
pirically show convergence within three iterations. After
convergence, we will pick the actual partitioning solution
from either the row partition or column partition. Sum-
marizing the algorithm in simple words, we are assigning
each vertex to the best partition based on number of con-
nections it has in different partitions. Therefore, we se-
lected this algorithm for graph partitioning as it can clus-
ter the vertices that are close together into the same par-
tition based on the equation. The algorithm has O(N2)
complexity which will be optimized in later section.

B. Graph Representation

In this work, we used real-world graph data sets that
are given from Graph Challenge [12].
We used the Coordinate (COO) format and one more

array, vertex pointer, which is found in the Compressed
Row Storage (CSR) format. COO Format will require the
total number of edge spaces and the vertex pointer will
require the total number of vertex spaces.

III. Implementation

A. Optimization and Basic Implementation

As shown in Figure 2, COO format stores each edge of
the graph using 2 arrays. They store the source and des-
tination vertices respectively. We also use vertex pointer
to indicate how many neighbors each vertex has. Each
thread uses its thread ID as the index for the vertex
pointer. Then, based on the content of the vertex pointer,
threads can access the start point of their neighbor list
that is stored in the COO format. Each thread can get
its number of neighbors by subtracting the content of its
vertex pointer from content of its vertex pointer plus one
since the vertex pointer contains the prefix sum of neigh-
bors of all the vertices. Next, when a thread is checking
its neighbors, it uses its neighbors’ number as the index
to access the partition array.

2B-2

92

Fig. 3.: Partition Example

Equation (1) consists of two parts. The first part is
where h is multiplied and the second part is where (1−h)
is multiplied. In words, the first part basically checks all
the neighbors of j which are in partition r. The second
part checks all the non-neighbors of j which are NOT in
partition r.
The first part can be calculated quickly as we can just

traverse the neighbor list which can be N in the worst
case, but in practice, it is relatively small. However, the
second part cannot be done quickly as we have to tra-
verse all the non-neighbors and check whether they are in
partition r or not.
Analyzing the problem, we realized that the cross-

decomposition algorithm which is designed for any general
decomposing problems, is used specifically for graphs, and
more specifically for unweighted graphs. An unweighted
graph has a value of 1 for every connection in an adja-
cency matrix. Taking advantage of this fact, we found
a novel way to mathematically calculate the second part
of the equation, rather than traversing the entire vertices
to see if there is connection or not. If it was a weighted
graph, we need to check the weight value for every con-
nection that exists outside of current partition which will
require traversing entire non-neighbors.
To explain the calculation, we use Figure 3 which shows

a graph with 29 vertices. Each circle is a vertex. Now as-
sume we are working on vertex 0 (white circle) and red
circles indicate vertex 0’s neighbor and also in the cur-
rent partition that we are checking, P0. Then the green
circles indicate the neighbors that are outside of current
partition. If vertex 0 starts to check for partition 1, then
the red circles in partition 0 will be changed to green and
the two green circles in partition 1 will be changed to red.
First, we count how many circles are in each partition.
That is the cardinality array in Algorithm 2. Second, we
count the number of red circles in the current partition
which is the first part of the equation. That is the ‘con-
nected and in curpart’ variable in Algorithm 2. Next, we
can now simply calculate the second part of the equation.

N − cardinality[r]−Degree

+ connected and in curpart (2)

N denotes the total number of vertices and ‘Degree’ de-
notes the number of neighbors of the current vertex.
This approach now has the run time complexity of

O(ND) where D is the degree, number of neighbors, for
each vertex. The degree can be N in the worst case lead-
ing to O(N2), but it will less likely happen in a large real
graph. Let us have a graph with N number of vertices
and K many partitions.
Algorithm 1 and 2 are given to show implementation

steps. We first initialize all the data structures we need
as shown in Algorithm 1, where ‘rP,cP’ stands for row par-
tition and column partition respectively. Since phase 2 is
basically the same operation with different partitions and
α, β values, only phase 1 will be shown. Then we launch
number of vertices many threads to perform a computa-
tion for the cross-decomposition. Therefore, each thread
is responsible for one vertex. Figure 2 shows how each
thread is taking its portion, the neighbors, from the COO
representation of the graph. We can see that since we
have a number of vertices many workers to compute in
parallel, each thread’s ID is matched with each vertex’s
ID. This enables us to use thread ID as the index to ac-
cess COO arrays. Algorithm 2 shows the pseudo code
for each kernel which performs the calculation explained
above. The experiments we performed indicates that it
produces the best result when the hyper parameters, α
and β are set to 1 and h is adjusted in range of 0.6-0.9
depending on the dataset.

B. Load Balancing

Note that compared to how original cross-
decomposition works, it no longer simply updates
the partition based on maximum gain. Instead, we set a
capacity for each partition, and if one partition is already
full, it goes to another partition based on the gain. By
setting the capacity for each partition, we can prevent one
partition from getting very large causing load imbalance
among partitions. Since the index of gain array is used as
the partition number, we need the sorted index too. To
achieve this, we create an index array and sort it along
with the gain array. This operation is basically the same
as ‘arg sort’ operation in Python. If the first partition

Algorithm 1: Pseudo Code for Initialization

Generate COO representation of graph(RowInd,
ColInd, VertexPtr);
Build Partition arrays, rP and cP, with size of N.
rP[N] & cP[N];
Initialize rP & cP with uniformly distributed
random number < partition size(K);
Generate cardinality arrays with size K, rC[K],
cC[K];
Count the number of vertices in k partition and
assign the count to rC[K], cC[K];

2B-2

93

Algorithm 2: GPU Kernel Code

cur vertex = thread ID;
create array with size K to count the number of
vertices that is connected to current vertex and in
current partition, connected and in curpart[K];
degree = VertexPtr[cur vertex+1] -
VertexPtr[cur vertex];
for neighbors of current vertex do

cur neighbor = current neighbor that is
connected to current vertex
for cur part in all the partition do

if rP[cur neighbor]==cur part then
increment
connected and in curpart[cur part]

end

end

end
Create a gain array with size K, gain[K];
for i in all the partition do

gain[i] =
β ∗ (h ∗ (α ∗ (connected and in curpart[i])λ))+
α((1− h) ∗ (N − rC[i]−Degree+ β ∗
(connectd and in curpart[i])1/λ)))

end
Create index array, idx = {0,1,2,...,K};
Sort the gain array based on maximum value along
with idx array(arg sort);
Assign new partition atomically until one partition
has size of N/K;
If the partition with the max gain is already full,
check the next one in idx array;

is full, it checks the next partition based on the order of
index array. Note that this process is done atomically.
Unless it does not perform an atomic operation, we will
still see load imbalance among partitions due to the race
condition. A race condition happens when all threads
are trying to read and write to the same memory. To
force threads to read/write in order, we use an atomic
operation. However, even if we perform atomic opera-
tions, we can see the output will be non-deterministic.
If each partition has a capacity of 100 and 150 threads
trying to get into the partition, it depends on which
reads the memory first, then updates. Since our work is
not finding exactly the right partition that each vertex
belongs to but rather finding the relatively best partition
based on the number of partitions, we decided to use this
first-come, first-served strategy to achieve speed up.

IV. Results

A. Runtime

First, we measured both the CPU and GPU runtimes
and compared with the CPU runtime of METIS [9] since

it is consistently updated, maintained and used for graph
partitioning as a state-of-the-art graph partitioning tool.
For this measurement, we used P100 from NVIDIA for
GPU, and Intel Quad Core for CPU. In Table I, ‘N’ and
‘M’ denote the number of total vertices and edges in the
graph respectively. The times are measured in seconds.
Partition size of 4 is used for this measurement. We can
see for some of the small graphs, Thanos is actually slower
than METIS. However, for larger graphs, Thanos is much
faster. Thanos achieves 163x faster runtime than METIS
at the best for a large graph, ‘roadNet-CA’. This is due
to two factors. First, the graph has a huge number of ver-
tices that can be processed in parallel utilizing the power
of GPU. Second, as discussed earlier, each kernel has to
run a loop that has bound of number of neighbors of the
vertex, O(Degree). For Thanos, if few vertices have a
huge number of edges compared to the rest, the other
threads will be idling when the few threads are process-
ing the vertices that have a large number of neighbors.
To reduce the runtime, we assigned the vertex that has
the maximum outgoing degree to the CPU. However, for
‘roadNet-CA’, all vertices have almost the same number
of neighbors, between 1 to 12 enabling all threads to finish
their jobs very quickly and in the same time. On aver-
age, Thanos using CPU or GPU is 14x or 30x faster than
METIS on CPU respectively.

B. Partition Quality

Since those real graphs are very large, we cannot visu-
alize easily using graph visual tools to see the partition
quality. Table II shows the result of comparing the edge
cut reduction results among partitions with Thanos and
METIS [9]. To compare, we used the uniform random
partitions as the baseline since partitioning a graph ran-
domly is the fastest method although the quality might be
poor. In the table, ‘P0’ denotes the total number of edges
inside partition 0. ‘P0↔P1’ denotes the total number of
edges that are connecting partition 0 and 1. ‘#External
Edges’ denotes the total number of edges that exist among
partitions. Finally ‘Reduction %’ shows the edge cut re-
duction percentage compared to the solution done by ran-
dom partitioning. The ideal result should be maximized
internal edges for each partition and minimized outgoing
edges among partitions. From data set ‘roadNet-CA’, for
Thanos, we can see the number of edges that are leaving
one partition to another are dramatically reduced and the
number of internal edges for each partition are dramat-
ically increased compared to the random partition. For
Thanos, 99% of edges that were originally connecting par-
titions are now put inside of partition making each par-
tition more dense while METIS is achieving only 44% re-
duction from the random partition. We achieved the best
reduction result for this data set. Unfortunately, Thanos
is not effective on some of the data sets. On data set ‘soc-
Slashdot0902’, both Thanos and METIS were not able to
achieve any benefit from just partitioning a graph ran-

2B-2

94

Graph Name [12] N M Thanos(CPU) Thanos(GPU) METIS(CPU) Speed Up(CPU) Speed Up(GPU)

as20000102 6,474 12,572 0.009 0.035 0.02 2.22x 0.57x
ca-CondMat 23,133 93,439 0.04 0.0067 0.038 0.95x 5.67x

oregon1 010331 10,670 22,002 0.012 0.029 0.02 1.66x 0.68x
p2p-Gnutella04 10,876 39,994 0.019 0.0031 0.04 2.1x 12.9x
as-caida20071105 26,475 53,381 0.031 0.05 0.05 1.6x 1x
facebook combined 4,039 88,234 0.026 0.0021 0.004 0.15x 1.9x

email-Enron 36,692 183,831 0.071 0.031 0.077 1.08x 2.48x
loc-brightkite edges 58,228 214,078 0.09 0.021 0.12 1.3x 5.71x

cit-HepPh 34,546 420,877 0.14 0.02 0.067 0.47x 3.35x
cit-Patent 3,774,768 16,518,947 8.2 0.2 25.6 3.12x 128x

soc-Epinions1 75,879 405,740 0.15 0.057 0.07 0.46x 1.22x
soc-Slashdot0811 77,360 469,180 0.17 0.051 0.36 2.11x 7.05x
soc-Slashdot0902 82,168 504,230 0.19 0.049 0.4 2.1x 8.16x

amazon0302 262,111 899,792 0.4 0.016 0.36 0.9x 22.5x
amazon0505 410,236 2,439,437 0.93 0.076 0.81 0.87x 10.65x
amazon0601 403,394 2,443,408 0.95 0.071 0.67 0.7x 9.43x
roadNet-PA 1,088,092 1,541,898 1.1 0.015 2.4 2.1x 160x
roadNet-TX 1,379,917 1,921,660 1.12 0.022 3.11 2.77x 141.36x
roadNet-CA 1,965,206 2,766,607 1.6 0.03 4.9 3x 163.33x
flickerEdges 105,938 2,316,948 0.42 0.1 0.5 1.19x 5x

graph500-scale19-ef16 335,318 15,459,350 1.4 0.76 7.9 5.6x 10.39x
graph500-scale20-ef16 645,820 31,361,722 2.6 1.2 18.5 7.1x 15.41x
graph500-scale21-ef16 1,243,072 63,463,300 5.2 2 48.4 9.3x 24.2x

Speed Up in Average 14x 30x

TABLE I: Runtime Comparison with METIS

domly, resulting in edge reduction of 0%. To see how the
original graphs look, we sampled with every 500 vertices
and visualized the adjacency matrix since visualizing the
entire graph is not possible. Figure 4 shows the upper tri-
angular of adjacency matrix for the ‘roadNet-CA’ graph
and ‘soc-Slashdot0902’. From this visualization, we can
see that vertices are not densely connected for the road
net. Each vertex is connected to few vertices only. Also,
most importantly, the connections are close to each other.
This is why we see little triangles in black color and big
triangles in shady color in the figure. Cross-decomposition
algorithm seems to perform the best with graphs that are
already nicely clustered. In contrast to the road net, ‘soc-
Slashdot0902’ is a very dense graph. Each vertex is con-
nected to many other vertices especially toward the right
edge. Also, there is a big triangle formed which is hard to
partition. As these cases show, the performance of the al-
gorithm depends on the characteristics of the graph. For
the rest of the graphs, we used a chart, Figure 5, to show
the percentage comparison for better readability. On av-
erage, Thanos was able to achieve 43% edge cut reduction
while METIS was achieving 8%. Thanos is also doing well
with a very large network graph. For data set, ‘friend-
ster’ [12], which has 120 million vertices, we were able to
achieve 30% edge cut reduction in only 80 seconds. Fig-
ure 6 shows the average edge cut reduction of all the data
set based on a different number of partitions with both
Thanos and METIS. We have tested with partition sizes
of 4, 8, 12, 16. Thanos always produces around 40% edge
cut reduction while METIS always produces around 8%.
Based on these result, Thanos performs well on balanced
graph partitioning in general.

(a) roadNet-CA (b) soc-Slashdot0902

Fig. 4.: Upper Triangular Adjacency Matrix [13]

V. Conclusion

In this work, we introduced a fast graph partitioing
tool Thanos that uses the cross-decomposition algorithm.
We have demonstrated that the cross-decomposition al-
gorithm fits well with the large-scale graph partitioning
problem. Although the algorithm can be used for both
weighed and unweighted graph, it will be much slower
with weighted graph since we cannot apply our optimiza-
tion directly. However, with unweighted graph, not only
the partition is fast but the quality of the partition is
high. In the best case, Thanos achieved 99% edge cut
reduction compared to the random partition. Also, each
partition has equal number of vertices providing load bal-
anced partitioning. Partitioning a graph into equal sizes
while minimizing the edges among different partition is
very important in parallel computing. With the result of
our work, we can work on multiple sub-graphs in parallel
knowing that each partition is a dense cluster. Our work

2B-2

95

Graphs P0 P1 P2 P3 P0↔P1 P0↔P2 P0↔P3 P1↔P2 P1↔P3 P2↔P3 #External Edges Reduction %

roadNet-CA
Random 172,390 172,867 172,430 172,523 346,209 346,157 346,815 345,936 345,621 345,659 2,076,397 N/A
Thanos 680,502 699,690 684,636 672,945 6,758 1,281 2,028 1,569 5,517 11,681 28,834 99
METIS 399,954 392,910 408,183 401,105 210,990 175,644 177,903 208,743 216,038 175,137 1,164,455 44

FlickerEdges
Random 144,189 144,475 138,344 152,537 288,925 282,395 296,628 282,981 296,896 289,578 1,737,403 N/A
Thanos 166,462 57,546 64,264 1,623,507 58,574 59,214 181,482 57,003 25,126 25,126 405,169 77
METIS 132,563 135,752 134,291 210,271 269,319 267,067 296,367 270,731 300,823 299,764 1,704,071 2

cit-Patent
Random 1,032,127 1,034,990 1,036,009 1,028,355 2,063,059 2,069,316 2,061,663 2,067,036 2,061,341 2,065,051 12,387,466 N/A
Thanos 764,078 2,021,047 4,610,788 3,062,972 401,710 530,587 662,338 1,018,738 1,375,605 2,071,084 6,060,062 51
METIS 1,375,139 958,054 1,226,628 663,725 2,248,090 2,574,299 1,887,625 2,167,479 1,599,996 1,817,912 12,295,401 1

graph500
scale19-ef16

Random 468,606 485,219 481,329 498,033 953,225 950,909 964,874 966,016 982,068 979,396 5,796,488 N/A
Thanos 6,234 1,186,379 365,016 943,312 143,649 59,822 90,287 1,439,322 2,264,775 1,230,879 5,228,734 10
METIS 530,753 528,151 437,942 438,250 1,059,959 966,271 966,352 963,401 963,184 875,412 5,794,579 0

soc-Slashdot0902
Random 29,704 32,641 32,039 31,329 62,434 62,215 60,808 64,855 64,228 63,977 378,517 N/A
Thanos 8,603 24,422 34,365 57,373 10,946 14,350 44,717 47,037 108,516 153,901 379,467 0
METIS 32,246 29,979 36,535 27,483 61,787 68,703 59,620 66,853 57,919 63,105 377,987 0

TABLE II: Edge Cut Reduction Among Partitions with Partition Size of 4

Fig. 5.: Edge Cut Reduction with Different Data Set with Partition Size 4

Fig. 6.: Average Edge Cut Reduction Based on Different
Partition, 4, 8, 12, 16

is open sourced [14].

Acknowledgements

This work is supported in part by the IBM-Illinois Cen-
ter for Cognitive Computing System Research (C3SR).

References

[1] J. Y. Lin, D. Chen, and J. Cong. Optimal simultaneous
mapping and clustering for fpga delay optimization. In
Design Automation Conf., 2006.

[2] Dennis J.-H. Huang and Andrew B. Kahng. Partitioning-
based standard-cell global placement with an exact ob-
jective. In Intl. Symp. on Physical Design, 1997.

[3] Konstantin Andreev and Harald Racke. Balanced graph
partitioning. Theory of Computing Systems, 2006.

[4] Robert Krauthgamer, Joseph (Seffi) Naor, and Roy
Schwartz. Partitioning Graphs into Balanced Compo-
nents. 2009.

[5] L. Hyafil and R. Rivest. Graph partitioning and con-
structing optimal decision trees are polynomial complete
problems. IRIA-Laboratorie de Recherche en Informa-
tique et Automatique, Tech. Rep. 33, 1973.

[6] M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some
simplified NP-complete problems. In ACM Symp., 1974.

[7] Thang Nguyen Bui and Curt Jones. Finding good approx-
imate vertex and edge partitions is np-hard. Inf. Process.
Lett., 1992.

[8] Hervé Garcia and Jean Marie Proth. Group technology
in production management: The short horizon planning
level. Applied Stochastic Models and Data Analysis, 1985.

[9] George Karypis and Vipin Kumar. A fast and high quality
multilevel scheme for partitioning irregular graphs. SIAM
J. Sci. Comput., 1998.

[10] Hervé Hillion and Jean-Marie Proth. A top-down hier-
archical classification method. Applied Stochastic Models
and Data Analysis, 1987.

[11] Marie-Claude Portmann and Jean-Marie Proth. A Cross-
Decomposition Method for Layout Systems and Scheduling
Problem. 1989.

[12] Siddharth Samsi et al. Static graph challenge: Subgraph
isomorphism. In IEEE HPEC, 2017.

[13] Graph challenge data set stats. https:
//graphchallenge-datasets.netlify.com/#/, 2019.

[14] D Kim. Thanos. https://github.com/dannyk0104/
Thanos, 2019.

2B-2

96

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

